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A 3D CONFORMING-NONCONFORMING MIXED FINITE

ELEMENT FOR SOLVING SYMMETRIC STRESS STOKES

EQUATIONS

MIN ZHANG AND SHANGYOU ZHANG

Abstract. We propose a 3D conforming-nonconforming mixed finite element for solving symmet-
ric stress Stokes equations. The low-order conforming finite elements are not inf-sup stable. The
low-order nonconforming finite elements do not satisfy the Korn inequality. The proposed finite

element space consists of two conforming components and one nonconforming component. We
prove that the discrete inf-sup condition is valid and the discrete Korn inequality holds uniformly
in the mesh-size. Based on these results we give some numerical verification. In addition, this
element is compared numerically with six other mixed finite elements.
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1. Introduction

Finite element methods for the 2D symmetric stress Stokes problem have been
extensively studied in the literature, and most of stable schemes are summarized in
book [6]. However, only little attention has been paid to the 3D problems. Actu-
ally, the nonconforming elements of Crouseix-Raviart [10] is only suitable if ΓN = ∅
due to a missing Korn’s inequality in two as well as in three dimensions. In 2D,
the nonconforming elements of Kouhia and Stenberg [17] circumvent this problem
by choosing one component nonconforming element and the other one conforming
element. [19] has also given a counter example to show that if both of the two
components are nonconforming rotated Q1 elements, discrete Korn’s inequality is
invalid. From these works, we are hinted to use different spaces for different com-
ponents of the velocity to assure the well-posedness of the discrete problem. We
prove that the mixed finite elements with one nonconforming component, the non-
conforming rotated Q1 element, the conforming Q2 element and the conforming
Q1 element for the other two components of the velocity, respectively, satisfy the
discrete Korn inequality. In addition, such a velocity element combined with a
piecewise constant pressure element, i.e., RQ1 ×Q2 ×Q1-P0, is inf-sup stable. For
the nonconforming rotated Q1 element, Rannacher and Turek analyzed this element
in [23] for solving the (gradient) Stokes equations. The element has shown super-
convergence in special meshes according to [18]. However, as mentioned above, this
rotated Q1 element does not satisfy the discrete Korn inequality and does not solve
the symmetric stress Stokes equations (see numerical tests below.) Similarly, the
Cai-Douglas-Santos-Sheen-Ye’s element [7, 8, 11] does not work for the symmetric
stress Stokes equations either. But the element can be used for one component of
the velocity, replacing the rotated Q1 element.

We note that, unlike the 2D case, two components of C0-Q1 of the velocity
are not enough. That is, the RQ1 × Q1 × Q1-P0 mixed finite element does not
solve the symmetric stress Stokes equations. A numerical test on the element is
provided. The proposed RQ1 × Q2 × Q1-P0 is almost the simplest mixed finite
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element. Here we can have another slightly simpler version of the proposed mixed
finite elements that the conforming Q2 can be replaced by the conforming Q2,1,1

space, for example, where Q1,2,1 denote the polynomials of separated degrees 2, 1
and 1. The analysis for this mixed finite element is same. Numerically, we test the
newly proposed finite element, along with six other typical mixed finite elements,
including this simplified element RQ1 ×Q2,1,1 ×Q1-P0.

The rest of the paper is organized as follows. In section 2, we present the sym-
metric stress Stokes problem. In section 3, we define the conforming nonconforming
combined mixed finite element. The well-posedness of the discrete problem and an
error estimate will be proved for the proposed mixed finite element. Section 4
concludes this paper with seven numerical experiments.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces is
employed. (·, ·) denotes the L2 scalar product over Ω. Let ∥ · ∥0,Ω denote the L2

norm over a set Ω ⊂ Ω and ∥·∥0 abbreviate ∥·∥0,Ω. |·|1,h denotes the semi-H1 norm
for nonconforming functions and | · |1 the standard semi-H1 norm. ∂Ω denotes the
boundary of Ω. If there is no special instruction, the bold face letter will indicate a
vector or vector space in order to distinguish it from scalars. Let A . B abbreviates
that there is some mesh-size independent generic constant 0 ≤ C ≤ ∞ such that
A ≤ CB.

