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A FINITE ELEMENT METHOD FOR THE ONE-DIMENSIONAL

PRESCRIBED CURVATURE PROBLEM

SUSANNE C. BRENNER, LI-YENG SUNG, ZHUO WANG, AND YUESHENG XU

Abstract. We develop a finite element method for solving the Dirichlet problem of the one-
dimensional prescribed curvature equation due to its irreplaceable role in applications. Specifically,
we first analyze the existence and uniqueness of the solution of the problem and then develop a
finite element method to solve it. The well-posedness of the finite element method is shown by
employing the Banach fixed-point theorem. The optimal error estimates of the proposed method
in both the H

1 norm and the L
2 norm are established. We also design a Newton type iteration

scheme to solve the resulting discrete nonlinear system. Numerical experiments are presented to
confirm the order of convergence of the proposed method.

Key words. Prescribed curvature equation, finite element method, Newton iteration, Banach
fixed-point theorem.

1. Introduction

The purpose of this paper is to develop a finite element method for solving
the Dirichlet problem of the one-dimensional prescribed curvature equation. The
study of the prescribed curvature equation originates from Thomas Young’s [35]
and Pierre-Simon Laplace’s [24] independent research about the properties of cap-
illary surfaces which date back to 1805. Its mathematical theory was built by Gauss
[16] in 1830, and was enriched by numerous researchers [17, 28]. At the present
time, there is still great interest in the study of this equation including the one di-
mensional case [19, 23, 29] and high dimensional cases [17, 18, 32]. The prescribed
curvature equation appears in many important fields including classical problems
in differential geometry (e.g. minimal surfaces [26, 28]; constant curvature surfaces
[28]) and the static fluid problem in fluid mechanics such as the Young-Laplace
equation [15, 35]. In particular, the one-dimensional equation plays an irreplace-
able role in applications such as modeling corneal shape [10, 27, 33] and modeling
electrostatic micro-electro mechanical systems [6, 7, 13].

The interest in the one-dimensional prescribed curvature equation has led to
much progress in analyzing the existence, non-existence and multiplicity of its so-
lutions. Studying the equation was inspired by an open problem proposed by Haim
Brezis et al. in [1] for investigating the multiplicity and structure of the solution of
a specific semilinear elliptic problem related to a simplified version of the equation.
The equation under study has more severe nonlinearity in its operator and more
complexity of the multiplicity of its solution. There exist a large number of papers
which focused on the existence of solutions of the equation by using the barrier
method [23], the time map method [29] and the sub-super solution method [25].
Especially, the equation with a general forcing term that depends on the unknown
solutions and their gradient was considered in [3, 29]. Moreover, some fascinating
aspects of the Dirichlet problem of the one-dimensional prescribed curvature equa-
tion were obtained in [30, 31], including the disappearing solution behavior and the
bifurcation property of the solution. For the computational issue of this problem,
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the shooting method was studied in [2], the finite difference method was investigated
in [8] and the conjugate gradient method was considered in [20]. These methods
are difficult to be extended to a higher dimensional case. Specifically, the shoot-
ing method converts the original problem to an equivalent initial value problem
involved in many parameters. The finite difference method for solving this problem
in higher dimensions suffers from the difficulty in handling the curve boundaries
imposed the Dirichlet boundary condition and as a result it is difficult to extend
it to a higher dimensional case. The conjugate gradient method treats the origi-
nal problem as an equivalent minimization problem, and it is difficult to extend it
reliably and easily to high dimensions for more complicated and important case.

At present, the finite element method are used for special two dimensional cases
of the prescribed curvature problem. In [21], Johnson and Thomée developed the fi-
nite element error analysis to obtain the optimalH1 and Lp, 1 ≤ p < 2 estimates for
the minimal surface problem by using the piecewise linear approximate functions.
A posteriori error analysis for the Dirichlet problem of the prescribed mean curva-
ture equation with homogeneous boundary conditions was developed in [14] and the
finite element method for the discrete Plateau’s problem and the correspondingH1,
L2 error estimates were obtained in [11, 12] (see also the references cited therein) by
dealing with the equivalent energy functional. In the aforementioned finite element
methods, the strict convexity of the corresponding energy functional provides con-
veniences for the study of the existence and uniqueness of the approximate solution
of the specific two dimensional cases. However, for the one-dimensional prescribed
curvature equation, when the forcing term depends on the unknown solution, the
finite element method may result in a nonconvexity of the corresponding energy
functional. This requires a new approach to deal with the existence and uniqueness
of the approximate solution of the one-dimensional case. We shall accomplish this
by applying the Banach fixed point theorem. Therefore, the finite element method
for one-dimensional problem deserves further investigation.

Our goal is to develop a finite element method for solving the Dirichlet boundary
value problem of the one-dimensional prescribed curvature equation, with poten-
tial of easy extension to handle cases where the forcing term depends on both the
unknown solution and its gradient and handle the high dimensional case. We shall
adopt the standard Lagrange finite element for this purpose. As explained in [4],
advantages of using the standard Lagrange finite element include the simplicity of
its implementation and the ability of handling the general case in which the forcing
term may depend on the unknown solution and its gradient. For simplicity of pre-
sentation, we consider in this paper the equation with the forcing term independent
of the unknown solution. The method developed in this paper can be easily ex-
tended to the general case. Specifically, we establish the existence and uniqueness
of the solution for this problem by using the shooting method. We study the reg-
ularity of the solution, which lays a foundation for the convergence analysis of the
proposed method. We construct the finite element scheme by using the simple and
practical Lagrange finite element so that its discrete linearization is consistent with
the linearization of the original nonlinear equation. We identify a fixed point of
the constructive nonlinear operator in a small ball by using the Banach fixed-point
theorem to simultaneously show the well-posedness of the finite element method
and derive an optimal H1 error estimate. Furthermore, we obtain the optimal L2

error estimate by extending the Nitsche strategy naturally within our framework.
A critical issue in analyzing the proposed method for this problem is the non-

linearity of the differential operator involved in the equation. To overcome this
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challenging issue, we split the nonlinear operator derived by the variational form
of the problem into a standard linear elliptic operator plus a nonlinear operator
which inherits the nonlinearity of the original operator. We make use the stability
analysis of the standard linear elliptic operator with a contraction property of the
derived nonlinear operator to complete the convergence analysis of the proposed
method.

This paper is organized in seven sections. In section 2, we establish the exis-
tence and uniqueness of the solution for the Dirichlet boundary value problem of
the one-dimensional prescribed curvature equation. We develop in section 3 the
finite element method for solving this problem. Section 4 is devoted to a complete
error analysis of the proposed finite element method. By using the Banach fixed-
point theorem, we establish the well-posedness of the method and the optimal error
estimates, in both the H1 morn and the L2 morn, of the approximate solution. In
section 5, we describe the Newton iteration for solving the discrete nonlinear sys-
tem that results from the finite element method and prove its convergence order.
In section 6, we present numerical results to verify the convergence rate of the
approximate solution. Finally, we draw a conclusion in section 7.

2. The Dirichlet Boundary Value Problem

We investigate in this section the existence, uniqueness and regularity of the
solution of the Dirichlet boundary value problem of the one-dimensional prescribed
curvature equation. We accomplish this goal by converting the boundary value
problem to a related initial value problem and using the shooting method.

