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STOCHASTIC SPLINE-COLLOCATION METHOD FOR

CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED

BY RANDOM ELLIPTIC PDE

BENXUE GONG, LIANG GE, TONGJUN SUN, WANFANG SHEN, AND W.B. LIU

Abstract. In this paper, we investigate a stochastic spline-collocation approximation scheme
for an optimal control problem governed by an elliptic PDE with random field coefficients. We
obtain the necessary and sufficient optimality conditions for the optimal control problem and
establish a scheme to approximate the optimality system through the discretization with respect
to the spatial space by finite elements method and the probability space by stochastic spline-
collocation method. We further investigate Smolyak approximation schemes, which are effective
collocation strategies for smooth problems that depend on a moderately large number of random
variables. For more general control problems where the state may be non-smooth with respect
to the random variables in some areas, we adopt a domain decomposition strategy to partition
the random space into smooth and non-smooth parts and then apply Smolyak scheme and spline
approximation respectively. A priori error estimates are derived for the state, the co-state and
the control variables. Numerical examples are presented to illustrate our theoretical results.

Key words. Random elliptic PDE, priori error estimates, stochastic spline-collocation method,
Smolyak approximation, optimal control problem, deterministic constrained control.

1. Introduction

In recent years, there are increasing interests in modeling uncertainty in many
complex physical and engineering systems, such as uncertain parameters, coeffi-
cients, forcing term, and boundary conditions. It is well known that these systems
can be described by stochastic partial differential equations(SPDEs). Since sto-
chastic PDEs are conveniently used in many areas, such as fluid flows in porous
media,chemistry, transport of pollutants in groundwater and oil recovery processes,
the numerical solutions for Stochastic PDEs have been a main subject of growing
interest in the scientific community([4]-[22]).

The well-known Monte Carlo (MC) method is the most commonly used method
for simulating stochastic PDEs and for dealing with the statistic characteristics of
the solution [4, 5]. Although MC method only needs to do repetitive deterministic
simulations, it is a rather computationally expensive method for the reason that
the statistic convergence rate is relatively slow, especially when there are large
amounts of computations in the deterministic systems. Another alternative to the
Monte Carlo method is the so-called stochastic Galerkin method[9, 15] for solving
stochastic PDEs with random fields input data. This method allows us to utilize
standard approximations in space(finite elements, finite volumes, spectral or h-p
finite elements, etc.) and polynomial approximation in the probability domain,
either on full polynomial spaces [16, 20, 21], tensor product polynomial spaces
[17, 18, 19], or on piecewise polynomial spaces [6, 7, 8, 17]. By applying stochastic
Galerkin method, we can utilize the regularity of the solution and acquire faster
convergence rates. However, in general, this technique requires to solve a system
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of equations that couples all degrees of freedom when approximating the stochastic
systems.

Due to this issue, the stochastic collocation method has gained much attention
recently in the computational community [10, 11, 12, 13, 20], which was origi-
nally introduced in [10,20]. In principle, stochastic collocation method consists of a
Galerkin approximation in physical space and a collocation in the zeros of suitable
tensor product orthogonal polynomials (Gauss points) in the probability space[10].
Compared with stochastic Galerkin methods, this method solves uncoupled deter-
ministic PDEs at the collocation points that are trivially parallelizable, as in the
Monte Carlo method. This method also can treat efficiently the case of dependent
random variables by introducing an auxiliary density ρ̂. And this method deals
easily with unbounded random variables such as Gaussian or exponential variables.
Hence, stochastic collocation is an attractive method for computing solutions of
stochastic PDEs with random field input data.

In many applications, optimization of physical and engineering systems can be
formulated as optimal control problems that are constrained by PDEs. Compu-
tational methods for deterministic optimal control problems constrained by PDEs
have been well developed and investigated for several decades([1]-[3],[23]-[29]). Re-
cently efficient numerical methods for optimal control problem governed by stochas-
tic PDEs are becoming a new hot topic. Comparison with the deterministic optimal
control, efficient computation of stochastic optimal control problems constrained by
stochastic PDEs is still in its infancy, see the very recent work([30]-[37]). Based
on the work([6]-[22]), [30] dealed with optimal control governed by random steady
PDEs with deterministic Neumann boundary control, and the existence of an op-
timal solution and of a Lagrange multiplier were demonstrated. The authors also
proposed the stochastic finite element solution of the optimality system and esti-
mated its error through the discretizations with respect to both spatial and random
parameter spaces. In [31], one-shot stochastic finite element methods were used to
find approximate solutions with ‘pure’ stochastic control function as well as ‘semi’
stochastic control function for an optimal control problem constrained by stochastic
steady diffusion problems. In [32] and [33], stochastic optimal control governed by
stochastic elliptic PDEs with deterministic distributed control function were intro-
duced, and the authors proved the existence of the optimal solution, established
the validity of the Lagrange multiplier rule and obtained stochastic optimality sys-
tem. Computationally, the numerical solutions of the optimality system were given
by the stochastic finite element method. In [34], the author proposed framework
combines space-time multigrid methods with sparse-grid collocation techniques to
solve nonlinear parabolic optimal control problems with random coefficients for un-
constrained control. In [35], we studied an optimal control problem governed by an
elliptic PDE with random field in coefficients and constrained control, and obtained
the necessary and sufficient optimality conditions by applying the well-known Li-
ons’ lemma. Then a stochastic finite element approximation scheme is applied and
the a priori error estimate for the state, the co-state and the control variables is
derived. In [36] a stochastic finite element approximation scheme and the a priori
error estimate for the state, the co-state and the control variables were developed
for an optimal control problem governed by an elliptic integro-differential equation
with random coefficients. Furthermore in [37], stochastic finite element is applied
to an optimal control problem governed by a parabolic PDE with random field
in its coefficients, and a priori error estimates for the state, the co-state and the
control variables have been given. However, to our best knowledge, there has been
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a lack of results about stochastic collocation approximation for optimal control
problem governed by random elliptic PDE with constrained control and possible
non-smoothness in the probability space.

In this paper, we develop a stochastic spline-collocation method for an optimal
control problem governed by an elliptic PDE with random field in its coefficients.
We divide the computational area of probability space into two parts and apply
Smolyak and lower order spline approximations in different areas. The outline of
the following paper is as follows: in Section 2, we introduce some function spaces
and the stochastic optimal control problem. By applying the well-known Lions’
lemma to the optimal control problem, we obtain the necessary and sufficient opti-
mality conditions. In Section 3, we introduce the stochastic collocation method and
Smolyak approximation schemes for the optimal control problem. We give a pri-
ori error estimates for the state, the co-state and the control variables. Numerical
examples are presented to illustrate our theoretical results in Section 4.