2. The symmetric stress Stokes problem

Assuming the domain Ω ∈ R3 is a convex, polyhedral, bounded Lipschitz domain,
which can be triangulated by parallelepipeds (or simply by cuboids), with closed
Dirichlet boundary ΓD and Neumann boundary ΓN = ∂Ω \ ΓD, both with non-
zero two dimensional measure, and some right-hand side functions f ∈ [L2(Ω)]3,
u1 ∈ [H3/2(ΓD)]3 and g ∈ [H1/2(ΓN )]3, the three dimensional symmetric stress
Stokes problem seeks the velocity u ∈ [H1(Ω)]3 and pressure p ∈ L2(Ω) such that

−2µdiv ε(u) +∇p = f in Ω

divu = 0 in Ω

u = uD on ΓD

σn = g on ΓN ,

(1)

where, and throughout this paper, n is the unit normal vector on the boundary,
µ > 0 is the viscosity, σ = (2µε(u) − pI), and ε(u) is the symmetric gradient of a
vector, which is

ε(u) =
1

2
(∇u+∇uT )

=
1

2

 2∂xu1 ∂yu1 + ∂xu2 ∂zu1 + ∂xu3

∂yu1 + ∂xu2 2∂yu2 ∂zu2 + ∂yu3

∂zu1 + ∂xu3 ∂zu2 + ∂yu3 2∂zu3


for any u = [u1 u2 u3]

T ∈ [H1(Ω)]3.
We note that due to the boundary conditions, the symmetric stress Stokes prob-

lem (1) is not equivalent to a standard (gradient) Stokes problem.
The weak formulation of equation (1) reads Find (u, p) ∈ V × L2(Ω), such that a(u,v) + b(p,v) = (f ,v) +

∫
ΓN

g · vds ∀v ∈ V0,

b(q,u) = 0 ∀q ∈ L2(Ω),

(2)
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where

V = {v ∈ H1(Ω) | v|ΓD
= uD},

V0 = {v ∈ H1(Ω) | v|ΓD
= 0},

a(u,v) = 2µ

∫
Ω

ε(u) : ε(v)dx,

b(q,v) = −
∫
Ω

q divv dx.

The well-posedness of (2) is ensured by a theorem from [6] and [23].

Theorem 2.1. Then the weak problem (2) admits a unique solution (u, p) ∈ V ×
L2
0(Ω) such that

(3) ∥u∥1 + ∥p∥0 ≤ C∥f∥−1 + C∥g∥−1/2,ΓN
+ C∥uD∥1/2,ΓD

.

3. Finite element approximation

3.1. notations. Let Th be regular and shape-regular decompositions of Ω ⊂ R3

into parallelepiped, or simply rectangular cubes, denoted by K, where the mesh
parameter h > 0 describes the maximum diameter of the elements of Th. Let F be
the set of all faces in Th. Given any face F with diameter hF , we assign a unit normal
vector nF := (n1, n2, n3) to the face. For an internal F ∈ F , once nF has been
fixed on F , in relation to nF one defines the elements K− ∈ Th and K+ ∈ Th with
F = K−∩K+. The jump of u across F is denoted by [u]F := (u|K+)|F − (u|K−)|F .
The jump on the boundary faces (⊂ ∂Ω) is defined similarly. Let K̂ be the reference

cube with vertices Ẑi, 1 ≤ i ≤ 8. Then exists a unique invertible mapping GK that

maps K̂ onto K with GK(ξ, η, γ) ∈ Q3
1(ξ, η, γ) and GK(Ẑi) = Zi. Here ξ, η, γ are

the local isoparametric coordinates. We denote by Pk the set of polynomials of
degree less than or equal to k, and by Qk the set of polynomials of degree less than
or equal to k in each variable.

We introduce the conforming Q1 element space

Wh = {v ∈ H1
ΓD

(Ω) | v̂|K ∈ Q1(K̂) ∀K ∈ Th},(4)

where H1
ΓD

(Ω) = {v|ΓD
= 0} ∩H1(Ω), the conforming Q2 element space

Zh = {v ∈ H1
ΓD

(Ω) | v̂|K ∈ Q2(K̂) ∀K ∈ Th},(5)

and the piecewise constant pressure space

Qh = {q ∈ L2(Ω) | q|K ∈ P0(K) ∀K ∈ Th}.(6)

The definition of nonconforming, rotated Q1 element (RQ1) space in 3D [23] is as
follows. The shape function space is

RQ1(K) =
{
v̂ ◦G−1

K | v̂ ∈ span{1, x, y, z, x2 − y2, x2 − z2}
}
,

where GK is the tri-linear mapping from K̂ to K. On a face F ∈ ∂K, we denote
the average and the jump by

AF,K(v) =
1

|F |

∫
F

v ∀v ∈ H1(K),

JF (v) =
1

|F |

∫
F

[v]F ∀v ∈ H1(Ω).

