INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 14, Number 4-5, Pages 744-761

# A HYBRIDIZABLE WEAK GALERKIN METHOD FOR THE HELMHOLTZ EQUATION WITH LARGE WAVE NUMBER: hp ANALYSIS

#### JIANGXING WANG AND ZHIMIN ZHANG

Abstract. In this paper, an hp hybridizable weak Galerkin (hp-HWG) method is introduced to solve the Helmholtz equation with large wave number in two and three dimensions. By choosing a specific parameter and using the duality argument, we prove that the proposed method is stable under certain mesh constraint. Error estimate is obtained by using the stability analysis and the duality argument. Several numerical results are provided to confirm our theoretical results.

Key words. Weak Galerkin method, hybridizable method, Helmholtz equation, large wave number, error estimates.

## 1. Introduction

In this paper, we develop an hp-version hybridizable weak Galerkin (hp-HWG) method to solve the Helmholtz equation with Robin boundary condition:

- (1a)
- (1b)
- $$\begin{split} \Delta u + \kappa^2 u &= \tilde{f} & \text{in } \Omega, \\ u &= u_0 & \text{on } \Gamma_1, \\ \frac{\partial u}{\partial \mathbf{n}} + i\kappa u &= \tilde{g} & \text{on } \Gamma_2, \end{split}$$
  (1c)

where  $\Omega \in \mathbb{R}^d$ , d = 2, 3, is a bounded convex Lipschitz domain,  $\Gamma_1$  and  $\Gamma_2$  form a partition of the boundary  $\partial\Omega$ ,  $\kappa > 0$  is the wave number,  $i = \sqrt{-1}$  is the imaginary unit, and **n** denotes the unit outward normal to  $\partial \Omega$ . The condition (1c) is the first order approximation of the radiation condition for Helmholtz scattering problem.

The Helmholtz equation has important applications in electrodynamics, especially in optics and acoustics involving time harmonic wave propagation. The Helmholtz system is not positive definite. When the wave number  $\kappa \gg 1$ , the solution is highly oscillatory. It is very challenging to design an efficient numerical method to solve the Helmholtz equation with high wave number.

In the literature, there have been extensive investigations devoted to numerical approximations for Helmholtz equations with various boundary conditions. In particular, the finite element method (FEM) has been widely used [3, 7, 17, 18, 21, 22, 35]. It has been shown that the  $H^1$ -errors of pth order FEM solutions to the Helmholtz equation have accuracy order  $O(\kappa^{p+1}h^p)$  [21, 22, 35, 36]. In [7], Wu et al. analyzed the preasymptotic error of high order FEM and continuous interior penalty FEM (CIP-FEM) for Helmholtz equation with large wave number. They proved that, when  $\kappa^{2p+1}h^{2p}$  is sufficiently small, the pollution errors are of order  $k^{2p+1}h^{2p}$ . Discontinuous Galerkin methods have also been used to solve Helmholtz equations [8, 11, 12, 13, 22, 30]. Detailed analyses have been carried out in [1, 2] on the discrete dispersive relation by hp-FEM and high-order discontinuous Galerkin methods. In [28, 29], Shen and Wang used the spectral method to solve

Received by the editors on December 31, 2016, accepted on May 5, 2017.

the Helmholtz equation in both interior and exterior domains. Their results indicate that high-order methods are preferable, if not necessary, for highly oscillatory problems. In [4, 5, 14], hybridizable discontinuous Galerkin methods were used to solve the Helmholtz equation.

The weak Galerkin (WG) method was first introduced by Wang and Ye [32] for second-order elliptic equations. It can be derived from the variational form of the continuous problem by replacing derivatives involved by weak derivatives with some stabilizers. WG methods have been applied to solve many problem [20, 23, 24, 25, 26, 31, 32, 33, 34]. The HWG method [27] was introduced by Mu et al., which applies Lagrange multiplier so that the computational complexity can be significantly reduced.

In this paper, we will develop an hp-HWG method to solve the Helmholtz equation with high wave number. The main difficulty in the analysis of the numerical method is due to the strong indefiniteness of the Helmholtz equation. As a consequence, the stability of the numerical approximation is hard to establish. In this work, we use the duality argument to show that the proposed hp-HWG method is stable under proper mesh condition. This stability result not only guarantees the existence of the HWG method but also plays an important role in the error analysis. In particular, we first construct an auxiliary problem and establish its hp-HWG error estimates; then we combined the estimates with the stability result to derive the error estimates of the hp-HWG scheme for the original Helmholtz problem.

Notation. In this paper, standard notations for Sobolev spaces (e.g.,  $L^2(\Omega)$ ,  $H^k(\Omega)$  for  $k \in \mathbb{N}$ , etc.) and the associated norms and seminorms will be adopted. Plain and bold fonts are used for scalars and vectors, respectively.

The rest of this paper is organized as follows. The hp-HWG scheme for the Helmholtz equation is developed in Section 2. Section 3 is devoted to show the stability result of the numerical scheme. In Section 4, we derive the error estimate of the numerical scheme. Numerical results are given in Section 5 to confirm the theoretical results.

## 2. Weak Divergence and the *hp*-HWG Scheme

**2.1. Weak divergence.** Let K be a subdomain in  $\Omega$ . A weak vector-valued function on K refers to a vector field  $\mathbf{v} = {\mathbf{v}_0, \mathbf{v}_b}$ , where  $\mathbf{v}_0 \in [L^2(K)]^d$  carries the information of  $\mathbf{v}$  in K, and  $\mathbf{v}_b \in [L^2(\partial K)]^d$  represents partial or full information of  $\mathbf{v}$  on  $\partial K$ . It is important to point out that  $\mathbf{v}_b$  may not necessarily be related to the trace of  $\mathbf{v}_0$  on  $\partial K$ , but shall be well-defined. Denote by  $\mathbf{V}(K)$  the space of all weak vector-valued functions on K; that is

$$\mathbf{V}(K) = \{ \mathbf{v} = \{ \mathbf{v}_0, \mathbf{v}_b \} : \mathbf{v}_0 \in [L^2(K)]^d, \mathbf{v}_b \in [L^2(\partial K)]^d \}.$$

A weak divergence can be taken for any vector field in  $\mathbf{V}(K)$  by following the definition [27].

**Definition 2.1.** For any  $\mathbf{v} \in \mathbf{V}(K)$ , the weak divergence of  $\mathbf{v}$ , denoted by  $\nabla_w \cdot \mathbf{v}$ , is defined as a linear functional on  $H^1(K)$ , whose action on each  $\phi \in H^1(K)$  is given by

(2) 
$$(\nabla_w \cdot \mathbf{v}, \phi)_K = -(\mathbf{v}_0, \nabla \phi)_K + \langle \mathbf{v}_b \cdot \mathbf{n}, \phi \rangle_{\partial K}$$

where  $(\cdot, \cdot)_K$  and  $\langle \cdot, \cdot \rangle_{\partial K}$  stand for the inner products in  $L^2(K)$  and  $L^2(\partial K)$ , respectively.

Next, we introduce a discrete weak divergence operator  $(\nabla_{w,k})$  in a polynomial subspace of the dual of  $H^1(K)$  [27].

#### J. WANG AND Z. ZHANG

**Definition 2.2.** For any  $\mathbf{v} \in \mathbf{V}(K)$ , the discrete weak divergence of  $\mathbf{v}$ , denoted by  $(\nabla_{w,k} \cdot \mathbf{v})$ , is defined as the unique polynomial in  $P^k(K)$  satisfying

(3) 
$$(\nabla_{w,k} \cdot \mathbf{v}, \psi)_K = -(\mathbf{v}_0, \nabla \psi)_K + \langle \mathbf{v}_b \cdot \mathbf{n}, \psi \rangle_{\partial K}, \quad \forall \psi \in P^k(K).$$

Here, for  $k \ge 0$ ,  $P^k(K)$  is the set of polynomials on K with total degree up to k.

**2.2.** Numerical scheme. Let  $\mathcal{T}_h$  be a partition of  $\Omega$ , with possible hanging nodes. For an element  $K \in \mathcal{T}_h$ , denote by  $h_K = \operatorname{diam}(K)$  the diameter of K. Let  $h = \max_{K \in \mathcal{T}_h} h_K$  be the mesh size of  $\mathcal{T}_h$ . Denote by  $\mathcal{E}_h = \bigcup_{K \in \mathcal{T}_h} \partial K$  the skeleton of the mesh, and set  $\mathcal{E}_h^B = \mathcal{E}_h \cap \partial \Omega$  and  $\mathcal{E}_h^I = \mathcal{E}_h \setminus \mathcal{E}_h^B$ .

To introduce the hp-HWG method, we rewrite (1a)-(1c) as a first order system

(4a) 
$$i\kappa \mathbf{q} + \nabla u = 0$$
 in  $\Omega$ 

(4b) 
$$i\kappa u + \operatorname{div} \mathbf{q} = f \quad \text{in } \Omega$$

(4c) 
$$u = u_0$$
 on  $\Gamma_1$ ,

(4d) 
$$-\mathbf{q}\cdot\mathbf{n}+u=g$$
 on  $\Gamma_2$ 

Multiplying  $\mathbf{v} \in [L^2(\Omega)]^d$  and  $w \in L^2(\Omega)$  to (4a) and (4b), respectively, and using integration by parts, we get the weak formulation

(5a) 
$$i\kappa(\mathbf{q},\overline{\mathbf{v}})_K - (\overline{\nabla}\cdot\mathbf{v},u)_K + \langle u,\overline{\mathbf{v}}\cdot\mathbf{n}\rangle_{\partial K} = 0,$$

(5b) 
$$i\kappa(u,\overline{w})_K + (\operatorname{div}\mathbf{q},\overline{w})_K = (f,\overline{w})_K$$

For each element  $K \in \mathcal{T}_h$ , let **n** be the outward normal direction to the boundary  $\partial K$ . Let  $W^k(K) = P^k(K)$  and

 $\mathbf{V}^{k}(K) = \{ \mathbf{v} = \{ \mathbf{v}_{0}, \mathbf{v}_{b} \} : \mathbf{v}_{0} \in [P^{k}(K)]^{d}, \mathbf{v}_{b} \big|_{e} = v_{b}\mathbf{n} \text{ for } v_{b} \in P^{k}(e), e \in \partial K \}.$ 

On the wired-basket  $\mathcal{E}_h$ , define a finite element space

$$\Lambda_h = \{\lambda : \lambda|_e \in P^k(e), \forall e \in \mathcal{E}_h\}.$$

Let  $\Lambda_h^0$  be a subset of  $\Lambda$  such that

$$\Lambda_h^0 = \{ \lambda \in \Lambda_h : \lambda|_e = 0, \forall e \in \mathcal{E}_h \cap \Gamma_1 \}.$$

Define discontinuous finite element spaces

$$\mathbf{V}_{h} = \{ \mathbf{v} \in [L^{2}(\Omega)]^{d} : \mathbf{v}|_{K} \in \mathbf{V}^{k}(K), \forall K \in \mathcal{T}_{h} \}, \\ W_{h} = \{ w \in L^{2}(\Omega) : w|_{K} \in W^{k}(K), \forall K \in \mathcal{T}_{h} \}.$$