2. Model problem

2.1 Function spaces and notations. LetD ⊂ Rd be a convex bounded polygonal
spatial domain with boundary ∂D and 1 ≤ d ≤ 3. Denote by B(D) the Borel σ-
algebra generated by the open subset of D. Let (Ω,F ,P) be a complete probability
space, where Ω is a set of outcomes, F is a σ-algebra of events and P : F → [0, 1]
is a probability measure. Let ξ = ξ(ω) = (ξ1(ω), · · · , ξN (ω)) with independent
components ξi(ω), i = 1, · · · , N ∈ N. Let Γi = [ai, bi] = ξi(Ω) ⊂ R be a bounded
interval for i = 1, · · · , N and ρi : Γi → R+ be the probability density functions of
the random variables ξi(ω), ω ∈ Ω. Then we can use the joint probability density

function ρ(ξ) =
∏N

i=1 ρi(ξi) for random vector ξ with the support Γ =
∏N

i=1 Γi ⊂
RN . On Γ, we have the probability measure ρ(ξ)dξ.

Remark (unbounded random variables). By using a similar approach in [10],
we can deal with unbounded random variables, such as Gaussian or exponential
ones. For simplicity, here we only focus our study on bounded random variables.

Let L2
ρ(Γ) denote the probabilistic Hilbert space[38], in which the random pro-

cesses based upon the random variables ξ have finite second moments. The inner
product of this Hilbert space is given by

(X,Y )L2
ρ(Γ)

=

∫

Γ

X(ξ)Y (ξ)ρ(ξ)dξ, ∀ X, Y ∈ L2
ρ(Γ),

where we have used independence of the random variables to allow us to write the
measure as product of measures in each random direction. We similarly define the
expectation of a random process X ∈ L2

ρ(Γ) as

E[X(ξ)] =

∫

Γ

X(ξ)ρ(ξ)dξ,

and we refer to the expectation of the powers E[X i(ξ)] as the ith moment of the
random process.

Additionally, we define the mapping f : (x, ξ) ∈ D×Γ → R to be a set of random
processes, which are indexed by the spatial position x ∈ D. Such a set of processes
is referred to as a random field [39] and can also be interpreted as a function-valued
random variable, because for every ξ ∈ Γ the realization f(·, ξ) : D → R is a real
valued function on D.

For a vector-space W on D, let the class L2
ρ(Γ;W ) denote the space of random

fields whose realizations lie in W for a.e (almost every) ξ ∈ Γ. If W is a Banach
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space, a norm on L2
ρ(Γ;W ) is induced by ||f(x, ξ)||2L2

ρ(Γ;W )) = E[‖f(x, ξ)‖2W ]; for

example, on L2
ρ(Γ;L

2(D)) we have

||f(x, ξ)||2L2
ρ(Γ;L

2(D)) = E[‖f(x, ξ)‖2L2(D)] =

∫

Γ

∫

D

(f(x, ξ))2ρ(ξ)dxdξ,

which denotes the expected value of the L2(D)-norm of the function f(x, ξ). Simi-
larly, we have the norm

||f(x, ξ)||2L2
ρ(Γ;H

1(D)) = E[‖f(x, ξ)‖2H1(D)] =

∫

Γ

∫

D

{(f(x, ξ))2+|∇f(x, ξ)|2}ρ(ξ)dxdξ.

2.2 Model problem. In this paper, we consider the following control problem
governed by a random elliptic equation with a constrained control:

(1) min
u∈K

J (u) = min
u∈K

E
[1
2

∫

D

|y − yd|2dx+
α

2

∫

D

|u|2dx
]

subject to

(2)

{
−∇ · [a(x, ξ)∇y(x, ξ)] = u(x), x ∈ D, ξ ∈ Γ,

y(x, ξ) = 0, x ∈ ∂D, ξ ∈ Γ.

where J is a cost functional, y : D̄×Γ → R is the state variable, yd : D̄×Γ → R is
a given target solution, a : D×Γ → R is a random function that will be determined
below, u : D → R is a deterministic control, α is a positive constant measuring
the importance between two terms in J . The operator ∇ means derivatives with
respect to the spatial variable x ∈ D only. Here, K is a closed convex subset in the
control space L2(D). In the following context, we will discuss some different cases
on the choice of K.

Although the objective functional J in (1) contains stochastic function y subject
to (2), its outcome is deterministic by using the expectation E. If we denote by
B(D) the Borel σ-algebra generated by the open subsets of D, then a is assumed
measurable with respect to the σ-algebras B(Γ ⊗D). To ensure regularity of the
solution y, we assume that there are positive constants amin and amax such that

(3) amin ≤ a(x, ξ) ≤ amax, a. e. (x, ξ) ∈ D × Γ.

Then, under the assumption (3), we know that there exists a unique weak solution
y for (2)[17].

In the following, we set the state space Yρ = L2
ρ(Γ;H

1
0 (D)), the control space

U = L2(D). To present the weak formulation of equation (2), we introduce the
following bilinear forms:

(4) A[y, v] =

∫

Γ

∫

D

a∇y · ∇vρdxdξ, ∀ y, v ∈ Yρ,

and

(5) [u, v] =

∫

Γ

∫

D

uvρdxdξ, ∀ u ∈ U, v ∈ Yρ,

(6) (u,w) =

∫

D

uwdx, ∀ u, w ∈ U.

Then, we can easily obtain the weak formulation of (1)-(2) as follows:

(7) min
u∈K

J (u) = min
u∈K

E
[1
2

∫

D

|y − yd|2dx+
α

2

∫

D

|u|2dx
]
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subject to

(8) A[y, v] = [u, v], ∀ v ∈ Yρ.

Under the assumption (3) and from [1, 32], we know that there is at least one
solution of (7)-(8).

2.3 Stochastic optimality system. In order to set up suitable finite element
approximation of (7)-(8) and obtain the error estimates, it is essential to derive the
optimality conditions for the above constrained optimal control problem. In [32, 33],
the authors used the infinite dimensional Lagrange multiplier theory which is quite
complex to apply to study the stochastic control problems with un-constrained
control. Furthermore, it is not trivial to extend the infinite dimensional Lagrange
multiplier theory into our cases. In this paper, we use a different approach which is
much simpler and widely used in the literature [25, 29] to study the optimal control
problem (7)-(8), and we will explain in the following.