The global RQ1 space is

V RQ1

h =
{
v ∈ L2(Ω) | v|K ∈ RQ1(K), K ∈ Th, ; JF (v) = 0, F ∈ F ∩ Ω

}
.
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With the boundary condition, the RQ1 space is

V RQ1

0,h =
{
v ∈ V RQ1

h | AF,K(v) = 0, ∀F ∈ F ∩ ΓD

}
.

In addition, we have to work with ”piecewise” defined bilinear forms and corre-
sponding norms

ah(uh,vh) = 2µ
∑

K∈Th

∫
K

ε(uh) : ε(vh)dx,

bh(q,uh) = −
∑

K∈Th

∫
K

qh divvhdx.

(7)

∥v∥2l,h =
∑

K∈Th

∥v∥2l,K , |v|2l,h =
∑

K∈Th

|v|2l,K , l = 1, 2.

The global finite element space for the velocity is defined by

Vh = V RQ1

0,h × Zh ×Wh,(8)

and the finite element pressure space is Qh, defined in (6). Here, for uh ∈ Vh, we
have

uh =

uh1

uh2

uh3

 , uh1 ∈ V RQ1

0,h , uh2 ∈ Zh, uh3 ∈ Wh.

For simplicity, we assume uD = 0 and ΓN = ∅ in (1), in the finite element
problem. The finite element method can be stated as: Find (uh, ph) ∈ Vh × Qh

such that {
ah(uh,v) + bh(ph,v) = (f ,v) ∀v ∈ Vh,

bh(q,uh) = 0 ∀q ∈ Qh,
(9)

Here ah(uh,v) and bh(q,uh) are defined in (7).

3.2. The BB inequality. We will prove the BB inequality for the finite element
pair (uh, ph) ∈ Vh ×Qh.

Theorem 3.1. There is a constant C > 0, independent of h, such that

sup
v∈Vh

bh(p,v)

∥v∥1,h
≥ C∥p∥0 ∀p ∈ Qh,(10)

where Vh and Qh are defined in (8) and (6), respectively.

Proof. The proof is done by a macro-element technique [17, 19]. Let M be a macro-
element containing eight elements Ki and these elements share a common vertex
which we denote as O, shown in Figure 1. We define the macro-space on such one
macro-element.

V0,M = {v ∈ H1
0(M) ∩Vh},

PM = {p ∈ L2
0(M) ∩Qh}.

Let the piecewise constant function be p|Kj = pj . We will show that if bh(p,v) = 0
for all v ∈ V0,M , then all pj are a global constant over M .

Kj is a cuboid for any j = 1, 2, ..., 8. Let the 12 internal faces of M be denoted
by Fi ∈ F , see Figure 1. Let the central points of each face Fi be denoted by Oi,
i = 1, 2, ...12. According to Figure 1, let one of the four RQ1 function v1, the only
non-vanishing freedom of v, i.e., v = [v1 0 0]T , be such that

∫
Fi

v1 = 1 on one face
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F1
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F11F12 F10

F5 F6

F8 F7

Figure 1. Splitting a 2× 2× 2 macro-element M of 8 cubes Ki,
and 12 internal faces Fi.

Fi only, i = 2, 4, 10, 12, respectively. See Figure 1, the normal vectors of these four
faces are parallel to the x-axis. For instance, when i = 2,

0 = bh(p,v)M =

∫
F2

v · n2 p2dS −
∫
F2

v · n2 p3dS

=

∫
F2

v1|K2p2 dS −
∫
F2

v1|K3p3 ds

= p2 − p3,

where bh(p,v)M is defined in (7) on M . Hence p2 = p3. Repeating the computation
on the other three faces, we get p4 = p1, p6 = p7 and p5 = p8.