We first describe the Dirichlet boundary value problem that we consider in this
paper. Set Ω := (−1, 1) and Ω := [−1, 1]. Let f be a continuous function defined
on Ω and ℓ ∈ R. We consider the following Dirichlet boundary value problem of
the one-dimensional prescribed curvature equation:

−





u′(x)
√

1 + u′(x)2





′

= f(x), x ∈ Ω(1a)

u(−1) = 0(1b)

u(1) = ℓ.(1c)

In order to apply the shooting method to the above problem, we first analyze
the existence of a solution of equation (1a) on Ω with the left boundary condition
(1b). That is, we first investigate whether there exists a shooting curve starting
from the point (−1, 0) determined by equation (1a) on Ω. To this end, we let

F (x) :=

∫ x

−1

f(t)dt, x ∈ Ω.

and

M := max
x∈Ω

F (x), m := min
x∈Ω

F (x).

A comment on the numbers M and m is in order.

Remark 2.1. If f vanishes at points x1 < · · · < xk inside Ω, then

M = max
j=0,1,...,k+1

F (xj) and m = min
j=0,1,...,k+1

F (xj)

where x0 = −1 and xk+1 = 1.
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For the sake of conciseness and clarity, we introduce the notation

(2) G(a) :=
a√

1 + a2
,

and

(3) H(a) :=
a√

1− a2
,

where a may be a function or a function value.

Lemma 2.1. If problem (1a) and (1b) has a solution on Ω, then

(4) M −m < 2.

Proof. We use the idea of the shooting method to obtain this result. Instead of
problem (1a) and (1b), we consider its equivalent first order system

u′ = y u(−1) = 0,(5a)

−
(

y
√

1 + y2

)′

= f y(−1) = u′(−1).(5b)

If problem (1a) and (1b) has a solution u∗ on Ω, then u∗ satisfies equations (5).
For simplicity, we let α∗ := (u∗)′(−1).

The existence of a solution of problem (5a) clearly requires that y exists on Ω.
To this end, using definition (2) of notation G(a), we turn to equation (5b) and
integrate both sides of the equation to obtain that

−G(y(x)) = F (x)− ᾱ, x ∈ Ω,

where ᾱ := G(α∗). By using definition (3) of notation H(a), we conclude that

y(x) = −H(F (x)− ᾱ), x ∈ Ω.

Hence, y exists on Ω ensures that the following condition is satisfied

1− (F (x)− ᾱ)2 > 0, x ∈ Ω.

Furthermore, we have that

−1 + ᾱ < F (x) < 1 + ᾱ, x ∈ Ω.

This implies that

m > −1 + ᾱ and M < 1 + ᾱ.

Consequently, if initial value problem (5) has a solution on Ω, then M − m < 2,
which is the necessary condition for a solution of initial value problem (1a) and
(1b) to exist. �

Condition (4) in Lemma 2.1 is only necessary. However, it involves only the
forcing term so that it is easy to verify. Below, we shall provide a necessary and
sufficient condition which ensures initial value problem (1a), (1b) has a solution on
Ω. To this end, by using notation (2), we define

(6) α := G(u′(−1)).
Lemma 2.2. Suppose that the parameter α is well defined by (6). The solution

u(·, α) of the initial value problem defined by (1a), (1b) and (6) exists on Ω if and

only if

(7) −1 +M < α < 1 +m.



650 S. C. BRENNER, L. SUNG, Z. WANG, AND Y. XU

Proof. For x ∈ Ω, by using notation (2), we integrate both sides of equation (1a)
on [−1, x] and obtain

(8) −G(u′(x)) = F (x) − α, x ∈ Ω.

Using (3), we solve u′ from the above equation and get that

(9) u′(x) = −H(F (x)− α), x ∈ Ω.

From the above equation, we observe immediately that the solution of the initial
value problem defined by (1a), (1b) and (6) exists on Ω if and only if u′ is continuous
on Ω, which is equivalent to

1− (F (x)− α)2 > 0, x ∈ Ω.

Moreover, we have that

m > −1 + α and M < 1 + α.

Consequently, we conclude that the solution of the initial value problem defined by
(1a), (1b) and (6) exists on Ω if and only if −1 +M < α < 1 +m. �

Initial value problem (1a), (1b) has a family of solutions depending on the param-
eter α that satisfies (6). We denote by u(·, α) the solution of initial value problem
(1a), (1b) determined by α. Next, with the condition on α as stated in Lemma 2.2,
we use the function

(10) Φ(α) := u(1, α)

to describe the value of the point where the shooting curve intersects with the line
x = 1. We shall characterize the shooting curve u(x, α) which satisfies boundary
condition (1b). We first establish a property of the mapping Φ(α).

Lemma 2.3. The function Φ(α) is a strictly increasing function in α on the open

interval (−1 +M, 1 +m).

Proof. For two different values α1, α2 ∈ (−1+M, 1+m) with α1 < α2, we wish to
prove Φ(α1) < Φ(α2). We consider two shooting curves determined by the initial
value problem defined by (1a), (1b) and (6) with two different values α1 and α2.
By using notation (2), we integrate both sides of equation (1a) in terms of α1 and
α2 respectively and obtain for x ∈ Ω that

−G(u′
1(x)) = F (x) − α1(11a)

−G(u′
2(x)) = F (x) − α2.(11b)

Noticing that α1 < α2 and G(x) is a strictly increasing function, we conclude
from above equations (11) that u′

1(x) < u′
2(x) on Ω. Evidently, we have that

u(1, α1) < u(1, α2), which proves the lemma. �

From the above lemma, we see that the nonlinear boundary value problem (1)
can have at most one solution. With the preceding lemmas established, we are now
ready to present the following result regarding the existence and uniqueness of the
solution of problem (1). Let I be the open interval defined by

(12) I := {Φ(α) : −1 +M < α < 1 +m}.
Theorem 2.4. The Dirichlet boundary value problem (1) is solvable if and only if

ℓ ∈ I.
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Proof. The basic idea of the shooting method is to replace the Dirichlet boundary
value problem by the initial value problem. Hence, in order to prove the existence
of a solution of the Dirichlet boundary value problem (1), we first take account of
the initial value problem (1a) and (1b). We then investigate whether the shooting
curve, that is, the solution of the initial value problem (1a) and (1b), intersects
with the line x = 1 at the point (1, ℓ) (which is the same as boundary condition
(1c)).

Let u be a solution of Dirichlet boundary value problem (1). We shall follow
the proof of Lemma 2.2 to conclude that u is the solution of initial value problem
(1a), (1b). By using the left boundary condition (1b) with definition (6) of the
parameter α, for x ∈ Ω, we integrate both sides of equation (1a) on [−1, x], and
obtain equation (8). Then solving u′ from (8) we have (9). Next, for s ∈ Ω, we
integrate both sides of equation (9) on [−1, s], and obtain that

u(s) = −
∫ s

−1

H(F (x)− α)dx.

We can clearly see that the function u determined by the above formula involved α
is a solution of initial value problem (1a), (1b). Conversely, we assume that u(·, α)
with α satisfying (6) is a solution of initial value problem (1a), (1b). If u(·, α)
satisfies boundary condition (1c), namely u(1, α) = ℓ, then we obtain that u(·, α)
is a solution of Dirichlet boundary value problem (1). Consequently, the existence
of a solution of Dirichlet boundary value problem (1) is converted equivalently to
the existence of a solution u(·, α) with α satisfying (6) which satisfies initial value
problem (1a), (1b) and boundary condition (1c).