It is well-known that according to Lions’ theorem [1], the PDE-constrained op-
timal control problem (7)-(8) has a unique minimizer , which satisfies the following
variational inequality:

(9) J ′(u)(w − u) ≥ 0, ∀ w ∈ K.

Here, the directional derivative of functional J at u ∈ K along the direction w ∈ K
is defined by

(10) J ′(u)(w) = lim
t→0+

J ′(u+ tw)− J ′(u)

t
.

Applying the above theory to our control problem, we have the following theorem:
Theorem 2.1.[35] The optimal control problem (7)-(8) has a unique solution

(y, u) ∈ Yρ×K. Furthermore, a pair (y, u) is the solution of (7)-(8) iff there is a co-
state variable p ∈ Yρ, such that the triplet (y, p, u) satisfies the following optimality
system:

(11)





A[y, v] = [u, v], ∀ v ∈ Yρ,

A[p, q] = [y − yd, q], ∀ q ∈ Yρ,

[p+ αu,w − u] ≥ 0, ∀ w ∈ K ⊂ U.

It is known that the inequality in (11) is just the necessary and sufficient opti-
mality condition.

The explicit solution of the variational inequality in (11) depends heavily on the
choice of the joint probability density ρ and the convex set K. In the simple case,
if the joint probability density ρ is uniform on Γ, we can have the following explicit
solutions for some cases[1, 25]. For example,

Case I: Let K be given by

(12) K = {u ∈ L2(D) : u(x) ≥ 0, a.e. x ∈ D}.
Then, the solution is

(13) u(x) = max
{
0,− 1

α
E[p(x, ξ)]

}
, a.e. x ∈ D.

Case II: Let K be given by

(14) K = {u ∈ L2(D) :

∫

D

u(x) ≥ 0 }.
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Then, the solution is

(15) u(x) = − 1

α
E[p(x, ξ)] +max

{
0,

1

α
Ep

}
, a.e. x ∈ D,

where Ep =

∫
D
E[p(x, ξ)]dx∫

D
dx

.

Case III: Let K be given by

(16) K = {u ∈ L2(D) : c ≤ u(x) ≤ d, a.e. x ∈ D},
where constants c, d ∈ R and c < d. Then, the solution is

(17) u(x) =





c, if E[p(x, ξ)] + αu(x) > 0,

− 1

α
E[p(x, ξ)], if E[p(x, ξ)] + αu(x) = 0,

d, if E[p(x, ξ)] + αu(x) < 0,

a.e. x ∈ D.

Also, we can rewrite the solution as

(18) u(x) = Proj[c,d]{−
1

α
E[p(x, ξ)]}, a.e. x ∈ D,

where Proj[c,d] denotes the projection mapping from R onto [c, d].

3. Stochastic spline-collocation method and Smolyak approximation

To present the discretization of the optimality system (11), a stochastic collo-
cation scheme and the Smolyak approximation scheme will be formulated in this
section. The reason for considering a spline-collocation scheme is that in general
a(x, ·) is not globally smooth, and thus we need to refine some non-smooth areas in
the sample space while applying the Smolyak approximation in the smooth areas.

3.1 Semi-discrete approximation scheme. First of all, we consider finite ele-
ment spaces defined on spatial domain D ⊂ Rd[32]. Let {Th}h>0 be a family of
regular triangulation of D such that D̄ = ∪τ∈Th

τ̄ . Let hs = maxτ∈Th
hτ , where

hτ denotes the diameter of the element τ and Nh is the number of all the nodes.
Consider two finite element spaces Vhs ⊂ H1

0 (D) and Whs ⊂ L2(D), consisting of
piecewise linear continuous functions and piecewise constants on {Th}, respectively.
LetKh = Whs∩K, then the semi-discrete scheme of optimal control problem (7)-(8)
can be formulated as follows:

(19) min
uh∈Kh

Jh(uh) = min
uh∈Kh

E
[1
2

∫

D

|yh − yd|2dx+
α

2

∫

D

|uh|2dx
]

subject to

(20) A[yh, vh] = [uh, vh], ∀ vh ∈ Vhs × L2
ρ(Γ).

Similarly, following from [1] that the optimal control problem (19)-(20) has a unique
solution (yh, uh) ∈ (Vhs ×L2

ρ(Γ))×Kh. Furthermore, a pair (yh, uh) is the solution

of (19)-(20) iff there is a co-state variable ph ∈ Vhs × L2
ρ(Γ), such that the triplet

(yh, ph, uh) satisfies the following optimality system:

(21)





A[yh, vh] = [uh, vh], ∀ vh ∈ Vhs × L2
ρ(Γ),

A[ph, v̂h] = [yh − yd, v̂h], ∀ v̂h ∈ Vhs × L2
ρ(Γ),

[ph + αuh, wh − uh] ≥ 0, ∀ wh ∈ Kh.
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It is known that the inequality in (21) is just the necessary and sufficient optimality
condition. According to the result of finite element approximation[35], we have

(22)

‖y − yh‖L2
ρ(Γ;H

1
0 (D)) + ‖p− ph‖L2

ρ(Γ;H
1
0 (D)) + ‖u− uh‖L2(D)

≤ 1√
amin

inf
v∈Vhs×L2

ρ(Γ)

( ∫

Γ×D

ρa|∇(y − v)|2
) 1

2

+
1√
amin

inf
v∈Vhs×L2

ρ(Γ)

( ∫

Γ×D

ρa|∇(p− v)|2
) 1

2

+ C‖u− uh‖L2(D)

≤ Chs

{
‖y‖L2

ρ(Γ;H
2(D)∩H1

0 (D)) + ‖p‖L2
ρ(Γ;H

2(D)∩H1
0 (D)) + ‖u‖H1(D)

}
.