Let the Q2 function v2, the only non-vanishing component of v = [0 v2 0]T , be
such that v2(Oi) = 0 is chosen that

∫
Fi

v2 = 1, for i = 1, 3, 9, 11, respectively. When
i = 1,

0 = bh(p,v)M =

∫
F1

v · n1p1 dS −
∫
F1

v · n1 p2 dS

= p1 − p2.

We get p2 = p1. Then p3 = p4, p5 = p6 and p7 = p8. Combining the two results,
we have, for some two constants a and b,

p1 = p2 = p3 = p4 = a,

p5 = p6 = p7 = p8 = b.
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We next let v3 ∈ Q1(M) ∩ H1
0 (M) be the only non-vanishing degree of freedom,

such that v3(O) = 1, where O is the center of macro-element M .

0 = bh(p,v)M =

∫
F5

v|K1 · n5 a dS −
∫
F5

v|K5 · n5 b dS

+

∫
F6

v|K2 · n6 a dS −
∫
F6

v|K6 · n6 b dS

+

∫
F7

v|K3 · n7 a dS −
∫
F7

v|K7 · n7 b dS

+

∫
F8

v|K4
· n8 a dS −

∫
F8

v|K8
· n8 b dS

=
1

3
|F5|(a− b) +

1

3
|F6|(a− b) +

1

3
|F7|(a− b) +

1

3
|F8|(a− b)

=
1

3
(|F5|+ |F6|+ |F7|+ |F8|)(a− b).

Thus a = b. That is, the dimension of (divV0,M )⊥ in Ph is 1. As we have (at
least) one internal degree of freedom on each face, for each component of v, by the
macro-element technique of Stenberg [25], the inf-sup condition (10) holds.

3.3. The discrete Korn inequality.

Lemma 3.1. Let vh ∈ Vh. For an internal point x0 of Th, let Ωx0 be the macro-
element of eight cuboids sharing x0 as a central vertex. It holds that∑

F∈F(Ωx0 )

h−1
F ∥[vh]∥20,F ≤ C inf

v∈H(Ωx0 )
∥εh(v − vh)∥20,h,Ωx0

.(11)

where H(Ωx0) := {v ∈ H1(Ωx0)∩C0(Ωx0) | v = 0 on ∂Ωx0}, and C is independent
of h.

Proof. The proof follows [14]. We prove (11) on the reference macro-element M ,
shown in Figure 1. Then (11) is obtained by the standard scaling argument.

Now, if ∥εh(v − vh)∥0,h,Ωx0
= 0 for some v ∈ H(Ωx0), the function v − vh is a

rigid motion on each of eight Ki of M , because ∥εh(v − vh)∥0,Ki = 0. That is,

(v − vh)Ki = RMKi =

ai − eiy − diz
bi + eix− fiz
ci + dix+ fiy

 ,(12)

for some 48 constants, ai, bi, ci, di, ei, fi, i = 1, ..., 8. Because v ∈ H(Ωx0) is con-
tinuous on Ωx0 , and the second component and the third component of vh are
continuous (piecewise polynomials) on Ωx0 , we have all eight constants of each
group, bi, ci, ..., fi, equal, on the whole Ωx0 . We are left to show all eight ai are
equal. On the face F1 between two cuboids K1 and K2 (cf. Figure 1), though (vh)1
is not continuous, its face-integral is continuous. So the integral of the jump is zero.
As v ∈ H(Ωx0) is continuous on F1,

0 =

∫
F1

[v1 − (vh)1] =

∫
F1

(v − vh)1|K1 − (v − vh)1|K2

=

∫
F1

(a1 − a2 − (e1 − e2)y − (d1 − d2)z)dS

=

∫
F1

(a1 − a2)dS = (a1 − a2)|F1|.
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This leads to a1 = a2. Repeating this computation on F2, F3, F8, F9, F12 and F10

(see Figure 1), we show all eight ai equal, on the whole Ωx0 .
We conclude that v− vh in (12) is a global rigid motion, i.e., continuous across

all internal faces, F(Ωx0). So vh is continuous in Ωx0 , and∑
F∈F(Ωx0 )

∥[vh]∥20,F = 0.

Therefore (11) holds with C > 0 on the reference macro-element, because vh is in
a space of finite dimension. The general case follows from a scaling argument that
the constant C in (11) is unchanged in the scaling transformation, i.e., independent
of h.