Further, for the mesh  $\mathcal{T}_h$ , we define

$$\begin{aligned} (u,v)_{\mathcal{T}_h} &= \sum_{K \in \mathcal{T}_h} (u,v)_K, \qquad (\mathbf{u},\mathbf{v})_{\mathcal{T}_h} = \sum_{K \in \mathcal{T}_h} (\mathbf{u},\mathbf{v})_K, \\ &< u,v >_{\partial \mathcal{T}_h} = \sum_{K \in \mathcal{T}_h} < u,v >_{\partial K}, < u,v >_{\Gamma_2} = \sum_{e \in \mathcal{E}_h^B \cap \Gamma_2} < u,v >_e. \end{aligned}$$

Our hybridizable weak Galerkin method is: find  $\mathbf{q}_h = {\mathbf{q}_0, \mathbf{q}_b} \in \mathbf{V}_h$ ,  $u_h \in W_h$ ,  $\lambda \in \Lambda_h$ , such that  $\lambda = \prod_b u_0$  on  $\Gamma_1$  and

(6a)  $S_t(\mathbf{q}_h, \mathbf{v}) + \mathrm{i}\kappa(\mathbf{q}_0, \overline{\mathbf{v}_0})_{\mathcal{T}_h} - (\overline{\nabla_{w,k} \cdot \mathbf{v}}, u_h)_{\mathcal{T}_h} + \langle \lambda, \overline{\mathbf{v}_b \cdot \mathbf{n}} \rangle_{\partial \mathcal{T}_h} = 0,$ 

(6b) 
$$i\kappa(u_h,\overline{w})_{\mathcal{T}_h} + (\nabla_{w,k}\cdot\mathbf{q}_h,\overline{w})_{\mathcal{T}_h} = (f,\overline{w})_{\mathcal{T}_h}$$

(6c) 
$$< \mathbf{q}_b \cdot \mathbf{n}, \phi >_{\partial \mathcal{T}_h \setminus \partial \Omega} = 0,$$

(6d) 
$$< -\mathbf{q}_b \cdot \mathbf{n} + \lambda, \overline{\phi} >_{\Gamma_2} = < g, \overline{\phi} >_{\Gamma_2},$$

for all  $\mathbf{v} \in \mathbf{V}_h$ ,  $w \in W_h$  and  $\phi \in \Lambda_h^0$ , where

$$S_t(\mathbf{q}_h, \mathbf{v}) = \sum_{K \in \mathcal{T}_h} S_K(\mathbf{q}_h, \mathbf{v}),$$
$$S_K(\mathbf{q}_h, \mathbf{v}) = i\tau < (\mathbf{q}_0 - \mathbf{q}_b) \cdot \mathbf{n}, \overline{(\mathbf{v}_0 - \mathbf{v}_b) \cdot \mathbf{n}} >_{\partial K},$$

is the element-wise stabilizer,  $\tau$  is a parameter and  $\Pi_b$  is the  $L^2$  projection operator which will be defined later.

Notice that  $u_h$  and  $\mathbf{q}_0$  are respectively the approximations of u and  $\mathbf{q}$  in element K,  $\lambda$  and  $\mathbf{q}_b$  are respectively the approximations of u and  $\mathbf{q}$  on  $\partial K$ .

#### 3. Stability Analysis

**Lemma 3.1.** Let  $(\mathbf{q}_h, u_h, \lambda) \in \mathbf{V}_h \times W_h \times \Lambda_h$  be the solution of (6a)-(6d). If  $u_0 = 0$ , then

(7) 
$$\|\lambda\|_{0,\Gamma_2}^2 \le \|f\|_{0,\Omega} \|u_h\|_{0,\Omega} + \|g\|_{0,\Gamma_2}^2,$$

(8) 
$$\tau \| (\mathbf{q}_0 - \mathbf{q}_b) \cdot \mathbf{n} \|_{0,\partial\mathcal{T}_h}^2 + \kappa \| \mathbf{q}_0 \|_{0,\Omega}^2 \le \kappa \| u_h \|_{0,\Omega}^2 + \| f \|_{0,\Omega} \| u_h \|_{0,\Omega} + \| g \|_{0,\Gamma_2}^2.$$

*Proof.* Choosing  $\mathbf{v} = \mathbf{q}_h, w = u_h, \phi = \lambda$  in (6a)–(6d), we get

(9a) 
$$S_t(\mathbf{q}_h, \mathbf{q}_h) + i\kappa(\mathbf{q}_0, \overline{\mathbf{q}_0})_{\mathcal{T}_h} - (\nabla_{w,k} \cdot \mathbf{q}_h, u_h)_{\mathcal{T}_h} + \langle \lambda, \overline{\mathbf{q}_b \cdot \mathbf{n}} \rangle_{\partial \mathcal{T}_h} = 0,$$

(9b) 
$$i\kappa(u_h,\overline{u_h})_{\mathcal{T}_h} + (\nabla_{w,k}\cdot\mathbf{q}_h,\overline{u_h})_{\mathcal{T}_h} = (f,\overline{u_h})_{\mathcal{T}_h}$$

(9c)  $< \mathbf{q}_b \cdot \mathbf{n}, \overline{\lambda} >_{\partial \mathcal{T}_h \setminus \partial \Omega} = 0,$ 

(9d) 
$$< -\mathbf{q}_b \cdot \mathbf{n} + \lambda, \overline{\lambda} >_{\Gamma_2} = < g, \overline{\lambda} >_{\Gamma_2}$$

Summing (9a)–(9d) up, and using the fact that  $a\overline{b} = \overline{ab}$ , we get

$$S_t(\mathbf{q}_h, \mathbf{q}_h) + \mathrm{i}\kappa(\mathbf{q}_0, \overline{\mathbf{q}_0})_{\mathcal{T}_h} - \mathrm{i}\kappa(u_h, \overline{u_h})_{\mathcal{T}_h} + <\lambda, \overline{\lambda} >_{\Gamma_2} = _{\Gamma_2} + (\overline{f}, u_h)_{\mathcal{T}_h}.$$

Taking the real part and the imaginary part of the above equality, we arrive at

 $\|\lambda\|_{0,\Gamma_2}^2 \le \|f\|_{0,\Omega} \|u_h\|_{0,\Omega} + \|g\|_{0,\Gamma_2}^2,$ 

$$\tau \| (\mathbf{q}_0 - \mathbf{q}_b) \cdot \mathbf{n} \|_{0,\partial\mathcal{T}_h}^2 + \kappa \| \mathbf{q}_0 \|_{0,\Omega}^2 \le \kappa \| u_h \|_{0,\Omega}^2 + \| f \|_{0,\Omega} \| u_h \|_{0,\Omega} + \| g \|_{0,\Gamma_2}^2.$$

It finishes the proof of this lemma.

To estimate  $||u_h||_{0,\Omega}$ , we will use a duality argument. Given  $u_h \in L^2(\Omega)$ , we define

(10a) 
$$-i\kappa\Phi + \nabla\Psi = 0$$
 in  $\Omega$ 

(10b) 
$$\nabla \cdot \Phi - i\kappa \Psi = u_h \quad \text{in } \Omega.$$

(10c) 
$$\Psi = 0$$
 on  $\Gamma_1$ ,

(10d) 
$$\Phi \cdot \mathbf{n} = \Psi$$
 on  $\Gamma_2$ .

The following result is found in [4].

**Lemma 3.2.** For  $\Phi$  and  $\Psi$  defined in (10), they admit the following estimate:

(11) 
$$\|\Psi\|_{0,\Omega} + \kappa^{-2} \|\Psi\|_{2,\Omega} + \kappa^{-1} \|\Psi\|_{1,\Omega} + \|\Psi\|_{0,\Gamma_2} + \kappa^{-1} \|\Phi\|_{1,\Omega} \le C \|u_h\|_{0,\Omega}$$

Let  $\Pi_0$  be the standard  $L^2$  projection form  $L^2(K)$  onto  $P^k(K)$ ,  $\Pi_0 = (\Pi_0)^d$  and  $\Pi_b$  be the standard  $L^2$  projection form  $L^2(e)$  onto  $P^k(e)$ , where  $K \in \mathcal{T}_h$ ,  $e \in \mathcal{E}_h$ . Let  $\Pi_h : \mathbf{V}(K) \to \mathbf{V}^k(K)$  be defined as

$$\Pi_h \mathbf{v} = \{ \mathbf{\Pi}_0 \mathbf{v}_0, \ (\Pi_b v_b) \mathbf{n} \}, \quad \forall \mathbf{v} = \{ \mathbf{v}_0, \mathbf{v}_b \} \in \mathbf{V}(K).$$

The following estimates have been established in [15, 29].

J. WANG AND Z. ZHANG

**Lemma 3.3.** For any  $u \in H^{s+1}(K)$ ,  $s \ge 0, s \in \mathbb{N}$ ,

$$\begin{aligned} \|u - \Pi_0 u\|_{0,K} &+ \frac{h}{p} \|\nabla (u - \Pi_0 u)\|_{0,K} \le C(h/p)^{s+1} |u|_{s+1,K}, \\ \|u - \Pi_0 u\|_{0,\partial K} \le Ch_K^{s+\frac{1}{2}} (p+1)^{-(s+\frac{1}{2})} |u|_{s+1,K}. \end{aligned}$$

Moreover, we have the following results.

Lemma 3.4. (1) For all 
$$w \in P^k(K)$$
,  $\mathbf{q} \in [H^1(\Omega)]^d$ , we have  
(12)  $(\nabla_{w,k} \cdot (\Pi_h \mathbf{q}), \overline{w})_K = (\nabla \cdot \mathbf{q}, \overline{w})_K - \langle \mathbf{q} \cdot \mathbf{n} - \Pi_b(\mathbf{q} \cdot \mathbf{n}), \overline{w} \rangle_{\partial K}$ .  
(2) For all  $v = \{\mathbf{v}_0, \mathbf{v}_b\} \in \mathbf{V}^k(K)$ ,  $w \in H^1(K)$ , we have  
 $(\nabla_{w,k} \cdot \mathbf{v}, \overline{\Pi_0 w})_K = -(\mathbf{v}_0, \overline{\nabla w})_K + \langle (\mathbf{v}_0 - \mathbf{v}_b) \cdot \mathbf{n}, \overline{w - \Pi_0 w} \rangle_{\partial K}$   
(13)  $+ \langle \mathbf{v}_b \cdot \mathbf{n}, \overline{w} \rangle_{\partial K}$ .

*Proof.* The results follow the same line as in [33].

Now we are ready to derive the stability estimate of  $u_h$ , which plays an important role in the error analysis of the Helmholtz equation.