3.2 Spline-collocation approximate scheme and convergence analysis. In
this section, we investigate the piecewise Lagrange interpolation approximation in
consideration of the oscillatory nature of high-degree interpolation polynomials.
For Γi = [ai, bi], i = 1, 2, · · · , N, let ai = ξi,0 < ξi,1 < ξi,2 < · · · < ξi,ji = bi, be a
partition of interval [ai, bi], let hi,j = ξi,j − ξi,j−1, 1 ≤ j ≤ ji, hi = max1≤j≤jihi,j ,
for convenience, suppose hi,j < 1. Let Ii,j = [ξi,j−1, ξi,j ], 1 ≤ j ≤ ji, then Γi =⋃ji

j=1 Ii,j . Thus, if f ∈ Cν(Γi;H
1
0 (D)) and ν is big enough to keep the regularity

of f with respect to ξi, in every subinterval Ii,j , we approximate f by using the
ki,j−order Lagrange polynomials on ki,j+1 nodes ξi,j−1 = ξ0i,j < ξ1i,j < ξ2i,j < · · · <
ξ
ki,j

i,j = ξi,j , as follows:

Ii(f)(ξ) =

ki,j∑

s=0

f(ξsi,j)l
s
i,j(ξ), ξ ∈ Ii,j .

Where

lsi,j(ξ) =

ki,j∏

r=0,r 6=s

ξ − ξri,j
ξsi,j − ξri,j

.

Let Mi,j = maxξ∈Ii,j f
(ki,j+1)(ξ),Mi = max1≤j≤ji Mi,j and ki = min1≤j≤ji ki,j ,

then, by interpolation error formula, we get
∣∣∣f(ξ)− Ii(f)(ξ)

∣∣∣ ≤ Mi

(ki + 1)!
(hi)

ki+1,

Now, in the multivariate case N > 1, for f ∈ Cν(Γ;H1
0 (D)), we define the full

tensor product interpolation formulas

I(f)(ξ1, ξ2, ..., ξN ) = (I1⊗I2⊗· · ·⊗IN )(f)(ξ1, ξ2, ..., ξN )

=

k1,r1∑

s1=0

· · ·
kN,rN∑

sN=0

f(ξs11,r1 , ξ
s2
2,r2

, ..., ξsNN,rN
)

N∏

i=1

lsii,ri(ξi),

(ξ1, ξ2, ..., ξN ) ∈ I1,r1 × I2,r2 × · · · × IN,rN .

We then have the interpolation error estimate

∣∣∣f(ξ1, ξ2, ..., ξN )− I(f)(ξ1, ξ2, ..., ξN )
∣∣∣ ≤ C

N∑

i=1

Mi

(ki + 1)!
(hi)

ki+1,

where C is a constant independent of ki, hi.
Next, we consider a finite dimensional space defined on Γ ⊂ RN . Let P(Γi)

be the set of all the functions which is linear spanning in the subinterval Ii,j of

lsi,j , 0 ≤ s ≤ ki,j , 1 ≤ j ≤ ji, and let P(Γ) =
⊗N

i=1 P(Γi). Combining spaces
Vhs ,Whs and P(Γ) together, we define tensor product finite element space on D×Γ.
We will use Yh,q = Vhs

⊗
P(Γ) for the finite element space of the state variable y
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and co-state variable p, Uh = Whs for the control variable u and let Kh = Uh ∩K
be the finite element space of the convex set K. Then, the optimal control problem
(7)-(8) can be formulated as follows:

(23) min
uh∈Kh

Jh(uh) = min
uh∈Kh

E
[1
2

∫

D

|yh,q − yd|2dx+
α

2

∫

D

|uh|2dx
]

subject to

(24) A[yh,q, vh,q] = [uh, vh,q], ∀ vh,q ∈ Yh,q.

In the following, for convenience, we set ji = 1, ki,j = k, i = 1, 2, · · · , N, to any
vector of indexes [s1, · · · , sN ] we associate the global index

n = s1 + (k + 1)(s2 − 1) + (k + 1)2(s3 − 1) + · · ·+ (k + 1)N−1(sN − 1),

here we also denote the point [ξs11,1, ξ
s2
2,1, · · · , ξsNN,1] ∈ Γ by ξn, and set ln(ξ) =

∏N
i=1 l

si
i,1, let Nq = (k + 1)N .

Let ρ̂ : Γ → R+ be an auxiliary probability density function which can be seen
as the joint probability of N independent random variables; i.e., it factorizes as

(25) ρ̂(ξ) =

N∏

n=1

ρ̂n(ξn), ∀ ξ ∈ Γ, and such that ‖ρ
ρ̂
‖L∞(Γ) ≤ +∞.

For any continuous function g : Γ → R, we introduce the quadrature formula Eq
ρ̂ [g]

approximating the integral

∫

Γ

g(ξ)ρ̂(ξ)dξ as follows:

(26) Eq
ρ̂ [g] =

Nq∑

k=1

ωkg(ξk), ωk =

N∏

n=1

ωkn , ωkn =

∫

Γn

l2kn
(ξ)ρ̂n(ξ) dξ.

For simplicity, we denote Ẽ[g] = Eq
ρ̂ [
ρ

ρ̂
g] for a given continuous function g(ξ), ∀ ξ ∈

Γ.
Replacing the integrals over Γ in (24) by the quadrature formula (26), the collo-

cation method for the optimal control problem (23)-(24) is:

(27) min
uh∈Kh

Jh(uh) = min
uh∈Kh

Ẽ

[1
2

∫

D

|yh,q − yd|2dx+
α

2

∫

D

|uh|2dx
]

subject to

(28) Ẽ
[
(a∇yh,q,∇vh,q)L2(D)

]
= Ẽ

[
(uh, vh,q)L2(D)

]
, ∀ vh,q ∈ Yh,q.

Then, the discrete solution yh,q in D × I1,r1 × I2,r2 × · · · × IN,rN has the form

yh,q =

Nh∑

j=1

k1,r1∑

s1=0

· · ·
kN,rN∑

sN=0

ys1,s2,...,sNj,r1,r2,...,rN
φj(x)

N∏

i=1

lsii,ri(ξi).

Letting yh,q =
∑Nh

i=1

∑Nq

n=1 yinφi(x)ln(ξ) ∈ Yh,q, uh ∈ Kh, we choose vh,q(x, ξ) =
φj(x)lm(ξ)(j = 1, 2, ..., Nh;m = 1, 2, ..., Nq) as the test functions in (28), where
φi(x), φj(x) ∈ Vhs and ln(ξ), lm(ξ) is the Lagrange basis function. Then, from (28)
we have

Ẽ
[
(a(x, ξ)∇

( Nh∑

i=1

Nq∑

n=1

yinφi(x)ln(ξ)
)
,∇(φj(x)lm(ξ)))L2(D)

]

=Ẽ
[
(uh, φj(x)lm(ξ))L2(D)

]
.(29)
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Here, the left of (29) is

∫

D

Nq∑

s=1

a(x, ξs)∇
( Nh∑

i=1

Nq∑

n=1

yinφi(x)ln(ξs)
)
∇φj(x)lm(ξs)ρ(ξs)ωsdx

=

∫

D

a(x, ξm)∇
( Nh∑

i=1

yimφi(x)
)
∇φj(x)ρ(ξm)ωmdx.