Next, we turn to proving that the solution u(·, α) of the initial value problem
defined by (1a), (1b), (6) satisfying boundary condition (1c) exists on Ω if and only
if ℓ ∈ I. If ℓ ∈ I, by definition (6) of α, we prove that there exists a solution
u(·, α) of initial value problem (1a), (1b) satisfying boundary condition (1c). By
employing Lemma 2.3 with definition (6) and (10), the mapping Φ(α) : α→ u(1, α)
is continuous and strictly increasing in α on the open interval (−1 + M, 1 + m),
by applying the intermediate value theorem we conclude that there exists a unique
α̂ in (−1 + M, 1 + m) such that u(1, α̂) = ℓ ∈ I, and by Lemma 2.2, u(·, α̂) is
a solution of initial value problem (1a), (1b). Conversely, let u(·, α̃) with α̃ be
a solution of initial value problem (1a), (1b) satisfying boundary condition (1c),
namely u(1, α̃) = ℓ. By employing Lemma 2.2, we have that α̃ satisfies (7). By
using definition (10) and (12), we obtain ℓ ∈ I.

In conclusion, boundary value problem (1) is solvable if and only if ℓ ∈ I. �

With Theorem 2.4 proved above, we establish the following regularity result of
the solution of the one-dimensional prescribed curvature problem (1).

Proposition 2.5. If u is a solution of the Dirichlet boundary value problem (1)
and f ∈ Ck(Ω) for an integer k ≥ 0, then u ∈ Ck+2(Ω).

Proof. Let u be a solution of Dirichlet boundary value problem (1). By employing
Theorem 2.4 with definition (10) of Φ, there exists a unique α⋆ satisfying (6) such
that ℓ = u(1, α⋆), and u(·, α⋆) is the solution of initial value problem (1a), (1b).
Integrating both sides of equation (1a), by using notation (2), we obtain that

(13) −G(u′(x)) = F (x)− α⋆, x ∈ Ω.

Using notation (3), we solve u′ from above equation (13), and obtain

(14) u′(x) = −H(F (x)− α⋆), x ∈ Ω.
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Next, for s ∈ Ω, we integrate both sides of above equation (14) on [−1, s], and
obtain

(15) u(s) = −
∫ s

−1

H(F (x)− α⋆)dx.

Consequently, we can readily verify from above equation (15) that if f ∈ Ck(Ω),
then u belongs to Ck+2(Ω). �

3. Finite Element Method

In this section, we develop the finite element method to solve the nonlinear
prescribed curvature problem (1).

We begin with setting the notation used throughout the paper. For k ≥ 0 and
0 ≤ p ≤ ∞, we define the Sobolev space W k

p (Ω) to be the set of all Lp(Ω) functions
whose distributional derivatives of order up to k are in Lp(Ω) with the (semi) norm:

‖v‖Wk
p (Ω) :=





∑

|α|≤k

‖Dαv‖pLp(Ω)





1/p

, |v|Wk
p (Ω) :=





∑

|α|=k

‖Dαv‖pLp(Ω)





1/p

,

where Dαv denotes the weak derivative of function v, and in the case p =∞:

‖v‖Wk
∞

(Ω) := max
|α|≤k

‖Dαv‖L∞(Ω).

Moreover, let W k,0
p (Ω) denote the set of W k

p functions whose traces vanish up to

order k − 1 on ∂Ω. Especially, in the case p = 2, we set Hk(Ω) := W k
2 (Ω) and

Hk
0 (Ω) := W k,0

2 (Ω). For simple notation, we let ‖ ·‖0 denote the L2 norm ‖ ·‖L2(Ω),
and ‖ · ‖∞ denote the L∞ norm ‖ · ‖L∞(Ω), for an integer m ≥ 1, we let ‖ · ‖m ( or
| · |m) denote the Hm norm ‖ · ‖Hm(Ω) ( or Hm semi-norm | · |Hm(Ω)) and ‖ · ‖m∞
denote the Wm

∞ norm ‖ · ‖Wm
∞

(Ω). We also denote by X ′ the dual space of a normed
linear space X , and 〈·, ·〉 the pairing between X ′ and X . For our purpose, we take

H1
0 (Ω) := {u : u ∈ H1(Ω) : u(−1) = u(1) = 0},

where H1(Ω) is defined by

H1(Ω) := {u : u ∈ L2(Ω), Du ∈ L2(Ω)}.
Let f ∈ L2(Ω). For convenience, we rewrite problem (1) with inhomogenous

boundary condition (1a), (1b) as the following equivalent equation with the ho-
mogenous boundary condition

−





u′ + ℓ
2

√

1 + (u′ + ℓ
2 )

2





′

= f(16a)

u(−1) = 0(16b)

u(1) = 0.(16c)

Clearly, the relationship between the solution u of the problem (1) and the solution
v of the above problem (16) may be expressed as

u(x) = v(x) +
ℓ

2
(x+ 1), x ∈ Ω.

We now describe the construction of the finite element method for the problem
(16). To this end, recalling definition (2) of notation G(a), we firstly derive the
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following variational formulation of problem (16): Find u ∈ H1
0 (Ω) such that

(17) (G(u′ +
ℓ

2
), v′) = (f, v), for all v ∈ H1

0 (Ω),

where (·, ·) denotes the inner product on L2(Ω). Furthermore, we introduce the
nonlinear mapping N : H1

0 (Ω)→ [H1
0 (Ω)]

′ by

(18) 〈Nw, v〉 :=
∫

Ω

G(w′ +
ℓ

2
)v′dx−

∫

Ω

fvdx, for all v ∈ H1
0 (Ω).

Employing this notation, we then rewrite equation (17) in a compact form:

(19) Nu = 0.

We next derive the finite element scheme for (19). For this purpose, we construct
a finite element space. Let Ωh := {Ij} be a partition of Ω as

−1 = x0 < x1 < · · · < xj−1 < xj < xj+1 < · · · < xn < xn+1 = 1

where Ij := [xj−1, xj ]. Set hj := xj − xj−1 and h := max
1≤j≤n+1

(hj). We define the

finite element space Vh ⊂ H1
0 (Ω) as follows:

Vh := {v ∈ C0(Ω) : v|Ij ∈ Pk(Ij), for j = 1, 2, . . . , n+ 1, v(−1) = v(1) = 0}
where Pk(Ij) is the set of polynomials of degree ≤ k on Ij .

We recall that V ′
h denotes the dual space of Vh. We denote by Nh : Vh → V ′

h

the restriction of N on Vh. That is, Nh satisfies the following finite dimensional
variational equation

(20) 〈Nhuh, v〉 =
∫

Ω

G(u′
h +

ℓ

2
)v′dx−

∫

Ω

fvdx, for all v ∈ Vh.

Hence, the finite element method for (16) is to find uh ∈ Vh such that

(21) Nhuh = 0.

or equivalently,

(22)

∫

Ω

G(u′
h +

ℓ

2
)v′dx−

∫

Ω

fvdx = 0, for all v ∈ Vh.

Equation (21) (or (22)) is a numerical method to find an approximate solution of
the Dirichlet boundary value problem of the one-dimensional prescribed curvature
equation. Upon choosing a basis of Vh, equation (21) is in fact a nonlinear algebraic
equation. We shall solve the resulting nonlinear system by employing the Newton
iteration.

4. Convergence Analysis

In this section, we establish the stability and the optimal convergence rate of the
proposed finite element method. Specifically, we rewrite nonlinear operator (18)
in an equivalent split form of a linear part and a nonlinear part to analyze the
convergence of finite element method (21). We use the Banach fixed point theorem
to show the existence of a solution to resulting nonlinear equation (21) and develop
the H1 error estimate of the method. Sequentially, we obtain the L2 error estimate
of the method by employing the Nitsche strategy.