**Theorem 3.1.** If  $\kappa^2 h/p \leq 1$  and  $u_0 = 0$ , then there exists a constant C independent of  $\kappa$ , p and h, such that

$$||u_h||_{0,\Omega} \le C(||f||_{0,\Omega} + ||g||_{0,\Gamma_2}).$$

Proof. Using (10b) and Green's lemma, we get

$$(u_h, \overline{u_h})_{\mathcal{T}_h} = (u_h, \overline{\nabla \cdot \Phi} - \mathrm{i}\kappa\overline{\Psi})_{\mathcal{T}_h} = -(\nabla u_h, \overline{\Phi})_{\mathcal{T}_h} + \langle u_h, \overline{\Phi \cdot \mathbf{n}} \rangle_{\partial \mathcal{T}_h} + \mathrm{i}\kappa(u_h, \overline{\Psi})_{\mathcal{T}_h}.$$

Together with (12), we have

(14) 
$$(u_{h},\overline{u_{h}})_{\mathcal{T}_{h}} = \overline{(\nabla_{w,k} \cdot (\Pi_{h}\Phi), u_{h})_{\mathcal{T}_{h}}} + \sum_{K \in \mathcal{T}_{h}} \langle u_{h}, \overline{\Phi \cdot \mathbf{n} - \Pi_{b}(\Phi \cdot \mathbf{n})} \rangle_{\partial K} + i\kappa(u_{h}, \overline{\Psi})_{\mathcal{T}_{h}}.$$

The combination of (6a), (6b) and (14) leads to

$$(u_h, \overline{u_h})_{\mathcal{T}_h} = \sum_{K \in \mathcal{T}_h} \langle u_h, \overline{\Phi \cdot \mathbf{n} - \Pi_b(\Phi \cdot \mathbf{n})} \rangle_{\partial K} + (f, \overline{\Pi_0 \Psi})_{\mathcal{T}_h} - (\nabla_{w,k} \cdot \mathbf{q}_h, \overline{\Pi_0 \Psi})_{\mathcal{T}_h}$$
  
(15) 
$$+ S_t(\mathbf{q}_h, \Pi_h \Phi) + \mathrm{i}\kappa(\mathbf{q}_0, \overline{\Pi_0 \Phi})_{\mathcal{T}_h} + \sum_{K \in \mathcal{T}_h} \langle \lambda, \overline{\Pi_b(\Phi \cdot \mathbf{n})} \rangle_{\partial K}.$$

Using (10a) and (13), we have

(16) 
$$\mathrm{i}\kappa(\mathbf{q}_{0},\overline{\mathbf{\Pi}_{0}\Phi})_{\mathcal{T}_{h}} = \mathrm{i}\kappa(\mathbf{q}_{0},\overline{\Phi})_{\mathcal{T}_{h}} = \mathrm{i}\kappa(\mathbf{q}_{0},\frac{-\mathrm{i}}{\kappa}\nabla\Psi)_{\mathcal{T}_{h}} = -(\mathbf{q}_{0},\overline{\nabla\Psi})_{\mathcal{T}_{h}},$$
  
 $(\nabla_{w,k}\cdot\mathbf{q}_{h},\overline{\mathbf{\Pi}_{0}\Psi})_{\mathcal{T}_{h}} = -(\mathbf{q}_{0},\overline{\nabla\Psi})_{\mathcal{T}_{h}} + \sum_{K\in\mathcal{T}_{h}} <(\mathbf{q}_{0}-\mathbf{q}_{b})\cdot\mathbf{n},\overline{\Psi-\mathbf{\Pi}_{0}\Psi} >_{\partial K}$   
 $+ <\mathbf{q}_{b}\cdot\mathbf{n},\overline{\Psi}>_{\partial\Omega}.$ 

By the definition of  $S_t(\mathbf{w}, \mathbf{v})$ , we have, for any  $\mathbf{w} \in [H^1(\Omega)]^d$ ,  $S_t(\mathbf{w}, \mathbf{v}) = 0 \qquad \forall \mathbf{v} \in \mathbf{V}_h.$ 

$$\mathbf{S}_t(\mathbf{w}, \mathbf{v}) = 0 \qquad \forall \mathbf{v} \in \mathbf{V}_t$$

Hence,

(17) 
$$S_t(\Pi_h \Phi, \mathbf{v}) = S_t(\Pi_h \Phi - \Phi, \mathbf{v}).$$

The combination of (15)–(17) and the definition of  $\Pi_b$  lead to

$$(u_h, \overline{u_h})_{\mathcal{T}_h} = (f, \overline{\Pi_0 \Psi})_{\mathcal{T}_h} + S_t(\mathbf{q}_h, \Pi_h \Phi - \Phi) + \langle \Pi_b u_0, \overline{\Pi_b(\Phi \cdot \mathbf{n})} \rangle_{\Gamma_1}$$
  
(18) 
$$-\sum_{K \in \mathcal{T}_h} \langle (\mathbf{q}_0 - \mathbf{q}_b) \cdot \mathbf{n}, \overline{\Psi - \Pi_0 \Psi} \rangle_{\partial K} + \langle g, \overline{\Pi_0 \Psi} \rangle_{\Gamma_2}.$$

Hence, if  $u_0 = 0$ , we get the following estimate

$$\begin{aligned} \|u_h\|_{0,\Omega}^2 &\leq \|f\|_{0,\Omega} \|\Psi\|_{0,\Omega} + \|g\|_{0,\Gamma_2} \|\Psi\|_{0,\Gamma_2} \\ &+ \|(\mathbf{q}_0 - \mathbf{q}_b) \cdot \mathbf{n}\|_{0,\partial\mathcal{T}_h} (h/p)^{\frac{3}{2}} \|\Psi\|_{2,\Omega} + \tau \|(\mathbf{q}_0 - \mathbf{q}_b) \cdot \mathbf{n}\|_{0,\partial\mathcal{T}_h} (h/p)^{\frac{1}{2}} \|\Phi\|_{1,\Omega}. \end{aligned}$$

Using Lemma 3.1 and Lemma 3.2, we have

$$\begin{aligned} \|u_h\|_{0,\Omega}^2 &\leq \|f\|_{0,\Omega} \|u_h\|_{0,\Omega} + \|g\|_{0,\Gamma_2} \|u_h\|_{0,\Omega} \\ &+ (\tau^{-\frac{1}{2}}\kappa^2(h/p)^{\frac{3}{2}} + \tau^{\frac{1}{2}}\kappa(h/p)^{\frac{1}{2}}) \\ &\times \left(\kappa^{\frac{1}{2}} \|u_h\|_{0,\Omega} + \|f\|_{0,\Omega}^{\frac{1}{2}} \|u_h\|_{0,\Omega}^{\frac{1}{2}} + \|g\|_{0,\Gamma_2}\right) \|u_h\|_{0,\Omega}. \end{aligned}$$

We choose  $\tau = \frac{\kappa h}{p}$  to get the minimum of term  $\tau^{-\frac{1}{2}}\kappa^2(h/p)^{\frac{3}{2}} + \tau^{\frac{1}{2}}\kappa(h/p)^{\frac{1}{2}}$ . Finally, we obtain

$$||u_h||_{0,\Omega} \le C(||f||_{0,\Omega} + ||g||_{0,\Gamma_2}) + \kappa^2 \frac{h}{p} ||u_h||_{0,\Omega}.$$

It follows that, if  $\kappa^2 h/p < 1$ , then

$$||u_h||_{0,\Omega} \le C(||f||_{0,\Omega} + ||g||_{0,\Gamma_2}).$$

## 4. Error Analysis

In this section, we will carry out the error analysis of the hp-HWG method. For this purpose, we first consider the following auxiliary problem:

 $i\kappa \mathbf{Q} + \nabla U = 0 \qquad \text{in } \Omega,$  $\nabla \cdot \mathbf{Q} - i\kappa U = f - 2i\kappa u \quad \text{in } \Omega$ (19a)

(19b) 
$$\nabla \cdot \mathbf{Q} - \mathrm{i}\kappa U = f - 2\mathrm{i}\kappa u \quad \mathrm{in} \ \Omega,$$

- $U = u_0$ (19c)on  $\Gamma_1$ ,
- $-\mathbf{Q}\cdot\mathbf{n}+U=g$ (19d)on  $\Gamma_2$ ,

where u is the solution of (4a)-(4d), and  $u_0, f$ , and g are the same as in (4a)-(4d). The *hp*-HWG scheme for (19a)–(19d) is: find  $(\mathbf{Q}_h, U_h, \lambda_h) \in \mathbf{V}_h \times W_h \times \Lambda_h$  such that  $\lambda_h = \prod_b u_0$  on  $\Gamma_1$  and

(20a) 
$$S_t(\mathbf{Q}_h, \mathbf{v}) + i\kappa(\mathbf{Q}_0, \overline{\mathbf{v}}_0)_{\mathcal{T}_h} - (\overline{\nabla_{w,k} \cdot \mathbf{v}}, U_h)_{\mathcal{T}_h} + \langle \lambda_h, \overline{\mathbf{v}_b \cdot \mathbf{n}} \rangle_{\partial \mathcal{T}_h} = 0,$$

(20b) 
$$-\mathrm{i}\kappa(U_h,\overline{w})_{\mathcal{T}_h} + (\nabla_{w,k}\cdot\mathbf{Q}_h,\overline{w})_{\mathcal{T}_h} = (f-2\mathrm{i}\kappa u,\overline{w})_{\mathcal{T}_h},$$

- $< \mathbf{Q}_b \cdot \mathbf{n}, \overline{\phi} >_{\partial \mathcal{T}_b \setminus \partial \Omega} = 0,$ (20c)
- $< -\mathbf{Q}_b \cdot \mathbf{n} + \lambda, \overline{\phi} >_{\Gamma_2} = < g, \overline{\phi} >_{\Gamma_2},$ (20d)

for all  $\mathbf{v} \in \mathbf{V}_h, w \in W_h, \phi \in \Lambda_h^0$ .

Denote  $\theta_{\mathbf{q}} = \mathbf{q}_h - \mathbf{Q}_h$ ,  $\theta_u = u_h - U_h$  and  $\theta_{\lambda} = \lambda - \lambda_h$ . According to (6a)–(6d) and (20a)–(20d), we have  $\theta_{\lambda} = 0$  on  $\Gamma_1$  and

- (21a)  $S_t(\theta_{\mathbf{q}}, \mathbf{v}) + \mathrm{i}\kappa(\theta_{\mathbf{q}}, \overline{\mathbf{v}}_0)_{\mathcal{T}_h} (\overline{\nabla_{w,k} \cdot \mathbf{v}}, \theta_u)_{\mathcal{T}_h} + \langle \theta_{\lambda}, \overline{\mathbf{v}_b \cdot \mathbf{n}} \rangle_{\partial \mathcal{T}_h} = 0,$
- (21b)  $i\kappa(\theta_u, \overline{w})_{\mathcal{T}_h} + (\nabla_{w,k} \cdot \theta_{\mathbf{q}}, \overline{w})_{\mathcal{T}_h} = 2i\kappa(U_h u, \overline{w})_{\mathcal{T}_h},$
- (21c)  $\langle \theta_{\mathbf{q}}^b \cdot \mathbf{n}, \overline{\phi} \rangle_{\partial \mathcal{T}_h \setminus \partial \Omega} = 0,$
- (21d)  $< -\theta_{\mathbf{q}}^b \cdot \mathbf{n} + \theta_{\lambda}, \overline{\phi} >_{\Gamma_2} = 0.$

By Theorem 3.1, in order to get the estimates of  $\theta_{\mathbf{q}}, \theta_u$  and  $\theta_{\lambda}$ , we need to estimate  $u - U_h$ .