Theorem 3.2. There is a positive constant C independent of the mesh size h such
that

∥vh∥1,h ≤ C∥εh(vh)∥0 ∀vh ∈ Vh.(13)

Proof. First, according to the definition of the finite element space and results in
[2, (1.5)], we have the following Poincaré inequality,

∥vh∥20 . ∥∇hvh∥20 + |
∫
ΓD

vhdS|2 . ∥∇hvh∥20 + ∥vh∥20,ΓD
.(14)

By Lemma 3.1 and the discrete Korn inequality in [3, (1.19)],

∥vh∥20 + ∥∇hvh∥20
. ∥∇hvh∥20 + ∥vh∥20,ΓD

. ∥εh(vh)∥20 +
∑

F∈F(Ω)∪F(ΓD)

h−1
F ∥[vh]∥20,F + ∥vh∥20,ΓD

. ∥ε(vh)∥20 +
∑

F∈F (Ω)∪F (ΓD)

h−1
F ∥[vh]F ∥20,F

. ∥ε(vh)∥20 +
∑

internal vertex x0

inf
v∈H(Ωx0 )

∥εh(v − vh)∥20,h,Ωx0

. ∥ε(vh)∥20 + inf
v∈H(Ω)

∥εh(v − vh)∥20,h

≤ ∥ε(vh)∥20 + ∥εh(Ihvh − vh)∥20,h
. ∥ε(vh)∥20 + ∥εh(Ihvh)∥20,h
. ∥ε(vh)∥20.

Here H(Ω) = [H1
0 (Ω) ∩ C0(Ω)]3, and Ih : Vh → Ṽh ⊂ H(Ω) is the averaging

interpolation operator, where

Ṽh = Wh(C
0-Q1)× Zh ×Wh.

That is, Ih averages a rotated Q1 function (vh)1 to a continuous Q1 function. Such
an operator is H1 stable and symmetric-gradient stable, i.e.,

∥Ihvh∥1,h . ∥vh∥1,h, ∥ε(Ihvh)∥0 . ∥εh(vh)∥0,h.
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3.4. Error analysis.

Theorem 3.3. Let (u, p) ∈ H2(Ω) × H1(Ω) be the solution of the variational
problem (2). The problem (9) admits a unique solution (Vh, Qh) such that

|u− uh|1,h + ∥p− ph∥0 ≤ Ch{∥u∥2 + |p|1},(15)

∥u− uh∥0 + ∥p− ph∥−1 ≤ Ch2{∥u∥2 + |p|1}.(16)

Proof. Because the bilinear form ah(·, ·) is coercive on Vh, and because the inf-sup
condition (10) holds, by the framework of mixed formulation [6], the problem (9)
has a unique solution. Further, due to the inf-sup stability (10) and the consistent
error control [2, 23], such a solution is quasi-optimal that

|u− uh|1,h + ∥p− ph∥0 . ( inf
vh∈Vh

|u− vh|1,0 + inf
qh∈Qh

∥p− qh∥0).

So (15) follows. The L2 error estimate (16) follows by the standard duality argument
[6].

4. Numerical experiments
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Figure 2. The first three levels of grids, T1, T2 and T3 .

We solve the following symmetric stress Stokes equations
−div ε(u) +∇p = f in Ω = (0, 1)3,

divu = 0 in Ω,

(ε(u)− pI)n = 0 on ΓN = {z = 1} ∩ ∂Ω,

u = 0 on ΓD = ∂Ω \ ΓN ,

(17)

where f is defined by the exact solutions

u = curl

y2(1− y)2x(1− x)z2(1− z)3

x2(1− x)2y(1− y)z2(1− z)3

0

 ,(18)

p = (x− 1/2)(y − 1/2)(1− z).(19)

The first level grid is the domain itself. We refine each cube into 8 half-sized
cubes to obtain next grid. Shown in Figure 2, the first three levels of grids, with
grid size h = 1, 1/2 and 1/4, respectively.
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Table 1. The errors and the order of convergence by the Q2 ×
Q1 ×RQ1 − P0 element.

level ∥u− uh∥0 hn |u− uh|1,h hn ∥p− ph∥0 hn dimVh

2 0.001955 0.0 0.0141 0.0 0.01722 0.0 188
3 0.000872 1.2 0.0111 0.3 0.00838 1.0 1094
4 0.000272 1.7 0.0065 0.8 0.00308 1.4 7370
5 0.000074 1.9 0.0034 0.9 0.00098 1.6 53906
6 0.000019 1.9 0.0017 1.0 0.00029 1.8 411938

Figure 3. The computed (uh)1, and the error, by Q2, for (18) on
the fifth grid.