We first consider a split form of the nonlinear operator defined by (18). In order
to ensure finite element scheme (21) consistent, a key idea is to split nonlinear
operator (18) into two components: a linear component and a nonlinear component
such that the proposed finite element scheme inherits a stable discrete linearization.
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Namely, the linear component is a standard one which can be discretized by known
methods. For our purpose, we used the simple and practical Lagrange finite element
method. Following [4], we conduct linearization of the nonlinear operator N (18)
at u ∈ H1

0 (Ω). For all w ∈ H1
0 (Ω), we apply N to u + w, and write this as a sum

of a linear functional and a nonlinear functional in w. That is,

(23) N (u+ w) = Lw +Rw, for all w ∈ H1
0 (Ω),

where L is a linear mapping and R is a nonlinear mapping to be derived below.
With this idea in mind, we consider the linearization of the nonlinear operator

N defined in (18). For the sake of simplicity, we introduce the notation

(24) K(a) := 1/(1 + a2)
3

2 ,

where a may be a function or a function value. The linearization of N results in
the linear mapping L : H1

0 (Ω)→ [H1
0 (Ω)]

′ defined by

(25) 〈Lw, v〉 :=
∫

Ω

K(u′ +
ℓ

2
)w′v′dx, for all v ∈ H1

0 (Ω).

The nonlinear mapping R : H1
0 (Ω)→ [H1

0 (Ω)]
′ is then defined by

(26) Rw := N (u + w)− Lw.
Remark 4.1. Noting that L is linear and R is nonlinear, it follows from identity
(23) that L is the linearization of N at u. In fact, L is the linear operator associated
with the variational form for the differential operator

Luw := − d

dx
[K(u′(x) +

ℓ

2
)
d

dx
w(x)], for w ∈ C2(Ω),

with the homogeneous Dirichlet boundary condition.

We introduce a linearization Lh : Vh → V ′
h of Nh defined by (20) at u by

(27) 〈Lhw, v〉 :=
∫

Ω

K(u′ +
ℓ

2
)w′v′dx, for all v ∈ Vh.

We remark that Lh is the discretization of the linear operator L by applying the
standard Lagrange finite elements. This important fact will lead to the stability
analysis of proposed finite element method (21).

Based on the above fundamental split form of operator (18), we conduct the
convergence analysis for proposed finite element method (21) by using the Banach
fixed point theorem. To this end, we introduce some notation. Since Lh defined
by (27) is the restriction of L to Vh, we let L−1

h : V ′
h → Vh denote its inverse. We

define the mappingM : H1
0 (Ω)→ Vh as

(28) M := L−1
h (L −N ),

and letMh : Vh → Vh be the restriction ofM to Vh. That is,

(29) Mh := Idh − L−1
h Nh,

where Idh is the identity map on Vh.
We turn to the investigation of equation (21). The existence of a solution of

equation (21) near u will be proved by establishing a fixed point for Mh in a small
ball centered at uc,h, where uc,h ∈ Vh is an elliptic projection of u defined by

(30) uc,h := L−1
h Lu,

or equivalently,

〈Luc,h, v〉 = 〈Lu, v〉 , for all v ∈ Vh.
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We define the corresponding discrete negative norm as

(31) ‖q‖−1,h := sup
06=v∈Vh

〈q, v〉
‖v‖1

, for q ∈ V ′
h.

Remark 4.2. In order to avoid the proliferation of constants, we adopt the nota-
tion A . B to represent the relation A ≤ constant ×B, where the constant is
independent of the mesh parameter h.

Remark 4.3. Based on the regularity of the solution u of prescribed curvature
problem (1) in Proposition 2.5, for an integer s > 2, the regularity condition u ∈
Hs(Ω) is assumed throughout this paper.

Suppose that k is the polynomial degree of the finite element space Vh. Let
t := min{k + 1, s}. The requirement k ≥ 2 is assumed throughout the paper.

Remark 4.4. By approximation properties of Vh [4, 5], if u ∈ Hs(Ω) then there
exists v ∈ Vh such that

(32) ‖u− v‖1 . ht−1‖u‖t.
We next establish that finite element scheme (21) inherits a stability from its

linearization. We begin with an analysis of the stability of the linear operator Lh.
Lemma 4.1. If u ∈ Hs(Ω) for some s > 2 and the linear mapping Lh : Vh → V ′

h

is defined as in (27), then

(33) ‖Lhv‖−1,h . ‖v‖1, for all v ∈ Vh.

Moreover, the map Lh is invertible and

(34) ‖L−1
h q‖1 . ‖q‖−1,h, for all q ∈ V ′

h.

Proof. We prove these results by showing that the linear mapping Lh is continuous
and coercive on Vh. If u ∈ Hs(Ω) for some s > 2, then u ∈ W 1

∞(Ω) by a Sobolev
inequality. According to definition (27) of linear mapping Lh and the boundedness
of K(u′ + ℓ

2 ), by the Cauchy-Schwarz inequality, there exists a positive constant η
such that

〈Lhw, v〉 ≤ η‖w‖1‖v‖1, for all w, v ∈ Vh,

which implies the continuity of the operator Lh. In addition, by using the definition
of discrete negative norm (31) directly, we may obtain the desired result (33).

It remains to prove (34). We recall the Poincaré inequality [5, 9]

(35) ‖v‖1 . |v|1, for all v ∈ H1
0 (Ω).

By definition (25) of linear operator L and applying the Poincaré inequality (35),
there exists a positive constant λ such that

〈Lw,w〉 ≥ λ‖w‖21, for all w ∈ H1
0 (Ω).(36)

This is the coercivity of the operator L and thus, it implies the coercivity of the
operator Lh. Consequently, Lh is invertible, and for any q ∈ V ′

h, there exists a
v such that Lhv = q. Therefore, combining estimate (36) with the definition of
discrete negative norm (31), we have that

‖L−1
h q‖1 = ‖L−1

h (Lhv)‖1 . ‖q‖−1,h,

which completes the proof of (34). �
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Remark 4.5. By Lemma 4.1, uc,h and the operatorsM,Mh are both well-defined
due to the stability of Lh.

We next estimate the error between u and its elliptic projection uc,h. This
estimate plays an important role in the error estimate of uh.

Lemma 4.2. If u ∈ Hs(Ω) for s > 2 and uc,h ∈ Vh is the elliptic projection of u
defined by (30), then

(37) ‖u− uc,h‖1 . ht−1‖u‖t.
Proof. We prove estimate (37) by applying Lemma 4.1. By using stability estimate
(34) of operator Lh, we have for any v ∈ Vh that

‖u− uc,h‖1 ≤ ‖u− v‖1 + ‖L−1
h Lh(v − uc,h)‖1

. ‖u− v‖1 + ‖Lh(v − uc,h)‖−1,h.

According to definition (30) of uc,h and employing stability estimate (33), we obtain
that

‖u− uc,h‖1 . ‖u− v‖1, for all v ∈ Vh.

As v is arbitrary and the assumption about u, the conclusion follows immediately
from (32). �

We next apply the Banach fixed-point theorem to study nonlinear equation (21).
To this end, we reexpress the mappingM defined in (28). By the guiding principle
(23), we have for all w ∈ H1

0 (Ω) that

Mw = L−1
h (Lw −Nw) = L−1

h (Lu−R(w − u)).

This together with the definition of uc,h gives rise to the formula

(38) Mw = uc,h − L−1
h R(w − u), for all w ∈ H1

0 (Ω),

which further implies that

(39) Mw1 −Mw2 = L−1
h (R(w2 − u)−R(w1 − u)), for all w1, w2 ∈ H1

0 (Ω).