The right of (29) is

∫

D

Nq∑

s=1

uhφj(x)lm(ξs)ρ(ξs)ωsdx =

∫

D

uhφj(x)ρ(ξm)ωmdx.

From the above two equations, (29) is equivalent to

(30)

∫

D

a(x, ξm)∇
( Nh∑

i=1

yimφi(x)
)
∇φj(x) =

∫

D

uhφj(x)dx.

This leads to solve a sequence of uncoupled problems of the form

(31)

∫

D

a(x, ξ)∇yh(ξ) · ∇vhdx =

∫

D

uhvhdx, ∀ vh ∈ Vhs ,

collocated in the points ξm.

Similarly, if we introduce the Lagrange interpolant operator Iq : C0(Γ; H1
0 (D))

→ P(Γ)
⊗

H1
0 (D), such that

Iqv(ξ) =
Nq∑

s=1

v(ξs)ls(ξ), ∀ v ∈ C0(Γ; H1
0 (D)),

then we have simply yh,q = Iqyh.
According to Lions’ lemma[1], we have the following theorem similar to theorem

2.1.
Theorem 3.1. The control problem (27)-(28) has a unique pair solution (yh,q, uh) ∈

Yh,q × Kh. Furthermore, a pair (yh,q, uh) is the solution if and only if there is a
co-state variable ph,q ∈ Yh,q, such that {yh,q, ph,q, uh} ∈ Yh,q × Yh,q ×Kh satisfies
the following system

(32)





Ẽ
[
(a∇yh,q,∇vh,q)L2(D)

]
= Ẽ

[
(uh, vh,q)L2(D)

]
, ∀ vh,q ∈ Yh,q,

Ẽ
[
(a∇ph,q,∇v̂h,q)L2(D)

]
= Ẽ

[
(yh,q − yd, v̂h,q)L2(D)

]
, ∀ v̂h,q ∈ Yh,q,

Ẽ
[
(ph,q + αuh, wh − uh)L2(D)

]
≥ 0, ∀ wh ∈ Kh ⊂ Uh.

Proof. Let Jh(uh) = g(yh,q(uh)) + j(uh), where

g(yh,q(uh)) = Ẽ
[1
2

∫

D

|yh,q(uh)− yd|2dx
]
, and j(uh) = Ẽ

[α
2

∫

D

|uh|2dx
]
.

Applying the Lions’ lemma, the optimal condition reads

(33) j′(uh)(wh − uh) + (g(yh,q(uh)))
′(wh − uh) ≥ 0, ∀ wh ∈ Kh.

It is clear that

(34)

j′(uh)(wh − uh) = lim
t→0+

1

t
Ẽ
[α
2

∫

D

[
|uh + t(wh − uh)|2 − |uh|2

]
dx

]

= Ẽ
[∫

D

αuh(wh − uh)dx
]
= Ẽ

[(
αuh, wh − uh

)
L2(D)

]
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and
(35)

(
g(yh,q(uh))

)′
(wh − uh) = lim

t→0+

1

t

(
g
(
yh,q(uh + t(wh − uh))

)
− g(yh,q(uh))

)

= lim
t→0+

1

2t
Ẽ
[∫

D

[
|yh,q(uh + t(wh − uh))− yh,q(uh)|2

+ 2(yh,q(uh + t(wh − uh))− yh,q(uh), yh,q − yd)
]
dx

]

=Ẽ
[ ∫

D

y′h,q(uh)(wh − uh) · (yh,q − yd)dx
]

=Ẽ
[(
y′h,q(uh)(wh − uh), yh,q − yd

)
L2(D)

]
.

Next, let us differentiate the state equation (28) at uh in the direction wh−uh. By
(28), we have

1

t
Ẽ

[(
a(∇yh,q(uh + t(wh − uh))−∇yh,q(uh)),∇vh,q)L2(D)

]

=Ẽ
[
(wh − uh, vh,q)L2(D)

]
, ∀ vh,q ∈ Yh,q.(36)

Taking limit in (36) as t → 0, we obtain

Ẽ
[(
a∇y′h,q(uh)(wh − uh),∇vh,q)L2(D)

]

=Ẽ
[
(wh − uh, vh,q)L2(D)

]
, ∀ wh ∈ Kh, vh,q ∈ Yh,q.(37)

Define the co-state ph,q ∈ Yh,q satisfying

(38) Ẽ
[
(a∇ph,q,∇v̂h,q)L2(D)

]
= Ẽ

[
(yh,q − yd, v̂h,q)L2(D)

]
, ∀ v̂h,q ∈ Yh,q.

Letting vh,q = ph,q in (37) and v̂h,q = y′h,q(uh)(wh − uh), we have

(39)

Ẽ
[
(wh − uh, ph,q)L2(D)

]
= Ẽ

[(
a∇y′h,q(uh)(wh − uh),∇ph,q)L2(D)

]

= Ẽ
[(
y′h,q(uh)(wh − uh), yh,q − yd

)
L2(D)

]

=
(
g(yh,q(uh))

)′
(wh − uh).