Table 2. The errors and the order of convergence by the Q1,1,2×
Q1 ×RQ1 − P0 element.

level ∥u− uh∥0 hn |u− uh|1,h hn ∥pI − ph∥0 hn dimVh

2 0.000584 0.0 0.0040 0.0 0.09217 0.0 108
3 0.000519 0.2 0.0076 0.0 0.03827 1.3 590
4 0.000157 1.7 0.0043 0.8 0.01728 1.1 3834
5 0.000042 1.9 0.0022 1.0 0.00821 1.1 27506
6 0.000011 2.0 0.0011 1.0 0.00400 1.0 208098

4.1. The Q2 ×Q1 ×RQ1 − P0 mixed finite element. We use C0 −Q2 × C0 −
Q1×RQ1 finite elements for the three components of the velocity uh. The pressure
finite element space is the space of piecewise P0 polynomials. The resulting linear
systems of equations is solved by an iterative Uzawa method, stopping when the ph
update is less than 10−6. In Table 1, we list the errors and the orders of convergence
of the finite element solutions. The optimal order of convergence is achieved in the
computation, as predicted by the theory.
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Figure 4. The computed (uh)2, and the error, by Q1, for (18) on
the fifth grid.

Figure 5. The computed (uh)3, and the error, by RQ1, for (18)
on the fifth grid.

To compare the approximation power of different spaces of the three components
of the velocity, we plot the finite element solution, and the error, cut on the plane
z = 0.2, on the fifth grid, for the three components of uh and for the pressure ph,
in Figures 3 – 6.
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Figure 6. The computed ph, and the error, by P0, for (18) on the
fifth grid.

4.2. The Q1,1,2 ×Q1 ×RQ1 − P0 mixed finite element. We use C0 −Q1,1,2 ×
C0 − Q1 × RQ1 finite elements for the three components of the velocity uh. The
pressure finite element space is the space of piecewise P0 polynomials. Exactly the
same proof of this paper would show that such a mixed finite element is inf-sup
stable, and satisfies Korn’s inequality. In Table 2, we list the errors and the orders
of convergence of the finite element solutions. The optimal order of convergence is
achieved in the computation.

This element is slightly simpler than the one in the last subsection. The total
number of unknowns is about half of that. However, the approximation is about
twice as good as the last one. Well, due to a loss of symmetry, the pressure solution
is worse.

Table 3. The errors and the order of convergence by the con-
forming Q2 ×Q2 ×Q2 − P0 element.

level ∥u− uh∥0 hn |u− uh|1,h hn ∥pI − ph∥0 hn dimVh

2 0.002364 0.0 0.02307 0.0 0.01256 0.0 375
3 0.001011 1.2 0.01504 0.6 0.00775 0.7 2187
4 0.000328 1.6 0.00832 0.9 0.00317 1.3 14739
5 0.000092 1.8 0.00434 0.9 0.00106 1.6 107811
6 0.000024 1.9 0.00221 1.0 0.00032 1.7 823875

4.3. The conforming Q2 ×Q2 ×Q2 −P0 mixed finite element. We use C0 −
Q2 × C0 − Q2 × C0 − Q2 finite elements for the three components of the velocity
uh. The pressure finite element space is the space of piecewise P0 polynomials. For
such a mixed finite element pair, both the inf-sup condition and the discrete Korn
inequality hold. However, due to the P0 approximation of the pressure, only first
order of convergence can be achieved for the Q2 finite element functions. In Table
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3, we list the errors and the orders of convergence of the finite element solutions.
The optimal order of convergence is achieved in the computation, as predicted by
the theory.