**4.1. Error estimates of the auxiliary problem.** Direct calculation leads to the following *error equations* of the hp-HWG method for (19a)–(19d):

$$S_{t}(\mathbf{R}_{\mathbf{q}}, \mathbf{v}) + i\kappa(\mathbf{R}_{\mathbf{q}}, \overline{\mathbf{v}_{0}})_{\mathcal{T}_{h}} - (\overline{\nabla_{w,k} \cdot \mathbf{v}}, \Pi_{0}u - U_{h})_{\mathcal{T}_{h}}$$

$$(22a)$$

$$+ \sum_{K \in \mathcal{T}_{h}} < \overline{(\mathbf{v}_{0} - \mathbf{v}_{b}) \cdot \mathbf{n}}, u - \Pi_{0}u >_{\partial K} + \sum_{K \in \mathcal{T}_{h}} < \overline{\mathbf{v}_{b} \cdot \mathbf{n}}, u - \lambda_{h} >_{\partial K} = 0,$$

$$(22b)$$

$$- i\kappa(R_{u}, \overline{w})_{\mathcal{T}_{h}} + (\nabla_{w,k} \cdot (\Pi_{h}\mathbf{q} - \mathbf{Q}_{h}), \overline{w})_{\mathcal{T}_{h}} + \sum_{K \in \mathcal{T}_{h}} < \mathbf{q} \cdot \mathbf{n} - \Pi_{b}(\mathbf{q} \cdot \mathbf{n}), \overline{w} >_{\partial K} = 0,$$

$$(22c)$$

$$< \mathbf{q} \cdot \mathbf{n} - \mathbf{Q}_{b} \cdot \mathbf{n}, \overline{\phi} >_{\partial \mathcal{T}_{h} \setminus \partial \Omega} = 0,$$

$$(22d)$$

$$- < \mathbf{q} \cdot \mathbf{n} - \mathbf{Q}_{b} \cdot \mathbf{n}, \overline{\phi} >_{\Gamma_{2}} + < u - \lambda_{h}, \overline{\phi} >_{\Gamma_{2}} = 0.$$

In the current application, we will employ the following decomposition:

$$\begin{aligned} \mathbf{R}_{\mathbf{q}} &= \mathbf{q} - \mathbf{Q}_{h} = \mathbf{q} - \Pi_{h} \mathbf{q} - (\mathbf{Q}_{h} - \Pi_{h} \mathbf{q}), \\ R_{u} &= u - U_{h} = u - \Pi_{0} u - (U_{h} - \Pi_{0} u), \\ \zeta_{\mathbf{q}} &= \mathbf{Q}_{h} - \Pi_{h} \mathbf{q} = \{\zeta_{0}, \zeta_{b}\}, \ \xi_{u} = u - \Pi_{0} u, \ \eta_{u} = U_{h} - \Pi_{0} u. \end{aligned}$$

**Lemma 4.1.** Suppose that  $u \in H^{s+1}(\Omega)$  and  $\mathbf{q} \in [H^{s+1}(\Omega)]^d$  are smooth functions on  $\Omega$ . Then, the following estimates hold true:

$$(23a)$$

$$\sum_{K\in\mathcal{T}_{h}}|<(\mathbf{v}_{0}-\mathbf{v}_{b})\cdot\mathbf{n},\overline{\Pi_{0}u-u}>_{\partial K}|\leq\left(\frac{h}{p}\right)^{s+\frac{1}{2}}\|u\|_{s+1,\Omega}\left(\sum_{K\in\mathcal{T}_{h}}\|(\mathbf{v}_{0}-\mathbf{v}_{b})\cdot\mathbf{n}\|_{0,\partial K}^{2}\right)^{\frac{1}{2}},$$

$$(23b)$$

$$S_{t}(\mathbf{q}-\Pi_{h}\mathbf{q},\mathbf{Q}_{h}-\Pi_{h}\mathbf{q})\leq C\tau^{\frac{1}{2}}\left(\frac{h}{p}\right)^{s+\frac{1}{2}}\|\mathbf{q}\|_{s+1,\Omega}\left(\sum_{K\in\mathcal{T}_{h}}\tau\|(\zeta_{0}-\zeta_{b})\cdot\mathbf{n}\|_{0,\partial K}^{2}\right)^{\frac{1}{2}},$$

for all  $\mathbf{v} \in \mathbf{V}_h$ .

Proof. By Cauchy-Schwarz inequality, we arrive at

$$\sum_{K \in \mathcal{T}_{h}} | < (\mathbf{v}_{0} - \mathbf{v}_{b}) \cdot \mathbf{n}, \overline{\Pi_{0}u - u} >_{\partial K} |$$

$$\leq \left(\sum_{K \in \mathcal{T}_{h}} \|(\mathbf{v}_{0} - \mathbf{v}_{b}) \cdot \mathbf{n}\|_{0,\partial K}^{2}\right)^{\frac{1}{2}} \left(\sum_{K \in \mathcal{T}_{h}} \|\Pi_{0}u - u\|_{0,\partial K}^{2}\right)^{\frac{1}{2}}$$

$$\leq C(h/p)^{s + \frac{1}{2}} \|u\|_{s+1,\Omega} \left(\sum_{K \in \mathcal{T}_{h}} \|(\mathbf{v}_{0} - \mathbf{v}_{b}) \cdot \mathbf{n}\|_{0,\partial K}^{2}\right)^{\frac{1}{2}}.$$

Using the definition of  $S_t(\mathbf{v}, \mathbf{r})$ , we have

$$S_t(\mathbf{q} - \Pi_h \mathbf{q}, \mathbf{Q}_h - \Pi_h \mathbf{q})$$

$$\leq (\tau \sum_{K \in \mathbb{T}_h} \|\mathbf{q} - \Pi_h \mathbf{q}\|_{0,\partial K}^2)^{\frac{1}{2}} \cdot (\tau \sum_{K \in \mathcal{T}_h} \|(\zeta_0 - \zeta_b) \cdot \mathbf{n}\|_{0,\partial K}^2)^{\frac{1}{2}}$$

$$\leq C \tau^{\frac{1}{2}} (h/p)^{s + \frac{1}{2}} \|\mathbf{q}\|_{s+1,\Omega} \Big(\sum_{K \in \mathcal{T}_h} \tau \|(\zeta_0 - \zeta_b) \cdot \mathbf{n}\|_{0,\partial K}^2 \Big)^{\frac{1}{2}}.$$

It completes the proof of this lemma.

**Theorem 4.1.** Let  $u \in H^{s+1}(\Omega)$ ,  $\mathbf{q} \in [H^{s+1}(\Omega)]^d$  be the solution of (4a)–(4d). Let  $\mathbf{Q}_h$ ,  $U_h$  be the solution of (20a)–(20d). If  $\kappa^2 h/p < 1$ , then there exists a constant C independent of  $\kappa$ , h and p such that

$$\kappa^{\frac{1}{2}} \|\zeta_{0}\|_{0,\Omega} + \kappa^{\frac{1}{2}} \|\eta_{u}\|_{0,\Omega} + \tau^{\frac{1}{2}} \|(\zeta_{0} - \zeta_{b}) \cdot \mathbf{n}\|_{0,\partial\mathcal{T}_{h}}$$
  
$$\leq C(1 + \tau^{\frac{1}{2}}) \left(\frac{h}{p}\right)^{s + \frac{1}{2}} \left(\|u\|_{s+1,\Omega} + \|\mathbf{q}\|_{s+1,\Omega}\right).$$

*Proof.* Taking  $\mathbf{v} = \mathbf{Q}_h - \Pi_h \mathbf{q}$ ,  $w = U_h - \Pi_0 u$  and  $\phi = \Pi_b u - \lambda_h$  in (22a)–(22d), respectively, we get

$$S_{t}(\mathbf{R}_{\mathbf{q}}, \mathbf{Q}_{h} - \Pi_{h}\mathbf{q}) + i\kappa(\mathbf{R}_{\mathbf{q}}, \zeta_{0})_{\mathcal{T}_{h}} - (\nabla_{w,k} \cdot (\mathbf{Q}_{h} - \Pi_{h}\mathbf{q}), \Pi_{0}u - U_{h})_{\mathcal{T}_{h}}$$

$$(24a) + \sum_{K \in \mathcal{T}_{h}} \langle \overline{(\zeta_{0} - \zeta_{b}) \cdot \mathbf{n}}, u - \Pi_{0}u \rangle_{\partial K} + \sum_{K \in \mathcal{T}_{h}} \langle \overline{\zeta_{b} \cdot \mathbf{n}}, u - \lambda_{h} \rangle_{\partial K} = 0,$$

$$- i\kappa(R_{u}, \overline{U_{h} - \Pi_{0}u})_{\mathcal{T}_{h}} + (\nabla_{w,k} \cdot (\Pi_{h}\mathbf{q} - \mathbf{Q}_{h}), \overline{U_{h} - \Pi_{0}u})_{\mathcal{T}_{h}}$$

(24b) + 
$$\sum_{K \in \mathcal{T}_h} < \mathbf{q} \cdot \mathbf{n} - \Pi_b(\mathbf{q} \cdot \mathbf{n}), \overline{U_h - \Pi_0 u} >_{\partial K} = 0,$$

(24c) 
$$\langle \mathbf{q} \cdot \mathbf{n} - \mathbf{Q}_b \cdot \mathbf{n}, \overline{\Pi_b u - \lambda_h} \rangle_{\partial \mathcal{T}_h \setminus \partial \Omega} = 0,$$

(24d) 
$$-\langle \mathbf{q} \cdot \mathbf{n} - \mathbf{Q}_b \cdot \mathbf{n}, \Pi_b u - \lambda_h \rangle_{\Gamma_2} + \langle u - \lambda_h, \Pi_b u - \lambda_h \rangle_{\Gamma_2} = 0.$$

Summing the conjugate of (24b) and (24a) together, we get

$$S_{t}(\mathbf{R}_{\mathbf{q}}, \mathbf{Q}_{h} - \Pi_{h}\mathbf{q}) + \mathrm{i}\kappa(\mathbf{R}_{\mathbf{q}}, \overline{\zeta_{0}})_{\mathcal{T}_{h}} + < (\zeta_{0} - \zeta_{b}) \cdot \mathbf{n}, u - \Pi_{0}u >_{\partial\mathcal{T}_{h}} + \mathrm{i}\kappa(\overline{R_{u}}, U_{h} - \Pi_{0}u)_{\mathcal{T}_{h}} + \sum_{K \in \mathcal{T}_{h}} < \overline{\zeta_{b} \cdot \mathbf{n}}, u - \lambda_{h} >_{\partial K} + \sum_{K \in \mathcal{T}_{h}} < \overline{\mathbf{q} \cdot \mathbf{n} - \Pi_{b}(\mathbf{q} \cdot \mathbf{n})}, U_{h} - \Pi_{0}u >_{\partial K} = 0.$$

Meanwhile, summing (24c) and (24d) together, we have

$$\sum_{K \in \mathcal{T}_h} < \mathbf{q} \cdot \mathbf{n} - \mathbf{Q}_b \cdot \mathbf{n}, \overline{\Pi_b u - \lambda_h} >_{\partial K} = < u - \lambda_h, \overline{\Pi_b u - \lambda_h} >_{\Gamma_2},$$

where we have used the fact that  $u = u_0, \lambda_h = \prod_b u_0$  on  $\Gamma_1$ .