By (33)-(34) and (39), the optimality condition reads

(40) J ′
h(uh)(wh − uh) = Ẽ

[
(ph,q + αuh, wh − uh)L2(D)

]
≥ 0, ∀ wh ∈ Kh,

where ph,q is defined in (38).This completes the proof. �

Theorem 3.2. Let (y, p, u) be the solution of the optimal control problem (11)
and (yh,q, ph,q, uh) be the solution of the discretized problem (32), respectively.
Then the following error estimate holds:

(41)

‖y − yh,q‖L2
ρ(Γ;H

1(D)) + ‖p− ph,q‖L2
ρ(Γ;H

1(D)) + ‖u− uh‖L2(D)

≤ Chs

{
‖y‖L2

ρ(Γ;H
2(D)∩H1

0 (D)) + ‖p‖L2
ρ(Γ;H

2(D)∩H1
0 (D)) + ‖u‖H1(D)

}

+

N∑

i=1

Qi +Ri

(k + 1)!
(hi)

k+1.

where Qi, and Ri are derived similar to Mi, by using yh, ph to substitute f .
Proof. According to the deduction of (3.11)-(3.13), we have yh,q = Ipyh,

ph,q = Ipph. By interpolation error formula, and notice that yh and ph have the
same regularity as the exact solution y and p with respect to ξi, we have
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(42)

‖yh − yh,q‖L2
ρ(Γ;H

1(D)) + ‖ph − ph,q‖L2
ρ(Γ;H

1(D)) ≤ C

N∑

i=1

Qi +Ri

(ki + 1)!
(hi)

k+1,

then combining (22) and (42), we can get theorem 3.2. This completes the proof.
�

A disadvantage of piecewise Lagrange interpolation approximation is that there
have no differentiability at the endpoints of the subintervals, which means that the
interpolating function is not smooth. In this case, often Qi, and Ri will in fact
depend on the size ki. In fact they often become explosive when ki are getting
smaller, and this makes the error estimates useless. An alternative procedure is to
use spline interpolation approximation, in particular, when the function f has a
certain degree of smoothness, we will obtain a better approximation effect by using
spline function approximation. The most common spline interpolation is called
cubic spline interpolation.

If function S satisfying: (1) S ∈ Ck−1[ai, bi]; (2) S is polynomial which degree
is no more than k on subinterval Ii,j = [ξi,j−1, ξi,j ], 1 ≤ j ≤ ji, then, S is called
a k−degree spline function with ξi,1, ξi,2, · · · , ξi,ji as the node. Given a function f
defined on [ai, bi], if S satisfying:

S(ξi,j) = f(ξi,j), j = 1, 2, · · · , ji,
then S is called k−degree spline function of f .

If f ∈ Ck+1[ai, bi], and S is k−degree spline function of f , then, we have the
following interpolation error estimator:

(43) ‖ f (r) − S(r) ‖∞≤ C ‖ f (k+1) ‖∞ hk+1−r
i , r = 0, 1, · · · k,

where C is a constant independent of k, hi.
If a(x, ξ1, ξ2, · · · , ξN ) is ki + 1− order continuously differentiable about ξi, i =

1, 2, · · · , N, then, we can approximate y and p by using ki− degree spline function on
i-th direction of probability space Γ. The approximation solution obtained by spline
function have better smoothness than that of the approximate solution obtained by
piecewise Lagrange interpolation approximation, and we have the following error
estimate:

(44)

‖y − yh,q‖L2
ρ(Γ;H

1(D)) + ‖p− ph,q‖L2
ρ(Γ;H

1(D)) + ‖u− uh‖L2(D)

≤ Chs

{
‖y‖L2

ρ(Γ;H
2(D)∩H1

0 (D)) + ‖p‖L2
ρ(Γ;H

2(D)∩H1
0 (D)) + ‖u‖H1(D)

}
.

+C

N∑

i=1

hki+1
i

(
‖ y

(ki+1)
ξi

‖∞ + ‖ p
(ki+1)
ξi

‖∞
)
.

3.3 Smolyak approximation. In this subsection, we consider the case where f is
analytic. We will develop the convergence properties of the collocation techniques
by Smolyak approximation which depends on the regularity of the solution y(x, ξ)

with respect to ξ [12]. Denote Γ∗
n =

∏N
j=1,j 6=n Γj , and let ξ∗n be an arbitrary element

of Γ∗
n. Here we require the solution of (2.12) to satisfy the following assumption.

Regularity assumption 3.3. ([12]) For each ξn ∈ Γn, there exists τn > 0
such that the function y(x, ξn, ξ

∗
n) as a function of ξn, y : Γn −→ C0(Γ∗

n;H
1
0 (D))

admits an analytic extension y(x, z, y∗n), z ∈ C, in the region of the complex plane
∑

(Γn; τn) ≡ {z ∈ C,dist(z,Γn) ≤ τn}.
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Moreover, ∀z ∈
∑

(Γn; τn),

‖y(z)‖C0(Γ∗

n;H
1
0 (D)) ≤ λ,

with λ a constant independent of n.
For convenience, we briefly redefine the interpolation operator based on Lagrange

polynomials. We first introduce an index i ∈ N, i ≥ 1. Then, for each value of
i, let {ξi1, ..., ξimi

} ⊂ Γn, n = 1, 2, ...N be a sequence of abscissas for Lagrange
interpolation on Γn.

For v ∈ C0(Γn;H
1
0 (D)), we introduce a sequence of one-dimensional Lagrange

interpolation operators Ii
mi

: C0(Γn;H
1
0 (D)) → Vmi(Γn;H

1
0 (D)),

(45) Ii
mi

(v)(ξ) =

mi∑

j=1

v(ξij)l
i
j(ξ), ∀v ∈ C0(Γn;H

1
0 (D)),

where lij ∈ Pmi−1(Γn) are the Lagrange polynomials of degree mi − 1, i.e., lij(ξ) =

Πmi

k=1,k 6=j

ξ−ξik
ξij−ξik

, and

Vmi(Γn;H
1
0 (D))

=
{
v ∈ C0(Γn;H

1
0 (D)) : v(x, ξ) =

mi∑

k=1

ṽk(x)lk(ξ), {ṽk}mi

k=1 ∈ H1
0 (D)

}
.

Now, in the multivariate case, for each v ∈ C0(Γ;H1
0 (D)) and the multi-index i =

(i1, ..., iN),m = (mi1 , ...,miN ) ∈ NN
+ we define the full tensor product interpolation

formulas
(46)

Ii

m
v(ξ) = (Ii1

mi1
⊗ · · · ⊗ IiN

miN
)(v)(ξ) =

mi1∑

j1=1

· · ·
miN∑

jN=1

v(ξi1j1 , · · · , ξ
iN
jN

)(li1j1 ⊗ · · · ⊗ liNjN ).

Here we follow closely the work [40] to describe the Smolyak isotropic formulas
A(w, N). The Smolyak formulas are just linear combinations of product formulas
(2.5) with the following key properties: only products with a relatively small number
of points are used. Let I0

m0
= 0, and for i ∈ N+ define

(47) ∆i := Ii
mi

− Ii−1
mi−1

.