We observe from formulas (38) and (39) that the nonlinear operator R is of im-
portance in the analysis of the mapping M, so a contraction property of R is
established in the next lemma. We rewrite the operator R in a convenient form for
our analysis. With the help of notation (2) and (24), we have for all v ∈ H1

0 (Ω)
that

(40) 〈Rw, v〉 =
∫

Ω

G(u′ + w′ +
ℓ

2
)v′dx−

∫

Ω

K(u′ +
ℓ

2
)w′v′dx−

∫

Ω

fvdx.

We now establish a contraction property of the nonlinear operator R.
Lemma 4.3. If u ∈ Hs(Ω) for s > 2, then for all w1, w2 ∈ H1

0 (Ω),

(41) ‖Rw1 −Rw2‖−1,h . h−1(‖w1‖1 + ‖w2‖1)‖w1 − w2‖1.
Proof. We use definition (40) of operator R to prove this result. For all w1, w2, v ∈
H1

0 (Ω), we consider

〈Rw1 −Rw2, v〉

=

∫

Ω

[(

G(u′ + w′
1 +

ℓ

2
)−K(u′ +

ℓ

2
)w′

1

)

−
(

G(u′ + w′
2 +

ℓ

2
)−K(u′ +

ℓ

2
)w′

2

)]

v′dx.(42)
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For simplicity of the presentation, we define the notation

A := u′ + w′
1 +

ℓ

2
, B := u′ + w′

2 +
ℓ

2
, C := u′ +

ℓ

2
.

With the above notation, we rewrite equation (42) as

〈Rw1 −Rw2, v〉

=

∫

Ω

{(

A−B√
1 +A2

− A−B√
1 + C2

)

−
[(

B√
1 +B2

− B√
1 +A2

)

− (A−B)C2

(
√
1 + C2)3

]}

v′dx.

Applying the triangle inequality to the above equation leads to

〈Rw1 −Rw2, v〉 ≤
∫

Ω

|A−B|

×
{

|A− C|+
∣

∣

∣

∣

B(A+B)√
1 +A2

√
1 +B2(

√
1 +A2 +

√
1 +B2)

− C2

(
√
1 + C2)3

∣

∣

∣

∣

}

|v′|dx.

(43)

Next, we estimate the second term in the curly brace of the right hand side of
equation (43). To this end, we define

(44) ∆1 :=
B(A+B)√

1 +A2
√
1 +B2(

√
1 +A2 +

√
1 +B2)

− C2

(
√
1 + C2)3

.

Using a splitting strategy, we rewrite ∆1 as

∆1 =
A+B√

1 +A2 +
√
1 +B2

(

B√
1 +A2

√
1 +B2

− C

(
√
1 + C2)2

)

+
C

(
√
1 + C2)2

(

A+B√
1 +A2 +

√
1 +B2

− 2C

2
√
1 + C2

)

.

Applying the triangle inequality to the above equation leads to
(45)

|∆1| ≤
∣

∣

∣

∣

B√
1 +A2

√
1 +B2

− C

(
√
1 + C2)2

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

A+B√
1 +A2 +

√
1 +B2

− 2C

2
√
1 + C2

∣

∣

∣

∣

.

We now estimate the right hand side of equation (45). For the sake of conve-
nience, we define

∆2 :=
B√

1 +A2
√
1 +B2

− C

(
√
1 + C2)2

, ∆3 :=
A+B√

1 +A2 +
√
1 +B2

− 2C

2
√
1 + C2

.

Using the splitting strategy and the triangle inequality, we have that

|∆2| ≤
∣

∣

∣

∣

B − C√
1 +A2

√
1 +B2

+

(

C√
1 +A2

√
1 +B2

− C

(
√
1 + C2)2

)∣

∣

∣

∣

≤|B − C|+ |C|
∣

∣

∣

∣

1√
1 +A2

(

1√
1 +B2

− 1√
1 + C2

)

+
1√

1 + C2

(

1√
1 +A2

− 1√
1 + C2

)∣

∣

∣

∣

≤|C||A− C|+ (|C|+ 1)|B − C|.
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Likewise, we have that

|∆3| =
∣

∣

∣

∣

A+B − 2C√
1 +A2 +

√
1 +B2

+

(

2C√
1 +A2 +

√
1 +B2

− 2C

2
√
1 + C2

)∣

∣

∣

∣

≤ 1

2
(|A− C|+ |B − C|) + 2

∣

∣

∣

∣

∣

C(2
√
1 + C2 −

√
1 +A2 −

√
1 +B2)

(
√
1 +A2 +

√
1 +B2)

√
1 + C2

∣

∣

∣

∣

∣

≤ 3

2
|A− C|+ 3

2
|B − C|.

Substituting the above two estimates into the right hand side of (45) yields that

|∆1| ≤
(

|C|+ 3

4

)

|A− C|+
(

|C|+ 7

4

)

|B − C|.

Sequentially, substituting the estimate above into the right hand side of (43), we
obtain that

〈Rw1 −Rw2, v〉 ≤
(

|C|+ 7

4

)∫

Ω

|A−B|(|A− C|+ |B − C|)|v′|dx.

By the assumption on u, we have that u ∈ W 1
∞(Ω). It implies that C is bounded.

Recall the Sobolev inequality [5]

(46) ‖w‖1∞ . ‖w‖2, for all w ∈ H2(Ω),

and the inverse estimate [5]

(47) ‖v‖2 . h−1‖v‖1, for all v ∈ Vh.

By employing the triangle inequality and the Cauchy-Schwarz inequality, we obtain
that

〈Rw1 −Rw2, v〉 . (‖w1‖1 + ‖w2‖1)‖w1 − w2‖1‖v′‖∞.

Using estimates (46) and (47), we have that

〈Rw1 −Rw2, v〉 . h−1(‖w1‖1 + ‖w2‖1)‖w1 − w2‖1‖v‖1.
Using definition (31) of the discrete negative norm, we obtain the desired estimate
(41). �

We next translate the contraction property of R established in Lemma 4.3 to
that ofM.

Lemma 4.4. If u ∈ Hs(Ω) for some s > 2, then for all w1, w2 ∈ H1
0 (Ω),

(48) ‖Mw1 −Mw2‖1 . h−1(‖u− w1‖1 + ‖u− w2‖1)‖w1 − w2‖1.
Proof. Estimate (48) is immediately obtained by combining contraction property
(41) of R proved in Lemma 4.3, formula (39) of the mapping M and stability
estimate (34) of the operator Lh. �

We now establish the contraction property ofMh on the discrete closed ball of
Vh with center uc,h and radius ρ, defined by

(49) Bρ(uc,h) := {v ∈ Vh; ‖uc,h − v‖1 ≤ ρ}.
Lemma 4.5. If u ∈ Hs(Ω) for some s > 2, then there exists a constant C1 > 0
such that for all v1, v2 ∈ Bρ(uc,h),

(50) ‖Mhv1 −Mhv2‖1 ≤ C1h
−1(ρ+ ht−1‖u‖t)‖v1 − v2‖1.
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Proof. We establish (50) by employing Lemma 4.4. SinceMh is the restriction of
M to Vh, we have for all v1, v2 ∈ Bρ(uc,h) that

‖Mhv1 −Mhv2‖1 = ‖Mv1 −Mv2‖1.
This combined with Lemma 4.4 yields for all v1, v2 ∈ Bρ(uc,h) that

‖Mhv1 −Mhv2‖1 . h−1(‖u− v1‖1 + ‖u− v2‖1)‖v1 − v2‖1.
Therefore, by the triangle inequality and definition (49) of the discrete closed ball
Bρ(uc,h), we observe for all v1, v2 ∈ Bρ(uc,h) that

‖Mhv1 −Mhv2‖1 . h−1(‖uc,h − v1‖1 + ‖uc,h − v2‖1 + 2‖u− uc,h‖1)‖v1 − v2‖1
. h−1(ρ+ ‖u− uc,h‖1)‖v1 − v2‖1.