By using the orthogonality properties of  $\Pi_0$ ,  $\Pi_0$  and  $\Pi_b$ , we conclude from the operator decompositions of  $\mathbf{R}_{\mathbf{q}}$  and  $R_u$  that the two equations above can be written as

$$S_{t}(\mathbf{R}_{\mathbf{q}}, \mathbf{Q}_{h} - \Pi_{h}\mathbf{q}) - i\kappa(\zeta_{0}, \overline{\zeta_{0}})_{\mathcal{T}_{h}} + \langle \overline{(\zeta_{0} - \zeta_{b}) \cdot \mathbf{n}}, u - \Pi_{0}u \rangle_{\partial\mathcal{T}_{h}} - i\kappa(\overline{\eta_{u}}, U_{h} - \Pi_{0}u)_{\mathcal{T}_{h}} + \langle \overline{\zeta_{b} \cdot \mathbf{n}}, \lambda_{h} - \Pi_{b}u \rangle_{\partial\mathcal{T}_{h}} + \langle \overline{\mathbf{q} \cdot \mathbf{n}} - \Pi_{b}(\mathbf{q} \cdot \mathbf{n}), U_{h} - \Pi_{0}u \rangle_{\partial\mathcal{T}_{h}} = 0,$$

$$(26) \qquad \langle \Pi_{b}(\mathbf{q} \cdot \mathbf{n}) - \mathbf{Q}_{b} \cdot \mathbf{n}, \overline{\Pi_{b}u - \lambda_{h}} \rangle_{\partial\mathcal{T}_{h}} = \langle \Pi_{b}u - \lambda_{h}, \overline{\Pi_{b}u - \lambda_{h}} \rangle_{\Gamma_{2}}.$$

Substituting (26) into (25), one has

(27) 
$$i\kappa(\zeta_0,\overline{\zeta_0})_{\mathcal{T}_h} + i\kappa(\overline{\eta_u},U_h - \Pi_0 u)_{\mathcal{T}_h} + \langle \Pi_b u - \lambda_h,\overline{\Pi_b u - \lambda_h} \rangle_{\Gamma_2} = S_t(\mathbf{R}_q,\mathbf{Q}_h - \Pi_h \mathbf{q}) + \langle \overline{(\zeta_0 - \zeta_b) \cdot \mathbf{n}}, u - \Pi_0 u \rangle_{\partial \mathcal{T}_h}.$$

Taking the imaginary part of (27), we get

(28) 
$$\kappa \| \zeta_0 \|_{0,\Omega}^2 + \kappa \| \eta_u \|_{0,\Omega}^2 + \tau \| (\zeta_0 - \zeta_b) \cdot \mathbf{n} \|_{0,\partial\mathcal{T}_h}^2$$
$$\leq \| S_t(\mathbf{q} - \Pi_h \mathbf{q}, \mathbf{Q}_h - \Pi_h \mathbf{q}) \| + \| < \overline{(\zeta_0 - \zeta_b) \cdot \mathbf{n}}, u - \Pi_0 u >_{\partial\mathcal{T}_h} \|.$$

Using lemma 4.1 and (28), we arrive at

$$\kappa^{\frac{1}{2}} \|\zeta_{0}\|_{0,\Omega} + \kappa^{\frac{1}{2}} \|\eta_{u}\|_{0,\Omega} + \tau^{\frac{1}{2}} \|(\zeta_{0} - \zeta_{b}) \cdot \mathbf{n}\|_{0,\partial\mathcal{T}_{h}}$$
$$\leq C(1 + \tau^{\frac{1}{2}}) \left(\frac{h}{p}\right)^{s + \frac{1}{2}} \left(\|u\|_{s+1,\Omega} + \|\mathbf{q}\|_{s+1,\Omega}\right).$$

It completes the proof of this Theorem.

**4.2. The estimate of**  $\|\eta_u\|$ . In this subsection, we will use the Aubin-Nitsche duality argument to get an error estimate of  $u - U_h$ . Consider the following dual problem,

(29a) 
$$-i\kappa\Phi + \nabla\Psi = 0$$
 in  $\Omega$ ,

(29b) 
$$\nabla \cdot \Phi + i\kappa \Psi = \eta_u$$
 in  $\Omega$ ,  
(29c)  $\Psi = 0$  on  $\Gamma_1$   
(29d)  $\Phi \cdot \mathbf{n} = \Psi$  on  $\Gamma_2$ 

The following result is found in [4].

**Lemma 4.2.** Let  $\Psi, \Phi$  be the solution of (29a)-(29d). Then,

$$\|\Phi\|_{1,\Omega} + \|\Psi\|_{1,\Omega} + \kappa^{-1} \|\Psi\|_{2,\Omega} \le C \|\eta_u\|_{0,\Omega}.$$

**Lemma 4.3.** Let  $u \in H^{s+1}(\Omega)$  and  $\mathbf{q} \in [H^{s+1}(\Omega)]^d$  be the solution of (4a)-(4d). Then, we have the following estimates: (30a)

$$|S_t(\mathbf{q} - \Pi_h \mathbf{q}, \overline{\Pi_h \Phi})| \le C\tau (\frac{h}{p})^{s+\frac{1}{2}} \|\mathbf{q}\|_{s+1,\Omega} \|\Phi\|_{1,\Omega},$$

(30b)

$$|S_t(\Pi_h \mathbf{q} - \mathbf{Q}_h, \overline{\Pi_h \Phi})| \le C\tau^{\frac{1}{2}} (1 + \tau^{\frac{1}{2}}) \left(\frac{h}{p}\right)^{s + \frac{1}{2}} \left( \|u\|_{s+1,\Omega} + \|\mathbf{q}\|_{s+1,\Omega} \right) \|\Phi\|_{1,\Omega},$$

(30c)

$$\sum_{K\in\mathcal{T}_h} |<\overline{\Pi_0(\Phi\cdot\mathbf{n})} - \overline{\Pi_b(\Phi\cdot\mathbf{n})}, \Pi_0u - u >_{\partial K} | \le C(\frac{h}{p})^{s+1} ||u||_{s+1,\Omega} ||\Phi||_{1,\Omega},$$

(30d)

$$\sum_{K\in\mathcal{T}_h}|<\mathbf{q}\cdot\mathbf{n}-\Pi_b(\mathbf{q}\cdot\mathbf{n}), \overline{\Pi_0\Psi-\Psi}>_{\partial K}|\leq C(\frac{h}{p})^{s+2}\|\mathbf{q}\|_{s+1,\Omega}\|\Psi\|_{2,\Omega}.$$

*Proof.* By the definition of  $S_t(\cdot, \cdot)$ ,

$$|S_t(\mathbf{q} - \Pi_h \mathbf{q}, \overline{\Pi_h \Phi})| = |S_t(\mathbf{q} - \Pi_h \mathbf{q}, \overline{\Pi_h \Phi})|$$
  

$$\leq C\tau \Big(\sum_{e \in \mathcal{E}_h} \|\mathbf{q} - \Pi_h \mathbf{q}\|_{0,e}^2 \Big)^{\frac{1}{2}} \Big(\sum_{e \in \mathcal{E}_h} \|\Pi_h \Phi\|_{0,e}^2 \Big)^{\frac{1}{2}}$$
  

$$\leq C\tau (\frac{h}{p})^{s+\frac{1}{2}} \|\mathbf{q}\|_{s+1,\Omega} \|\Phi\|_{1,\Omega}.$$

On the other hand,

$$\begin{aligned} |S_t(\Pi_h \mathbf{q} - \mathbf{Q}_h, \overline{\Pi_h \Phi})| &= |S_t(\Pi_h \mathbf{q} - \mathbf{Q}_h, \overline{\Pi_h \Phi} - \overline{\Phi})| \\ &\leq C\tau \Big(\sum_{e \in \mathcal{E}_h} \|(\zeta_0 - \zeta_b) \cdot \mathbf{n}\|_{0,e}^2 \Big)^{\frac{1}{2}} \Big(\sum_{e \in \mathcal{E}_h} \|\Pi_h \Phi - \Phi\|_{0,e}^2 \Big)^{\frac{1}{2}} \\ &\leq C\tau^{\frac{1}{2}} (1 + \tau^{\frac{1}{2}}) \Big(\frac{h}{p}\Big)^{s+1} \Big(\|u\|_{s+1,\Omega} + \|\mathbf{q}\|_{s+1,\Omega} \Big) \|\Phi\|_{1,\Omega}. \end{aligned}$$

Meanwhile,

$$\sum_{K\in\mathcal{T}_{h}}|<\overline{\Pi_{0}(\Phi\cdot\mathbf{n})-\Pi_{b}(\Phi\cdot\mathbf{n})},\Pi_{0}u-u>_{\partial K}|$$

$$=\sum_{K\in\mathcal{T}_{h}}|<\overline{\Pi_{0}(\Phi\cdot\mathbf{n})-\Phi\cdot\mathbf{n}+\Phi\cdot\mathbf{n}-\Pi_{b}(\Phi\cdot\mathbf{n})},\Pi_{0}u-u>_{\partial K}|$$

$$\leq C(\frac{h}{p})^{s+1}\|u\|_{s+1,\Omega}\|\Phi\|_{1,\Omega}.$$

Then, we turn to the estimate of (30d),

$$\begin{split} \sum_{K \in \mathcal{T}_h} | < \mathbf{q} \cdot \mathbf{n} - \Pi_b(\mathbf{q} \cdot \mathbf{n}), \overline{\Pi_0 \Psi - \Psi} >_{\partial K} | \\ \leq & \left( \sum_{K \in \mathcal{T}_h} \| \mathbf{q} \cdot \mathbf{n} - \Pi_b(\mathbf{q} \cdot \mathbf{n}) \|_{0,\partial K}^2 \right)^{\frac{1}{2}} \left( \sum_{K \in \mathcal{T}_h} \| \Pi_0 \Psi - \Psi \|_{0,\partial K}^2 \right)^{\frac{1}{2}} \\ \leq & C(\frac{h}{p})^{s+2} \| \mathbf{q} \|_{s+1,\Omega} \| \Psi \|_{2,\Omega}. \end{split}$$

Hence, we finish the proof of this lemma.