Moreover, given an integer w ∈ N+, hereafter called the level, we define the sets

(48) X(w, N) :=
{
i ∈ N

N
+ , i ≥ 1 :

N∑

n=1

(in − 1) ≤ w
}
,

(49) X̃(w, N) :=
{
i ∈ N

N
+ , i ≥ 1 :

N∑

n=1

(in − 1) = w
}
,

(50) Y (w, N) :=
{
i ∈ N

N
+ , i ≥ 1 : w−N + 1 ≤

N∑

n=1

(in − 1) ≤ w
}
,

and for i ∈ N+ we set |i| = i1 + · · · + iN . Then the isotropic Smolyak formula is
given by

(51) A(w, N) =
∑

i∈X(w,N)

(∆i1 ⊗ · · · ⊗∆iN ).
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Equivalently, the above equation can be written as [41]

(52) A(w, N) =
∑

i∈Y (w,N)

(−1)w+N−|i|

(
N − 1

w +N − |i|

)
· Ii1

mi1
⊗ · · · ⊗ IiN

miN
.

To compute A(w, N)(v), one only needs to know function values on the ”sparse
grid”

(53) H(w, N) =
⋃

i∈Y (w,N)

(ϑi1 × · · · × ϑiN ) ⊂ Γ,

where ϑi = {ξi1, ..., ξimi
} denotes the set of abscissas used by Ii

mi
.If the sets are

nested, i.e.,ϑi ⊂ ϑi+1, then H(w, N) ⊂ H(w+1, N) and

(54) H(w, N) =
⋃

i∈X̃(w,N)

(ϑi1 × · · · × ϑiN ).

The Smolyak formula is actually interpolatory whenever nested points are used.
This result has been proved in [40].

3.4 Clenshaw-Curtis abscissas. In this subsection, we use Clenshaw-Curtis
abscissas[42] for the construction of the Smolyak formula. These abscissas are
the extrema of Chebyshev polynomials and, for any choice of mi > 1, are given by

ξij = − cos
(π(j − 1)

mi − 1

)
, j = 1, 2, ...,mi.

In addition, one sets ξi1 = 0 if mi = 1 and lets the number of abscissas mi in each
level grow according to the following formula:

(55) m1 = 1, mi = 2i−1 + 1, i > 1.

With this particular choice, one obtains nested sets of abscissas, i.e., ϑi ⊂ ϑi+1,
and thereby H(w, N) ⊂ H(w+1, N). It is important to choose m1 = 1 if we are
interested in optimal approximation in relatively large N , because in all other cases
the number of points used by A(w, N) increases too fast with N .

3.5 Analysis of the approximation error. In this subsection we present the
error estimates for the isotropic Smolyak approximation based on Clenshaw-Curtis
abscissas.

Let σ̂n = log
(

2τn
|Γn|

+
√
1 +

4τ2
n

|Γn|2

)
, σ = 1

2 min1≤n≤N minξ∗n∈Γ∗

n
σ̂n, C = 4

e2σ−1 ,

µ1 = σ
1+log(2N) , δ

∗ = (e log(2) − 1)/C̃2(σ) and η = η(w, N) = #H(w, N) be the

total number of the collocation points used in the Smolyak formula (described by
(3.33)) with Clenshaw-Curtis abscissas, which is

η =
∑

i∈X(w,N)

N∏

n=1

r(in), r(i) :=





1, i = 1,
2, i = 2,
2i−2, i > 2.

C̃2(σ) := 1 +
1

log(2)

√
π

2σ
,

C1(σ, δ) :=
4C

eδσ
exp

(
δσ

{ 1

σ log2(2)
+

1

log(2)
√
2σ

+ 2
(
1 +

1

log(2)

√
π

2σ

)})
.
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Theorem 3.4. (algebraic convergence)[13]. For functions yh, ph ∈ C0(Γ;H1
0 (D))

satisfying the regular assumption 3.3, the isotropic Smolyak formula (3.32) based
on Clenshaw-Curtis abscissas satisfies

(56)
‖yh −A(w, N)(yh)‖L∞

ρ (Γ;H1
0 (D)) + ‖ph −A(w, N)(ph)‖L∞

ρ (Γ;H1
0 (D))

≤ C1(σ,δ
∗)eσ

|1−C1(σ,δ∗)|
max{1, C1(σ, δ

∗)}Nη−µ1 .

Theorem 3.4 indicates at least algebraic convergence with respect to the number of
collocation points η.

Theorem 3.5. (subexponential convergence)[13]. Under the same assumptions
of theorem 3.4 and for w > N

log(2) , we have

(57)
‖yh −A(w, N)(yh)‖L∞

ρ (Γ;H1
0 (D)) + ‖ph −A(w, N)(ph)‖L∞

ρ (Γ;H1
0 (D))

≤ C1(σ,δ
∗)

eσδ∗C̃2(σ)

max{1,C1(σ,δ
∗)}N

|1−C1(σ,δ∗)|
ηµ3e

− Nσ

21/N
ηµ2

,

where

µ2 =
log(2)

N(1 + log(2N))
, µ3 =

σδ∗C̃2(σ)

1 + log(2N)
.

Theorem 3.6. Under regular assumption 3.3, let (y, p, u) be the solution of
the optimal control problem (11). (yh,q, ph,q, uh) is the solution of the discretized
problem (32) by Smolyak approximation based on Clenshaw-Curtis abscissas . Then
the following error estimate holds:

‖y − yh,q‖L2
ρ(Γ;H

1
0 (D)) + ‖p− ph,q‖L2

ρ(Γ;H
1
0 (D)) + ‖u− uh‖L2(D)

≤ Chs

{
‖y‖L2

ρ(Γ;H
2(D)∩H1

0(D)) + ‖p‖L2
ρ(Γ;H

2(D)∩H1
0 (D)) + ‖u‖H1(D)

}

+
C1(σ, δ

∗)eσ

|1− C1(σ, δ∗)|
max{1, C1(σ, δ

∗)}Nη−µ1 ,

and if w > N
log(2) , we have

‖y − yh,q‖L2
ρ(Γ;H

1
0 (D)) + ‖p− ph,q‖L2

ρ(Γ;H
1
0 (D)) + ‖u− uh‖L2(D)

≤ Chs

{
‖y‖L2

ρ(Γ;H
2(D)∩H1

0(D)) + ‖p‖L2
ρ(Γ;H

2(D)∩H1
0 (D)) + ‖u‖H1(D)

}

+
C1(σ, δ

∗)

eσδ∗C̃2(σ)

max{1, C1(σ, δ
∗)}N

|1− C1(σ, δ∗)|
ηµ3e

− Nσ

21/N
ηµ2

.