We now obtain the desired result by combining the above estimate and error esti-
mate (37) of Lemma 4.2 between u and its elliptic projection uc,h. �

Next, we need to estimate the error between uc,h and the image of the ball
Bρ(uc,h) under the mappingMh.

Lemma 4.6. If u ∈ Hs(Ω) for some s > 2, then there exists a constant C2 > 0
such that for all v ∈ Bρ(uc,h)

(51) ‖uc,h −Mhv‖1 ≤ C2h
−1(ρ2 + h2(t−1)‖u‖2t ).

Proof. BecauseMh is the restriction of the mappingM on Vh, using formula (38)
of the mappingM, we observe for all v ∈ Bρ(uc,h) that

uc,h −Mhv = uc,h −Mv = L−1
h R(v − u).

Using stability result (34) of Lh and using definition (26) of R with the fact that
R(0) = 0, by applying Lemma 4.3, we have for all v ∈ Bρ(uc,h) that

‖uc,h −Mhv‖1 . ‖R(v − u)−R(0)‖ . h−1‖u− v‖21.
Therefore, by using the definition of H1 norm and employing Lemma 4.2, by defi-
nition (49) of the ball Bρ(uc,h), we have for all v ∈ Bρ(uc,h) that

‖uc,h −Mhv‖1 . h−1(‖u− uc,h‖21 + ‖uc,h − v‖21) . h−1(h2(t−1)‖u‖2t + ρ2),

yielding the desired result. �

With the technical lemmas established above, we next prove our main result
about the well-posedness of finite element method (21) and the H1 error estimate
of the approximate solution. This is done by establishing the fixed point of the
mapping Mh in a small ball centered at uc,h. We shall use the following Banach
fixed-point theorem [22].

Lemma 4.7. Let (X, d) be a non-empty complete metric space. If T : X → X is a

contraction mapping on X, that is, there is a nonnegative real number q < 1 such

that for all x, y ∈ X

d(T (x), T (y)) ≤ qd(x, y),

then T admits a unique fixed-point in X.

We are now ready to prove our main theorem of this paper.

Theorem 4.8. If u ∈ Hs(Ω) for some s > 2, then there exists an h0 > 0 such that

for each h ≤ h0 the finite element method (21) has a unique solution uh, and

(52) ‖u− uh‖1 . ht−1‖u‖t.
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Proof. We shall use the Banach fixed point theorem (Lemma 4.7) to show that
there exists a unique solution uh for finite element method (21). For this purpose,
we shall identify a fixed-point ofMh in a small ball centered at uc,h. This requires
to prove thatMh is indeed a contraction mapping.

Noticing that t = min{k + 1, s} > 2, we choose h0 > 0 such that for all h ≤ h0

(53) δ := 2h−1 max{C1, C2}ht−1‖u‖t < 1,

where C1, C2 are constants that appear in Lemmas 4.5 and 4.6, respectively. Fix
h ≤ h0 and set

(54) ρ0 := ht−1‖u‖t.
According to Lemma 4.6, we have for all v ∈ Bρ0

(uc,h) that

‖uc,h −Mhv‖1 ≤ C2h
−1(ρ20 + h2(t−1)‖u‖2t ) = (2h−1C2h

t−1‖u‖t)ρ0 ≤ ρ0.

This yields that Mh maps Bρ0
(uc,h) into Bρ0

(uc,h). Furthermore, we shall prove
Mh defined in a small ball centered at uc,h with radius ρ0 is actually a contraction
mapping. Applying Lemma 4.5 with the fact (53) and (54) for all v1, v2 ∈ Bρ0

(uc,h),
we obtain that

‖Mhv1 −Mhv2‖1 ≤ C1h
−1(ρ0 + ht−1‖u‖t)‖v1 − v2‖1

= (2h−1C1h
t−1‖u‖t)‖v1 − v2‖1

≤ δ‖v1 − v2‖1.
Hence, by employing Lemma 4.7, Mh has a unique fixed point uh ∈ Bρ0

(uc,h),
which is a unique solution of (21).

It remains to establish error estimate (52). By applying Lemma 4.2 with uh ∈
Bρ0

(uc,h) and the definition (54) of ρ0, we have that

‖u− uh‖1 ≤ ‖u− uc,h‖1 + ‖uc,h − uh‖1 . ht−1‖u‖t.
This gives the optimal H1 error estimate. �

Next, we establish the L2 error estimate of the proposed finite element method.

Theorem 4.9. If u ∈ W 2
∞(Ω) and uh is the solution of the finite element method

(21), then

(55) ‖u− uh‖0 . ht‖u‖t.
Proof. In order to derive the optimal L2 error estimate for finite element method
(21), we use the Nitsche technique. Let ϕ ∈ H1

0 (Ω) be the solution to the following
auxiliary problem

−(K(u′ +
ℓ

2
)ϕ′)′ = u− uh, in Ω(56a)

ϕ = 0, on ∂Ω.(56b)

Following above auxiliary equation (56) and definition (25) of the linear operator
L, we obtain that

(57) ‖u− uh‖20 = −(u− uh, (K(u′ +
ℓ

2
)ϕ′)′) = 〈L(u− uh), ϕ〉 .

We further rewrite (57) as

(58) ‖u− uh‖20 = 〈L(u − uh), ϕ− ϕh〉+ 〈L(u− uh), ϕh〉 .
We next prove error estimate (55) by estimating the two terms in the right hand
side of above equation (58).
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We first consider the first term of equation (58). By definition (31) of the discrete
negative norm, we obtain that

(59) 〈L(u− uh), ϕ− ϕh〉 ≤ ‖L(u− uh)‖−1,h‖ϕ− ϕh‖1.
According to the hypothesis of u, we observe that u′ ∈ W 1

∞(Ω). Hence, by the
elliptic regularity theory [17], we find that

(60) ‖ϕ‖2 . ‖u− uh‖0.
Let ϕh ∈ Vh be chosen so that

(61) ‖ϕ− ϕh‖1 . h‖ϕ‖2 . h‖u− uh‖0.
By applying stability estimate (33) of Lh and above estimate (61) to (59), we have
that

(62) 〈L(u− uh), ϕ− ϕh〉 . h‖u− uh‖1‖u− uh‖0.
We now consider the second term of equation (58). We need a sharper estimate

about it, by using definition (30) of the elliptic projection uc,h, we have that

(63) 〈L(u− uh), ϕh〉 = 〈Lh(uc,h − uh), ϕh〉 .
Recalling formula (38) of the mappingM, letting w := uh in (38) and noticing that
Mh is a restriction ofM on Vh, we obtain that

Mhuh = uc,h − L−1
h R(uh − u).

This yields that

(64) R(uh − u) = Lh(uc,h −Mhuh).

With above equation (64), using the fact in the proof of Theorem 4.8 that uh is the
fixed point ofMh, we have that

(65) R(uh − u) = Lh(uc,h − uh).