**Theorem 4.2.** Let  $\mathbf{Q}_h, U_h$  be the solution of (20a)-(20d). Let  $u \in H^{s+1}(\Omega), \mathbf{q} \in [H^{s+1}(\Omega)]^d$  be the exact solution of (4a)-(4d). If  $\kappa^2 h/p < 1$ , then there exists a constant C independent of  $\kappa$ , h and p, such that

$$||u - U_h||_{0,\Omega} \le C \left(\frac{h}{p}\right)^{s+1} (||u||_{s+1,\Omega} + ||\mathbf{q}||_{s+1,\Omega}).$$

*Proof.* Using (29b) and (12), we get

$$\begin{aligned} (\eta_u, \overline{\eta_u})_{\mathcal{T}_h} &= (\eta_u, \overline{\nabla \cdot \Phi + \mathrm{i}\kappa\Psi})_{\mathcal{T}_h} \\ &= (\overline{\nabla_{w,k} \cdot (\Pi_h \Phi)}, \eta_u)_{\mathcal{T}_h} + < \eta_u, \overline{\Phi \cdot \mathbf{n} - \Pi_b (\Phi \cdot \mathbf{n})} >_{\partial \mathcal{T}_h} -\mathrm{i}\kappa (\eta_u, \overline{\Psi})_{\mathcal{T}_h} \end{aligned}$$

Using (22a), we have

$$(\nabla_{w,k} \cdot (\Pi_h \Phi), \eta_u)_{\mathcal{T}_h}$$
  
= $S_t(\mathbf{R}_{\mathbf{q}}, \Pi_h \Phi) + i\kappa(\mathbf{R}_{\mathbf{q}}, \overline{\Pi_0 \Phi})_{\mathcal{T}_h} + \sum_{K \in \mathcal{T}_h} \langle \overline{\Pi_b(\Phi \cdot \mathbf{n})}, u - \lambda_h \rangle_{\partial K}$   
+ $\sum_{K \in \mathcal{T}_h} \langle \overline{\Pi_0(\Phi \cdot \mathbf{n}) - \Pi_b(\Phi \cdot \mathbf{n})}, u - \Pi_0 u \rangle_{\partial K}.$ 

By the orthogonal property of  $\Pi_0$  and (29a), one has

$$i\kappa(\mathbf{R}_{\mathbf{q}},\overline{\mathbf{\Pi}_{0}\Phi})_{\mathcal{T}_{h}} = i\kappa(\zeta_{0},\overline{\Phi})_{\mathcal{T}_{h}} = i\kappa(\zeta_{0},\overline{-i}\nabla\Psi)_{\mathcal{T}_{h}} = -(\zeta_{0},\overline{\nabla\Psi})_{\mathcal{T}_{h}}$$

Using (13), (22b) and the orthogonal properties of  $\Pi_0$ , we obtain

$$\begin{split} \mathbf{i}(\eta_u, \overline{\Psi})_{\mathcal{T}_h} =& \mathbf{i}(\eta_u, \overline{\Pi_0 \Psi})_{\mathcal{T}_h} \\ =& - (\nabla_{w,k} \cdot (\Pi_h \mathbf{q} - \mathbf{Q}_h), \overline{\Pi_0 \Psi})_{\mathcal{T}_h} - \sum_{K \in \mathcal{T}_h} < \mathbf{q} \cdot \mathbf{n} - \Pi_b(\mathbf{q} \cdot \mathbf{n}), \overline{\Pi_0 \Psi} >_{\partial K}, \end{split}$$

and

$$\begin{aligned} (\nabla_{w,k} \cdot (\Pi_h \mathbf{q} - \mathbf{Q}_h), \overline{\Pi_0 \Psi})_{\mathcal{T}_h} &= -(\zeta_0, \overline{\nabla \Psi})_{\mathcal{T}_h} + < \zeta_b \cdot \mathbf{n}, \overline{\Psi} >_{\partial \Omega} \\ &+ \sum_{K \in \mathcal{T}_h} < (\zeta_0 - \zeta_b) \cdot \mathbf{n}, \overline{\Psi - \Pi_0 \Psi} >_{\partial K}. \end{aligned}$$

The combination of the above equations leads to

$$(\eta_{u},\overline{\eta_{u}})_{\mathcal{T}_{h}} = S_{t}(\mathbf{R}_{\mathbf{q}},\Pi_{h}\Phi) + \mathrm{i}\kappa(\mathbf{R}_{\mathbf{q}},\overline{\Pi_{0}\Phi})_{\mathcal{T}_{h}} + \sum_{K\in\mathcal{T}_{h}} <\overline{\Pi_{b}(\Phi\cdot\mathbf{n})}, u - \lambda_{h} >_{\partial K} + \sum_{K\in\mathcal{T}_{h}} <\overline{\Pi_{0}(\Phi\cdot\mathbf{n}) - \Pi_{b}(\Phi\cdot\mathbf{n})}, u - \Pi_{0}u >_{\partial K} + < \eta_{u}, \overline{\Phi\cdot\mathbf{n} - \Pi_{b}(\Phi\cdot\mathbf{n})} >_{\partial\mathcal{T}_{h}} - \mathrm{i}\kappa(\eta_{u},\overline{\Psi})_{\mathcal{T}_{h}} = S_{t}(\mathbf{R}_{\mathbf{q}},\Pi_{h}\Phi) - (\zeta_{0},\overline{\nabla\Psi})_{\mathcal{T}_{h}} + \sum_{K\in\mathcal{T}_{h}} <\overline{\Pi_{b}(\Phi\cdot\mathbf{n})}, u - \lambda_{h} >_{\partial K} (31) + \sum_{K\in\mathcal{T}_{h}} <\overline{\Pi_{0}(\Phi\cdot\mathbf{n}) - \Pi_{b}(\Phi\cdot\mathbf{n})}, u - \Pi_{0}u >_{\partial K} + < \eta_{u}, \overline{\Phi\cdot\mathbf{n} - \Pi_{b}(\Phi\cdot\mathbf{n})} >_{\partial\mathcal{T}_{h}} + \sum_{K\in\mathcal{T}_{h}} <\mathbf{q}\cdot\mathbf{n} - \Pi_{b}(\mathbf{q}\cdot\mathbf{n}), \overline{\Pi_{0}\Psi} >_{\partial K} + (\zeta_{0},\overline{\nabla\Psi})_{\mathcal{T}_{h}} - <\zeta_{b}\cdot\mathbf{n}, \overline{\Psi} >_{\partial\Omega} - \sum_{K\in\mathcal{T}_{h}} <(\zeta_{0} - \zeta_{b})\cdot\mathbf{n}, \overline{\Psi - \Pi_{0}\Psi} >_{\partial K}$$

By definitions of  $\Pi_b$  and  $\lambda_h$ , we have

(32) 
$$\sum_{K \in \mathcal{T}_h} \langle \overline{\Pi_b(\Phi \cdot \mathbf{n})}, u - \lambda_h \rangle_{\partial K} = \langle \overline{\Pi_b(\Phi \cdot \mathbf{n})}, u - \lambda_h \rangle_{\Gamma_2}$$
$$= \langle \overline{\Pi_b(\Phi \cdot \mathbf{n})}, \Pi_b u - \lambda_h \rangle_{\Gamma_2}$$

Using (22d) and (29c), it follows

$$(33) \qquad \begin{aligned} <\zeta_{b}\cdot\mathbf{n},\overline{\Psi}>_{\partial\Omega} &= <\zeta_{b}\cdot\mathbf{n},\overline{\Psi}>_{\Gamma_{2}}, \\ <\overline{\Pi_{b}(\Phi\cdot\mathbf{n})},\Pi_{b}u-\lambda_{h}>_{\Gamma_{2}} &= <\overline{\Pi_{b}(\Phi\cdot\mathbf{n})},\mathbf{q}\cdot n-\mathbf{Q}_{b}\cdot\mathbf{n}>_{\Gamma_{2}} \\ &= <\overline{\Pi_{b}(\Phi\cdot\mathbf{n})},\zeta_{b}\cdot\mathbf{n}>_{\Gamma_{2}}. \end{aligned}$$

The combination of (32) and (33) leads to

$$\sum_{K \in \mathcal{T}_h} \langle \overline{\Pi_b(\Phi \cdot \mathbf{n})}, u - \lambda_h \rangle_{\partial K} - \langle \zeta_b \cdot \mathbf{n}, \overline{\Psi} \rangle_{\partial \Omega}$$

(34) 
$$= \langle \overline{\Pi_b \Psi - \Psi}, \zeta_b \cdot \mathbf{n} \rangle_{\Gamma_2} .$$

Substituting (34) into (31), we get from the property of  $\Pi_b$  that

$$(\eta_u, \overline{\eta_u})_{\mathcal{T}_h} = S_t(\mathbf{R}_{\mathbf{q}}, \Pi_h \Phi) + \sum_{K \in \mathcal{T}_h} \langle \overline{\Pi_0(\Phi \cdot \mathbf{n})} - \Pi_b(\Phi \cdot \mathbf{n}), u - \Pi_0 u \rangle_{\partial K}$$
$$- \sum_{K \in \mathcal{T}_h} \langle (\zeta_0 - \zeta_b) \cdot \mathbf{n}, \overline{\Psi - \Pi_0 \Psi} \rangle_{\partial K}.$$

Together with lemma 4.3, we get

$$\begin{aligned} \|\eta_{u}\|_{0,\Omega}^{2} &\leq C\tau \left(\frac{h}{p}\right)^{s+\frac{1}{2}} \|\mathbf{q}\|_{s+1,\Omega} \|\Phi\|_{1,\Omega} \\ &+ C\tau^{\frac{1}{2}} (1+\tau^{\frac{1}{2}}) \left(\frac{h}{p}\right)^{s+\frac{1}{2}} (\|u\|_{s+1,\Omega} + \|\mathbf{q}\|_{s+1,\Omega}) \|\Phi\|_{1,\Omega} \\ &+ C \left(\frac{h}{p}\right)^{s+1} \|u\|_{s+1,\Omega} \|\Phi\|_{1,\Omega} + C \left(\frac{h}{p}\right)^{s+2} \|\mathbf{q}\|_{s+1,\Omega} \|\Psi\|_{2,\Omega} \end{aligned}$$

Recall that  $\tau = \kappa h/p$  and  $\kappa^2 h/p < 1$ . Using lemma 4.2, we obtain

$$\|\eta_u\|_{0,\Omega} \leq C\left(\frac{h}{p}\right)^{s+1} (\|u\|_{s+1,\Omega} + \|\mathbf{q}\|_{s+1,\Omega}).$$

The desired result follows from an application of the triangle inequality.