Table 4. The errors and the order of convergence by the con-
forming Q1 ×Q1 ×Q1 − P0 element.

level ∥u− uh∥0 hn |uI − uh|1 hn ∥pI − ph∥0 hn dimVh

2 0.000266 0.0 0.001593 0.0 0.03502 0.0 81
3 0.000178 0.6 0.001345 0.2 0.00902 2.0 375
4 0.000058 1.6 0.000449 1.6 0.00226 2.0 2187
5 0.000015 1.9 0.000121 1.9 0.00057 2.0 14739
6 0.000004 2.0 0.000031 2.0 0.00016 1.8 107811

4.4. The Q1 × Q1 × Q1 − P0 mixed finite element. We use C0 − Q1 × C0 −
Q1 × C0 − Q1 finite elements for the three components of the velocity uh. The
pressure finite element space is the space of piecewise P0 polynomials. This mixed
finite element is not inf-sup stable, but does satisfy the discrete Korn inequality.
Although the element is not inf-sup stable, due to a super-convergence property
[21, 22], such a mixed finite element even converges one order higher than the best
approximation order. In Table 4, we list the errors and the orders of convergence of
the finite element solutions. Again, though this element is not stable, it is the best
element computing the symmetric stress Stokes equation. We note that the linear
systems of equations here are solved iteratively. Otherwise we need to filter out the
checkerboard modes of the pressure, when using the direct Gaussian elimination.

Table 5. The errors and the order of convergence by the C0 −
Q1 × C0 −Q1 ×RQ1 − P0 element.

level ∥u− uh∥0 hn |uI − uh|1 hn ∥pI − ph∥0 hn dimVh

1 0.000000 0.0 0.000000 0.0 0.00000 0.0 22
2 0.000793 0.0 0.005153 0.0 0.03753 0.0 90
3 0.001111 0.0 0.011705 0.0 0.02442 0.6 490
4 0.001182 0.0 0.011366 0.0 0.01665 0.6 3186
5 0.001272 0.0 0.011442 0.0 0.01359 0.3 22882

4.5. The Q1 ×Q1 ×RQ1 − P0 mixed finite element. We use C0 −Q1 × C0 −
Q1×RQ1 finite elements for the three components of the velocity uh. The pressure
finite element space is the space of piecewise P0 polynomials. This mixed finite
element does not satisfy the inf-sup condition. So the element solution does not
converge, see Table 5.

4.6. The Q1×RQ1×RQ1−P0 mixed finite element. We use C0−Q1×RQ1×
RQ1 finite elements for the three components of the velocity uh. The pressure finite
element space is the space of piecewise P0 polynomials. This mixed finite element
does not satisfy the discrete Korn inequality. The finite element solution does not
converge, cf. Table 6.



742 M. ZHANG AND S. ZHANG

Table 6. The errors and the order of convergence by the C0 −
Q1 ×RQ1 ×RQ1 − P0 element.

level ∥u− uh∥0 hn |uI − uh|1 hn ∥pI − ph∥0 hn dimVh

1 0.000000 0.0 0.0000 0.0 0.00000 0.0 20
2 0.000280 0.0 0.0063 0.0 0.02212 0.0 99
3 0.001892 0.0 0.0198 0.0 0.02748 0.0 605
4 0.001812 0.1 0.0211 0.0 0.02667 0.0 4185
5 0.001712 0.1 0.0210 0.0 0.02635 0.0 31025

Table 7. The errors and the order of convergence by the non-
conforming RQ1 ×RQ1 ×RQ1 − P0 element.

level ∥u− uh∥0 hn |u− uh|1,h hn ∥p− ph∥0 hn dimVh

2 1114981.2 0.0 0.0780 0.0 0.0458 0.0 108
3 1649984.0 0.0 0.1862 0.0 0.0520 0.0 720
4 17973.8 6.5 0.0691 1.4 0.0501 0.1 5184
5 1092.8 4.0 0.0731 0.0 0.0508 0.0 39168

4.7. The non-conforming RQ1×RQ1×RQ1−P0 mixed finite element. We
use non-conforming RQ1 × RQ1 × RQ1 finite elements for the three components
of the velocity uh. The pressure finite element space is the space of piecewise P0

polynomials. This mixed finite element is inf-sup stable, but it does not satisfy the
discrete Korn inequality. In Table 7, we list the errors and the orders of convergence
of the finite element solutions. Due to the failure of Korn’s inequality, this mixed
finite element does not work.
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