Applying above equation (65) to equation (63) yields that

(66) 〈L(u− uh), ϕh〉 = 〈R(uh − u), ϕh〉 .
Definition (26) of R with the fact that R(0) = 0 ensures that

〈L(u− uh), ϕh〉 ≤ ‖R(uh − u)−R(0)‖−1,h‖ϕh‖1.
By estimate (41) in Lemma 4.3, we obtain that

(67) 〈L(u − uh), ϕh〉 . h−1‖u− uh‖21‖ϕh‖1.
It suffices to estimate ‖ϕh‖1. Based on the definition of the Sobolev norm in the

last section, we have that

‖ϕ‖1 . ‖ϕ‖2.
Together with estimates (60) and (61), we obtain that

(68) ‖ϕh‖1 . ‖ϕ‖1 + ‖ϕ− ϕh‖1 . ‖u− uh‖0.
Combining estimates (68) and (67), we obtain that

(69) 〈L(u − uh), ϕh〉 . h−1‖u− uh‖21‖u− uh‖0.
Consequently, substituting estimates (62) and (69) into the right hand side of

equation (58) and employing H1 error estimate (52), we conclude the following
estimate

(70) ‖u− uh‖0 . ht‖u‖t + h2t−3‖u‖2t .
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Under the assumption of u, with the fact that t = min{k + 1, s} ≥ 3, we have the
optimal order of L2 error estimate that

‖u− uh‖0 . ht‖u‖t.
�

5. Newton Iteration

In this section, we describe the Newton iteration algorithm for solving nonlinear
equation (21) and present its convergence analysis.

We now describe the Newton iteration for solving finite element method (21).
Given an initial guess u0 ∈ Vh, the Newton approximation to uh forms a sequence
{uk}∞k=0 ⊂ Vh that satisfies

(71) DNh[uk](uk+1 − uk) = −Nhuk,

where DNh : Vh → L(Vh;V
′
h) denotes the Gâteaux derivative of Nh, that is,

(72) 〈DNh[q](w), v〉 :=
∫

Ω

K(q′ +
ℓ

2
)w′v′dx, for all q, w, v ∈ Vh.

Here, L(Vh;V
′
h) denotes the space of linear mapping from Vh to V ′

h. Together with
equation (20), by using notation (2), equation (71) can be written in a concrete
form

∫

Ω

K(u′
k +

ℓ

2
)w′v′dx = −

∫

Ω

G(u′
k +

ℓ

2
)v′dx+

∫

Ω

fvdx, for all v ∈ Vh,

where w := uk+1 − uk ∈ Vh.
Next, we present finite element method (21) based on Newton iteration (71)

described above.

Algorithm 5.1. The Discrete Form

• Step 1: Set k = 0 and choose u0 ∈ Vh.
• Step 2: Compute wk ∈ Vh from the equation

(73)

∫

Ω

K(u′
k +

ℓ

2
)w′

kv
′dx = −

∫

Ω

G(u′
k +

ℓ

2
)v′dx +

∫

Ω

fvdx, for all v ∈ Vh.

• Step 3: Let uk+1 = uk + wk. Set k ← k + 1 and go back to Step 2 until a
tolerance condition is satisfied.

Step 2 in Algorithm 5.1 requires solving wk ∈ Vh from integral differential equa-
tion (73). We shall use the Galerkin principle with the Lagrange finite elements to
discretize the integral differential equation.

Next, we establish the convergence result concerning the Newton iteration algo-
rithm. To this end, we investigate

(74) G[q1; q2, w] := DNh[q1](w)−DNh[q2](w),

where q1, q2, w ∈ Vh.

Proposition 5.1. If DNh is defined as (72), then for all q1, q2, w ∈ Vh

(75) ‖G[q1; q2, w]‖0 . h−1‖q1 − q2‖1‖w‖1.
Proof. By using the Cauchy-Schwarz inequality, for all q1, q2, w ∈ Vh, we obtain
that

‖G[q1; q2, w]‖0 .

∫

Ω

|K(q′1 +
ℓ

2
)−K(q′2 +

ℓ

2
)||w′||v′|dx . ‖q′1 − q′2‖∞‖w‖1.
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With above estimate, using estimates (46) and (47), we have that

‖G[q1; q2, w]‖0 . ‖q1 − q2‖1∞‖w‖1 . ‖q1 − q2‖2‖w‖1 . h−1‖q1 − q2‖1‖w‖1,
which yields the desired result. �

We now present the main result regarding the convergence of the Newton itera-
tion. We define the discrete closed ball of Vh at center uh with radius ρ by

(76) Bρ(uh) := {v ∈ Vh; ‖uh − v‖1 ≤ ρ}.
Theorem 5.2. If uh is the solution of the finite element method (21), then there

exists an h1 > 0 and ρh > 0 such that for h ≤ h1 and u0 ∈ Bρh
(uh), the sequence

generated by (71) is well-defined and

(77) ‖uk+1 − uh‖1 . h−1‖uk − uh‖21.
Proof. By using Theorem 4.8, we choose h1 := h0 such that for each h ≤ h1 the
finite element method (21) has a unique solution. For some ǫ0 > 0, we set

(78) ρh := h1+ǫ0 .

Suppose that uk ∈ Bρh
(uh), we first show that uk+1 determined by (71) is well

defined. Using definition (72) of the operator DNh and employing the Poincaré
inequality (35), we have that

(79) 〈DNh[q](w), w〉 & ‖w‖21, for all q, w ∈ Vh.

This is the coercivity of DNh and consequently, DNh is invertible. According to
Newton iteration (71), uk+1 is well defined.

Next, we prove estimate (77). For this purpose, we rewrite equation (71). Ac-
cording to the fact that uh is the solution of finite element method (21), we obtain
that

DNh[uk](uk+1 − uh) = DNh[uk](uk − uh)−Nhuk

= DNh[uk](uk − uh)− (Nhuk −Nhuh).

With above equation, by using (74) and employing the mean value theorem, there
exists a θ ∈ (0, 1) such that

(80) DNh[uk](uk+1 − uh) = G[uk; θ(uk − uh) + uh, uk − uh].

Following estimate (79), we obtain that

(81) ‖w‖1 . ‖DNh[q](w)‖0, for all q, w ∈ Vh.

Below, we use estimate (81) and equation (80) to prove (77). By using estimate
(81), we obtain that

(82) ‖uk+1 − uh‖1 . ‖DNh[uk](uk+1 − uh)‖0.
Substituting equation (80) into the right hand side of inequality (82) yields the
estimate

‖uk+1 − uh‖1 . ‖G[uk; θ(uk − uh) + uh, uk − uh]‖0.
By employing Proposition 5.1, we have for the θ ∈ (0, 1) that

‖uk+1 − uh‖1 . h−1‖(1− θ)(uk − uh)‖1‖uk − uh‖1 . h−1‖uk − uh‖21,
yields the desired result (77). �

As a consequence of estimate (77) in Theorem 5.2, uk ∈ Bρh
(uh) for all k ≥ 1

provided u0 ∈ Bρh
(uh).
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6. Numerical Experiments

In this section, we perform numerical experiments to verify the approximation
accuracy of proposed finite element method (21).

In the following examples, we choose a positive integer N and use Algorithm 5.1
with a uniform partition of the Ω with h := 2

N+1 . We apply the shooting method

[8, 34] to prescribed curvature problem (1) and use the resulting solution as an
initial guess. For the choice of bases for the proposed finite element method, we
choose the Lagrange linear and quadratic polynomials bases. Notice from Theorems
4.8 and 4.9, to guarantee convergence, we require the degree of polynomials used
in the proposed methods to be at least 2. In the numerical experiments presented
in this section, we also include the linear elements even though they do not meet
the theoretical requirement.