**Theorem 4.3.** Let  $\mathbf{q} \in [H^{s+1}(\Omega)]^d$ ,  $u \in H^{s+1}(\Omega)$  be the solution of (4a)-(4d), and  $\mathbf{q}_h$ ,  $u_h$  be the solution of (6a)-(6d). If  $\kappa^2 h/p < 1$ , then there exists a constant C independent of  $\kappa$ , h and p, such that

$$\|u - u_h\|_{0,\Omega} \le C(1+\kappa) \left(\frac{h}{p}\right)^{s+1} (\|u\|_{s+1,\Omega} + \|\mathbf{q}\|_{s+1,\Omega}), \\ \|\mathbf{q} - \mathbf{q}_h\|_{0,\Omega} \le C \left(\frac{1}{\kappa} + \frac{h}{p} + \frac{\kappa h}{p}\right) \left(\frac{h}{p}\right)^s \left(\|u\|_{s+1,\Omega} + \|\mathbf{q}\|_{s+1,\Omega}\right).$$

Proof. Direct calculation leads to

$$u - u_h = u - \Pi_0 u + (\Pi_0 u - U_h) + (U_h - u_h),$$
  
$$\mathbf{q} - \mathbf{q}_h = \mathbf{q} - \Pi_0 \mathbf{q} + (\Pi_0 \mathbf{q} - \mathbf{Q}_h) + (\mathbf{Q}_h - \mathbf{q}_h).$$

Then, the combination of Theorem 3.1, Theorem 4.1 and the triangle inequality completes the proof of theorem.  $\hfill \Box$ 

| p | N   | $Error_{ur}$ | order  | $Error_{ui}$ | order  | $Error_{qr}$ | order  | $Error_{qi}$ | order  |
|---|-----|--------------|--------|--------------|--------|--------------|--------|--------------|--------|
| 1 | 16  | 7.2759e-2    |        | 7.4392e-2    |        | 7.5660e-2    |        | 7.1359e-2    |        |
|   | 32  | 1.7038e-2    | 2.0944 | 1.7139e-2    | 2.1179 | 1.7446e-2    | 2.1166 | 1.4450e-2    | 2.3040 |
|   | 64  | 4.2055e-3    | 2.0184 | 4.2255e-3    | 2.0201 | 4.4354e-3    | 1.9758 | 4.4391e-3    | 1.7027 |
|   | 128 | 1.0472e-3    | 2.0057 | 1.0521e-3    | 2.0059 | 1.1416e-3    | 1.9580 | 1.1423e-3    | 1.9583 |
|   | 256 | 2.1650e-4    | 2.2741 | 2.6271e-4    | 2.0017 | 2.9581e-4    | 1.9483 | 2.9567e-4    | 1.9499 |
| 2 | 4   | 5.3263e-1    |        | 5.0299e-1    |        | 4.8872e-1    |        | 4.5507e-1    |        |
|   | 8   | 6.7472e-2    | 2.9808 | 6.3474e-2    | 2.9863 | 5.9255e-2    | 3.0440 | 6.1081e-2    | 2.8973 |
|   | 16  | 6.8141e-3    | 3.3077 | 6.7084e-3    | 3.2421 | 6.8501e-3    | 3.1127 | 6.8423e-3    | 3.1582 |
|   | 32  | 8.4300e-4    | 3.0149 | 8.4020e-4    | 2.9972 | 8.7973e-4    | 2.9610 | 8.7920e-4    | 2.9602 |
|   | 64  | 1.0516e-4    | 3.0029 | 1.0484e-4    | 3.0025 | 1.1300e-4    | 2.9607 | 1.1301e-4    | 2.9597 |
| 3 | 4   | 1.6288e-1    |        | 1.4473e-1    |        | 1.2886e-1    |        | 1.3923e-1    |        |
|   | 8   | 8.1095e-3    | 4.3281 | 8.2020e-3    | 4.1412 | 8.0787e-3    | 3.9955 | 8.0980e-3    | 4.1038 |
|   | 16  | 5.1154e-4    | 3.9867 | 5.1311e-4    | 3.9986 | 5.2742e-4    | 3.9371 | 5.2765e-4    | 3.9399 |
|   | 32  | 3.2136e-5    | 3.9926 | 3.2213e-5    | 3.9936 | 3.4070e-5    | 3.9524 | 3.4062e-5    | 3.9533 |
|   | 64  | 2.0121e-6    | 3.9974 | 2.0165e-6    | 3.9977 | 2.1946e-6    | 3.9565 | 2.1924e-6    | 3.9576 |
| 4 | 4   | 2.2940e-2    |        | 2.2989e-2    |        | 2.8650e-2    |        | 2.8591e-2    |        |
|   | 8   | 9.8821e-4    | 4.5369 | 9.8018e-4    | 4.5518 | 9.9811e-4    | 4.8432 | 9.9685e-4    | 4.8420 |
|   | 16  | 3.1637e-5    | 4.9651 | 3.1565e-5    | 4.9566 | 3.2955e-5    | 4.9206 | 3.2962e-5    | 4.9185 |
|   | 32  | 9.9616e-7    | 4.9891 | 9.9433e-7    | 4.9885 | 1.0637e-6    | 4.9533 | 1.0646e-6    | 4.9524 |
|   | 64  | 3.1220e-8    | 4.9958 | 3.1155e-8    | 4.9962 | 3.4267e-8    | 4.9561 | 3.4326e-8    | 4.9549 |

TABLE 1. Example 1 – Numerical errors and their convergence rates when  $\kappa = 20$  and  $\tau = 1$ .

TABLE 2. Example 1 – Numerical errors and their convergence rates when  $\kappa = 100$  and  $\tau = 1$ .

| p | N   | $Error_{ur}$ | order  | $Error_{ui}$ | order  | $Error_{qr}$ | order  | $Error_{qi}$ | order  |
|---|-----|--------------|--------|--------------|--------|--------------|--------|--------------|--------|
| 5 | 16  | 5.9324e-2    |        | 1.6886e-1    |        | 1.6667e-1    |        | 5.9069e-2    |        |
|   | 32  | 4.0396e-4    | 7.1983 | 3.8333e-4    | 8.7830 | 4.0162e-4    | 8.6969 | 3.7255e-4    | 7.3088 |
|   | 64  | 6.2622e-6    | 6.0114 | 6.2583e-6    | 5.9367 | 6.2545e-6    | 6.0048 | 6.2522e-6    | 5.8969 |
|   | 128 | 9.1352e-8    | 6.0991 | 9.1402e-8    | 6.0974 | 9.0489e-8    | 6.0920 | 9.2463e-8    | 6.0793 |
| 6 | 16  | 5.8303e-3    |        | 8.8604e-3    |        | 8.8508e-3    |        | 5.5560e-3    |        |
|   | 32  | 4.1480e-5    | 7.1350 | 4.4167e-5    | 7.6483 | 4.1876e-5    | 7.7235 | 4.2935e-5    | 7.0157 |
|   | 64  | 3.4917e-7    | 6.8923 | 3.5206e-7    | 6.9710 | 3.5291e-7    | 6.8907 | 3.5020e-7    | 6.9378 |
|   | 128 | 2.7492e-9    | 6.9888 | 2.8055e-9    | 6.9714 | 2.7976e-9    | 6.9790 | 2.7866e-9    | 6.9735 |

TABLE 3. Example 1 – Numerical errors and their convergence rates when  $\frac{\kappa h}{p} = 1.1$  and  $\tau = 1$ .

| $\kappa$ | p | N   | $Error_{ur}$ | $Error_{ui}$ | $Error_{qr}$ | $Error_{qi}$ |
|----------|---|-----|--------------|--------------|--------------|--------------|
| 22       | 5 | 4   | 1.0280e-2    | 1.0298e-2    | 1.0033e-2    | 1.0010e-2    |
| 44       |   | 8   | 1.0479e-2    | 1.1833e-2    | 1.1136e-2    | 1.0048e-2    |
| 88       |   | 16  | 1.0594e-2    | 1.2286e-2    | 1.1329e-2    | 1.0085e-2    |
| 176      |   | 32  | 1.0731e-2    | 1.2389e-2    | 1.1597e-2    | 1.0085e-2    |
| 356      |   | 64  | 1.0946e-2    | 1.2477e-2    | 1.2189e-2    | 1.0155e-2    |
| 712      |   | 128 | 1.3098e-2    | 1.5654e-2    | 1.6432e-2    | 1.2870e-2    |
| 1424     |   | 256 | 6.0231e-2    | 6.9078e-2    | 7.0456e-2    | 6.1176e-2    |

## 5. Numerical Results

We shall provide several numerical examples to support the theoretical analysis of the HWG scheme (6a)–(6d). The exact solution can be written as u = ur + i ui.

| $\kappa$ | p | N   | $Error_{ur}$ | $Error_{ui}$ | $Error_{qr}$ | $Error_{qi}$ |
|----------|---|-----|--------------|--------------|--------------|--------------|
| 18       | 4 | 4   | 1.7612e-2    | 1.7283e-2    | 1.7029e-2    | 1.7037e-2    |
| 36       |   | 8   | 1.7956e-2    | 1.8068e-2    | 1.7346e-2    | 1.7272e-2    |
| 72       |   | 16  | 1.8035e-2    | 2.0094e-2    | 1.8906e-2    | 1.7100e-2    |
| 144      |   | 32  | 1.8795e-2    | 2.0975e-2    | 1.9701e-2    | 1.7810e-2    |
| 288      |   | 64  | 1.8946e-2    | 2.1377e-2    | 2.0189e-2    | 1.8155e-2    |
| 576      |   | 128 | 2.0754e-2    | 2.3007e-2    | 2.3368e-2    | 2.0009e-2    |
| 1158     |   | 256 | 5.5679e-2    | 5.7053e-2    | 5.8876e-2    | 5.6851e-2    |

TABLE 4. Example 1 – Numerical errors and their convergence rates when  $\frac{\kappa h}{p} = 1.125$  and  $\tau = 1$ .

In this section, the  $L^2$ -errors are computed as follows:

$$Error_{ur} = \left(\sum_{K \in \mathcal{T}_h} \int_K |ur - ur_h|^2 d\mathbf{x}\right)^{\frac{1}{2}},$$
$$Error_{ui} = \left(\sum_{K \in \mathcal{T}_h} \int_K |ui - ui_h|^2 d\mathbf{x}\right)^{\frac{1}{2}}.$$

**Example 1.** Let  $\Omega = [0, 1]^2$ . We firstly consider a pure Dirichlet boundary value problem (i.e.  $\Gamma_2 = \emptyset$ ). The exact solution is taken as  $u = \exp(-i\kappa x)$ . We choose the parameter  $\tau = O(1)$ . Tables 1 and 2 show the errors and their convergent rates of the numerical solutions by the HWG scheme for  $\kappa = 20$  and  $\kappa = 100$ , respectively. It is noticed that some numerical convergence rates are superior than the theoretical rates.

On the other hand, in Tables 3 and 4, we provide the data when  $\kappa h/p$  is fixed as 1.1 and 1.125, respectively. it is observed that the errors  $u - u_h$  and  $\mathbf{q} - \mathbf{q}_h$  are not improved when  $\kappa h/p$  is fixed.

TABLE 5. Example 2 – Numerical errors for different  $\kappa$  values.

| $\kappa$ | p   | $Error_{ur}$ | $Error_{ui}$ | $Error_{qr}$ | $Error_{qi}$ |
|----------|-----|--------------|--------------|--------------|--------------|
| 1        | 10  | 7.5376e-6    | 1.1257e-4    | 9.2169e-4    | 1.2222e-3    |
|          | 20  | 8.8877e-9    | 3.0055e-8    | 2.5482e-7    | 3.0337e-7    |
|          | 30  | 2.2117e-12   | 6.3917e-12   | 5.4866e-11   | 6.6376e-11   |
| 20       | 20  | 1.5129e-1    | 2.5313e-1    | 1.7234e-1    | 2.6452e-1    |
|          | 30  | 1.4897e-4    | 1.9865e-4    | 1.4906e-4    | 1.8976e-4    |
|          | 50  | 1.3124e-7    | 2.0058e-7    | 1.4036e-7    | 1.9218e-7    |
| 50       | 50  | 5.6034e-2    | 6.7556e-2    | 6.9807e-2    | 7.0098e-2    |
|          | 70  | 1.5440e-3    | 2.0078e-3    | 1.6871e-3    | 1.9899e-3    |
|          | 100 | 1.9800e-6    | 1.8764e-6    | 1.9549e-6    | 2.0276e-6    |

**Example 2.** In this example, we choose  $\Omega = B_1 \setminus S_1$ , where  $B_1 = \{(x, y) : x^2 + y^2 \leq 1\}$  and  $S_1 = [-0.25, 0.25]^2$ . The exact solution is taken as  $u = \exp(-i\kappa x)$ . For simplicity, only Dirichlet boundary condition is applied. Table 5 presents the errors  $u_h - u$  and  $\mathbf{q}_h - \mathbf{q}$  for various  $\kappa$  values. Figures 1 and 2 are the surface plots of the HWG solutions  $u_h$  with p = 30, where  $\kappa = 20$  for the exact solution u, and four elements of  $\Omega$  partitioned by  $y = \pm x$  are used. It is evident that high order method is very effective for solving Helmholtz equations.

**Example 3.** Let  $\Omega = [0, 1]^2$ , which is partitioned by a uniform mesh. We choose the inhomogeneous boundary conditions in such a way that the analytical solutions are the circular waves given, in polar coordinates  $x = (r \cos \theta, r \sin \theta)$ , by

$$u(x) = J_{\xi}(\kappa r)\cos(\xi\theta), \quad \xi \ge 0,$$



FIGURE 1. Example 2 – The numerical real part and exact real part for  $\kappa = 20, p = 30$ .



FIGURE 2. Example 2 – The numerical imaginary part and exact imaginary part for  $\kappa = 20, p = 30$ .

TABLE 6. Example 3 – Numerical errors and their convergence rates when  $\kappa = 100$  and  $\xi = \frac{3}{2}$ .

| p | N   | $Error_{ur}$ | order  | $Error_{qi}$ | order  |
|---|-----|--------------|--------|--------------|--------|
| 3 | 16  | 1.1633e-1    |        | 1.0804e-1    |        |
|   | 32  | 5.6997e-3    | 4.3512 | 5.7057e-3    | 4.2430 |
|   | 64  | 6.9273e-5    | 6.3624 | 8.0156e-5    | 6.1534 |
|   | 128 | 4.3604e-6    | 3.9879 | 1.3374e-5    | 2.5833 |
|   | 256 | 3.9708e-7    | 3.4570 | 4.6952e-6    | 1.5102 |
|   | 512 | 7.1748e-8    | 2.4684 | 1.7398e-6    | 1.4323 |
| 7 | 16  | 2.1940e-5    |        | 4.7681e-5    |        |
|   | 32  | 5.4183e-7    | 5.3396 | 7.1597e-6    | 2.7354 |
|   | 64  | 1.3008e-7    | 2.0584 | 2.6734e-6    | 1.4212 |
|   | 128 | 3.1574e-8    | 2.0426 | 9.8352e-7    | 1.4426 |

where,  $J_{\xi}$  denotes the Bessel function of the first kind of order  $\xi$ . If  $\xi \in \mathbb{N}$ , u can be analytically extended to a Helmholtz solution in  $\mathbb{R}^2$ . If  $\xi \notin \mathbb{N}$ , its derivatives have a singularity at the origin. Then  $u \in H^{\xi+1-\epsilon}(\Omega)$  can be extended to a Helmholtz solution in  $\mathbb{R}^2$  provided  $\epsilon > 0$ , but  $u \notin H^{\xi+1}(\Omega)$  [16].



FIGURE 3. Example 3 – The numerical solution (Left) and the exact solution (Right) of u for  $\kappa = 100, \xi = \frac{2}{3}, p = 4, N = 32(error = 2.0077 \times 10^{-4}).$ 



FIGURE 4. Example 3 – The numerical solution of u for  $\kappa = 100, \xi = \frac{2}{3}, p = 1, N = 64$ (Left, *error* =  $3.5489 \times 10^{-2}$ ), p = 2, N = 64(Right,*error* =  $1.2259 \times 10^{-2}$ ).

We compare the HWG solutions with the exact solutions for various  $\kappa$  and  $\xi$  on uniform meshes. Table 6 documents the errors  $u - u_h$  and  $\mathbf{q} - \mathbf{q}_h$  for  $\kappa = 100$  and  $\xi = \frac{3}{2}$ . Figures 3 and 4 present the surface plots of the HWG solutions  $u_h$  and the exact solutions u for various  $\kappa$  and  $\xi$ . It is observed that high order methods are very effective.

### Acknowledgments

The authors would like to thank the anonymous referees for the valuable comments and constructive suggestions to improve this paper. This work was supported in part by the following grants: NSFC 11471031 and 91430216, NASF U1530401, NSF DMS-1419040, and a Tianhe–2JK computing time award at Beijing Computational Science Research Center. J. WANG AND Z. ZHANG

#### References

- M. Ainsworth, Discrete dispersion relation for hp-version finite element approximation at high wave number, SIAM J. Numer. Anal., 42(2): 553-575, 2004.
- [2] M. Ainsworth, Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods, J. Comput. Phys., 198(1): 106-130, 2004.
- [3] I. Babuska, and S. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM J. Numer. Anal., 34(6): 2392-2423, 1997.
- [4] H. Chen, P. Lu, and X. Xu, A hybridizable discontinuous Galerkin method for the Helmholtz equation with high wave number, SIAM J. Numer. Anal., 51(4): 2166-2188, 2013.
- [5] J. Cui, and W. Zhang, An analysis of HDG methods for the Helmholtz equation, IMA J. Numer. Anal., 34(1): 279-295, 2014.
- [6] P. Cummings, and X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations, Math. Mod. Meth. Appl., 16(01): 139-160, 2006.
- [7] Y. Du, and H. Wu, Preasymptotic error analysis of higher order FEM and CIP-FEM for Helmholtz equation with high wave number, SIAM J. Numer. Anal., 53(2): 782-804, 2015.
- [8] Y. Du, and L. Zhu, Preasymptotic error analysis of high order interior penalty discontinuous Galerkin methods for the Helmholtz equation with high wave number, J. Sci. Comput., 67(1): 130-152, 2016.
- [9] H. Egger, and C. Waluga, hp analysis of a hybrid DG method for Stokes flow, IMA J. Numer. Anal., 33(2): 687-721, 2013.
- [10] B. Engquist, and O. Runborg, Computational high frequency wave propagation, Acta numer., 12: 181-266, 2003.
- [11] X. Feng, and H. Wu, Discontinuous Galerkin methods for the Helmholtz equation with large wave number, SIAM J. Numer. Anal., 47(4): 2872-2896, 2009.
- [12] X. Feng, and H. Wu, hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comput., 80(276): 1997-2024, 2011.
- [13] X. Feng, and Y. Xing, Absolutely stable local discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comput., 82(283): 1269-1296, 2013.
- [14] R. Griesmaier, and P. Monk, Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation, J. Sci. Comput., 49(3): 291-310, 2011.
- [15] P. Houston, C. Schwab, and E. Suli, Discontinuous hp-finite element methods for advectiondiffusion-reaction problems, SIAM J. Numer. Anal., 39(6): 2133-2163, 2002.
- [16] R. Hiptmair, A. Moiola, and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49(1): 264-284, 2011.
- [17] F. Ihlenburg, and I. Babuska, Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM, Comput. Math. Appl., 30(9): 9-37, 1995.
- [18] F. Ihlenburg, Finite element analysis of acoustic scattering, Springer-Verlag, New York, 1998.
- [19] H. Kreiss, and N. Petersson, An embedded boundary method for the wave equation with discontinuous coefficients, SIAM J. Sci. Comput., 28(6): 2054-074, 2006.
- [20] Q. Li, and J. Wang, Weak Galerkin finite element methods for parabolic equations, Numer. Methods Partial Differential Eq., 29(6): 2004-2024, 2013.
- [21] M. Melenk, and S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J. Numer. Anal., 49(3): 1210-1243, 2011.
- [22] M. Melenk, A. Parsania, and S. Sauter, General DG-methods for highly indefinite Helmholtz problems, J. Sci. Comput., 57(3): 536-581, 2013.
- [23] L. Mu, J. Wang, X. Ye, and S. Zhao, A numerical study on the weak Galerkin method for the Helmholtz equation, Commun. Comput. Phy., 15(05): 1461-1479, 2014.
- [24] L. Mu, J. Wang, and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differential Eq., 30(3): 1003-1029, 2014.
- [25] L. Mu, J. Wang, and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35(3): 1228-1255, 2015.
- [26] L. Mu, J. Wang, X. Ye, and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65(1): 363-386, 2015.
- [27] L. Mu, J. Wang, and X. Ye, A hybridized formulation for the weak Galerkin mixed finite element method, J. Comput. Appl. Math., 307: 335-345, 2016.
- [28] J. Shen, and L.-L. Wang, Spectral approximation of the Helmholtz equation with high wave numbers, SIAM J. Numer. Anal., 43(2): 623-644, 2005.

- [29] J. Shen, and L.-L. Wang, Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains, SIAM J. Numer. Anal., 45(5): 1954-1978, 2007.
- [30] L. Song, J. Zhang, and L.-L. Wang, A multi-domain spectral IPDG method for helmhlotz equation with large number, J. Comput. Math., 31(2): 107-136, 2013.
- [31] J. Wang, and C. Wang, Weak Galerkin finite element methods for elliptic PDEs (in Chinese), Sci Sin Math., 45: 1061-1092, 2015.
- [32] J. Wang, and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241: 103-115, 2013.
- [33] J. Wang, and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83(289): 2101-2126, 2014.
- [34] J. Wang, and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42(1): 155-174, 2016.
- [35] H. Wu, Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: linear version, IMA J. Numer. Anal., 34(3): 1266-1288, 2014.
- [36] L. Zhu, and H. Wu H, Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: hp version, SIAM J. Numer. Anal., 51(3): 1828-1852, 2013.

Beijing Computational Science Research Center, Beijing 100193, China. $E\text{-}mail: jxwang@csrc.ac.cn}$ 

Beijing Computational Science Research Center, Beijing 100193, China and Department of Mathematics, Wayne State University, Detroit, MI 48202, U. S. A.

*E-mail*: zmzhang@csrc.ac.cn and zzhang@math.wayne.edu.