Specifically, the piecewise linear basis functions ϕj ∈ Vh, j = 1, 2, . . . , N are
defined by

ϕj(x) :=











1 + h−1(x− xj), xj−1 ≤ x ≤ xj

1− h−1(x− xj), xj ≤ x ≤ xj+1

0, else

and the piecewise quadratic basis functions ϕj , ϕj+ 1

2

∈ Vh, j = 1, 2, . . . , N are

defied by

ϕj(x) :=











(2h−1(x− xj) + 1)(h−1(x− xj) + 1), xj−1 ≤ x ≤ xj

(2h−1(x− xj)− 1)(h−1(x− xj)− 1), xj ≤ x ≤ xj+1

0, else

ϕj+ 1

2

(x) :=

{

4h−1(x− xj)(1 − h−1(x− xj)), xj ≤ x ≤ xj+1

0, else

where xj+ 1

2

:= xj +
1
2h.

Below, we consider three numerical examples and present their numerical results
in six tables. The convergence order of the approximate solution with respect to
the L2, H1 norms reported in the tables is computed by

log2
‖u− uh‖
‖u− uh/2‖

,

where ‖ · ‖ may be the L2 norm or the H1 norm.

Table 1. Numerical results of Example 1 by using the linear basis.

N ‖u− uh‖0 rate ‖u− uh‖1 rate
7 8.529E-03 8.756E-02
15 2.335E-03 1.869 4.596E-02 0.930
31 6.042E-04 1.950 2.340E-02 0.974
63 1.526E-04 1.985 1.176E-02 0.992
127 3.826E-05 1.996 5.891E-03 0.998
255 9.573E-06 1.999 2.946E-03 0.999
511 2.394E-06 2.000 1.473E-03 1.000
1023 5.987E-07 2.000 7.367E-04 1.000
2047 1.496E-07 2.001 3.683E-04 1.000
4095 3.737E-08 2.001 1.842E-04 1.000
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Table 2. Numerical results of Example 1 by using the quadratic basis.

N ‖u− uh‖0 rate ‖u− uh‖1 rate
7 4.152E-04 1.155E-02
15 6.360E-05 2.707 3.757E-03 1.620
31 8.585E-06 2.889 1.048E-03 1.843
63 1.099E-06 2.966 2.713E-04 1.949
127 1.383E-07 2.991 6.848E-05 1.986
255 1.731E-08 2.998 1.716E-05 1.996
511 2.165E-09 2.999 4.293E-06 1.999
1023 2.707E-10 3.000 1.073E-06 2.000
2047 3.384E-11 3.000 2.684E-07 2.000
4095 4.229E-12 3.000 6.709E-08 2.000

Example 1.

We solve problem (1) with ℓ := 0 and data

f(x) :=
3

8
(1− 39

64
x2)−3/2, x ∈ Ω.

We can verify by Theorem 2.4 that this boundary value problem is solvable. Its
exact solution is given by

u(x) :=
1

2
(1 − 3

4
x2)1/2 − 1

4
.

We apply Algorithm 5.1 based on the Galerkin method via the Lagrange linear
and quadratic polynomials basis to solve the above problem. We report numerical
results of this example in Tables 1 and 2, respectively, for the cases using the linear
and quadratic bases.

Table 3. Numerical results of Example 2 by using the linear basis.

N ‖u− uh‖0 rate ‖u− uh‖1 rate
7 1.211E-02 1.263E-01
15 3.060E-03 1.985 6.318E-02 0.999
31 7.669E-04 1.997 3.159E-02 1.000
63 1.918E-04 1.999 1.580E-02 1.000
127 4.797E-05 2.000 7.899E-03 1.000
255 1.199E-05 2.000 3.949E-03 1.000
511 2.998E-06 2.000 1.975E-03 1.000
1023 7.495E-07 2.000 9.874E-04 1.000
2047 1.874E-07 2.000 4.937E-04 1.000
4095 4.684E-08 2.000 2.468E-04 1.000

Example 2.

We solve problem (1) with ℓ := 2
3 and data

f(x) := −K(
1

3
x3 + x2)x(x + 2), x ∈ Ω,

where K is defined by (24). The exact solution of this problem is given by

u(x) :=
1

12
x4 +

1

3
x3 +

1

4
.
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Table 4. Numerical results of Example 2 by using the quadratic basis.

N ‖u− uh‖0 rate ‖u− uh‖1 rate
7 2.731E-04 7.683E-03
15 3.163E-05 3.110 1.907E-03 2.010
31 3.866E-06 3.032 4.758E-04 2.003
63 4.805E-07 3.008 1.189E-04 2.001
127 5.997E-08 3.002 2.972E-05 2.000
255 7.494E-09 3.000 7.429E-06 2.000
511 9.366E-10 3.000 1.857E-06 2.000
1023 1.171E-10 3.000 4.643E-07 2.000
2047 1.463E-11 3.001 1.161E-07 2.000
4095 1.829E-12 3.000 2.902E-08 2.000

We solve this problem by using Algorithm 5.1 with the Lagrange linear and qua-
dratic polynomials bases. We report numerical results for this example in Tables 3
and 4, respectively, for the cases using the linear and quadratic bases.

Example 3.

We solve problem (1) with ℓ := 1
8 and data

f(x) := −K(
11

8
x3 − 9

16
x+

1

16
)(
33

8
x2 − 9

16
), x ∈ Ω.

The exact solution of this problem is given by

u(x) =
11

32
x4 − 9

32
x2 +

1

16
x.

Again, we solve this problem by using Algorithm 5.1 with the Lagrange linear and
quadratic polynomials bases. We report numerical results for this example in Tables
5 and 6, respectively, for the cases using the linear and quadratic bases.

Table 5. Numerical results of Example 3 by using the linear basis.

N ‖u− uh‖0 rate ‖u− uh‖1 rate
7 1.473E-02 1.480E-01
15 3.925E-03 1.908 7.497E-02 0.981
31 9.965E-04 1.978 3.758E-02 0.996
63 2.501E-04 1.994 1.880E-02 0.999
127 6.258E-05 1.999 9.402E-03 1.000
255 1.565E-05 2.000 4.701E-03 1.000
511 3.913E-06 2.000 2.351E-03 1.000
1023 9.781E-07 2.000 1.175E-03 1.000
2047 2.445E-07 2.000 5.877E-04 1.000
4095 6.113E-08 2.000 2.938E-04 1.000

We observe that computed convergence rates reported in the above three ex-
amples conform the theoretical estimates presented in Theorems 4.8-4.9 for the
quadratic case. For the linear case, even though it does not meet the hypothesis
of Theorems 4.8-4.9, it seems from the numerical results that its convergent rates
enjoy O(h) and O(h2) for the H1 norm and the L2 norm, respectively.



FEM FOR 1D PRESCRIBED CURVATURE PROBLEM 667

Table 6. Numerical results of Example 3 by using the quadratic basis.

N ‖u− uh‖0 rate ‖u− uh‖1 rate
7 5.909E-04 1.573E-02
15 6.726E-05 3.110 3.928E-03 2.010
31 8.046E-06 3.032 9.810E-04 2.003
63 9.933E-07 3.008 2.452E-04 2.001
127 1.238E-07 3.002 6.129E-05 2.000
255 1.546E-08 3.000 1.532E-05 2.000
511 1.932E-09 3.000 3.831E-06 2.000
1023 2.415E-10 3.000 9.576E-07 2.000
2047 3.018E-11 3.001 2.394E-07 2.000
4095 3.773E-12 3.000 5.985E-08 2.000

7. Conclusion

In this paper, we have developed the finite element method for solving the Dirich-
let boundary value problem of the one-dimensional prescribed curvature equation.
We have established the optimal order of convergence for the proposed method in
both the H1 morn and the L2 morn. The convergence order is verified by numerical
examples, where the resulting nonlinear system is solved by the Newton iteration.
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