4. Domain decomposition and numerical examples

As discussed above in real applications, a(x, ·) often has irregular points, and
we can make a small sub-domain including these points. Then, we can use lower
regularity bases with compact supports to approximate the solution in this sub-
domain, while approximating it via the Smolyak schemes as shown in Example 2.
We first discuss a smooth case where a(x, ·) is analytic.

Example 1 We take space domain D = [0, 1]× [0, 1], each stochastic domain Γi

is [−1, 1], a(x, ξ1, ξ2) = 3 + ξ1 + ξ2, where ξ1 and ξ2 are uniform distributions on
[−1, 1]. We consider the following model problem:

(58) min
u

J (u) = min
u

(
1

2

∫ 1

−1

∫ 1

−1

∫

D

(y−yd)
2dxdξ1dξ2+

α

2

∫ 1

−1

∫ 1

−1

∫

D

u2dxdξ1dξ2)

subject to

−∇ · (a(x, ξ1, ξ2)∇y(x, ξ1, ξ2)) = f + u, x ∈ D, ξ1 ∈ [−1, 1], ξ2 ∈ [−1, 1],

y(x, ξ1, ξ1) = 0, x ∈ ∂D, ξ1 ∈ [−1, 1], ξ2 ∈ [−1, 1].
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The target solution yd = sin(2πx1) sin(2πx2). The objective is to minimize the
expectation of a cost functional, and the deterministic control is constrained by the
condition u(x) ≥ 0, ∀x ∈ D. The solutions for this problem are

p = sin(2πx1) sin(2πx2),

y = (1 + 8π2(3 + ξ1 + ξ2)) sin(2πx1) sin(2πx2),

u = max{0,− p

α
},

f = 8π2(3 + ξ1 + ξ2)(1 + 8π2(3 + ξ1 + ξ2)) sin(2πx1) sin(2πx2)− u.

In this example, because y, p have enough regularity with respect to ξ1 and ξ2, we
take Clenshaw-Curtis abscissas in every direction of the random space, and take
Lagrange interpolation function as the basis functions. On the space D, for the
control u, we use the discontinuous piecewise constant finite element; for the state
y and co-state p, we use the piecewise linear finite element. In Table 1, we present
the numerical result using Smolyak approximation scheme for the above problem.
In Figure 1, we present the numerical control. Table 1 illustrates that the numerical
results are consistent with our theoretical results.

Table 1. The relative error for α = 1 and w=2.

node/side/element
‖uh−u‖L2(D)

‖u‖L2(D)

‖yh,q−y‖L2
ρ(Γ,H1(D))

‖y‖L2
ρ(Γ,H1(D))

‖ph,q−p‖L2
ρ(Γ,H1(D))

‖p‖L2
ρ(Γ,H1(D))

16/33/18 1.2822 0.8754 0.9079
49/120/72 0.6591 0.4506 0.4822
169/456/288 0.2685 0.2294 0.2353

625/1776/1152 0.1184 0.1155 0.1163
2401/7008/4608 0.0567 0.0578 0.0579

Where, the node, side and element in Table 1 are nodes and sides of triangles
(element) generated by triangulation of the space D.
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Figure 1. the solutions of control u for Example 1.

Example 2 We take space domain D = [0, 1]×[0, 1], and each stochastic domain
Γi is [−1, 1],

a(x, ξ1, ξ2) =

{
0.3− |ξ1|+ 0.3− |ξ2|+ 0.5, if |ξ1| < 0.3 and |ξ2| < 0.3
0.5, else
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We consider the following model problem:

(59) min
u

J (u) = min
u

(
1

2

∫ 1

−1

∫ 1

−1

∫

D

(y−yd)
2dxdξ1dξ2+

α

2

∫ 1

−1

∫ 1

−1

∫

D

u2dxdξ1dξ2)

subject to

−∇ · (a(x, ξ1, ξ2)∇y(x, ξ1, ξ2)) = f + u, x ∈ D, ξ1 ∈ [−1, 1], ξ2 ∈ [−1, 1],

y(x, ξ1, ξ1) = 0, x ∈ ∂D, ξ1 ∈ [−1, 1], ξ2 ∈ [−1, 1].

The target solution yd = sin(2πx1) sin(πx2). The objective is to minimize the
expectation of a cost functional, and the deterministic control is constrained by the
condition u(x) ≥ 0, ∀x ∈ D. The solutions for this problem are

p = sin(2πx1) sin(πx2),

y = (1 + 5π2a(x, ξ1, ξ2)) sin(2πx1) sin(πx2),

u = max{0,− p

α
},

f = 5π2a(x, ξ1, ξ2)(1 + 5π2a(x, ξ1, ξ2)) sin(2πx1) sin(πx2)− u.

In this example, since y has underivable points with respect to ξ1 and ξ2, then, we
can make a partition to Γ so that Γ = Γc ∪ Γs, where Γc = [−0.3, 0.3]× [−0.3, 0.3].
In Γc, we choose piecewise spline function as bases functions in every direction.
Otherwise, we take Clenshaw-Curtis abscissas in every direction of Γs, and take
Lagrange interpolation function as the basis functions. In our computation, we
use 25 spline points inside Γc, while use 28 Smolyak approximation collocation for
Γs. The partition is shown in Figure 2(right). On the space D, for the control
u, we use the discontinuous piecewise constant finite element; for the state y and
co-state p, we use the piecewise linear finite element. For the comparison, we also
give a computation with no partition. We use 145 points with no partition shown
in Figure 2(left) and the result by Smolyak approximation is given in Table 2, with
the result by spline in D × Γc combined with Smolyak approximation in D × Γs.
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Figure 2. Colllocation points with no partition(left) and with
partition (right).

Table 2. The absolute error for α = 1 and nodes = 625, sides =
1776, elements = 1152.

‖uh − u‖
L2(D)

‖yh,q − y‖
L2
ρ(Γ,H1(D))

‖ph,q − p‖
L2
ρ(Γ,H1(D))

145 points with no partition 4.7854e-02 1.8002e+01 6.5894e-01

53 points with partition 2.9456e-02 1.4508e+01 4.0560e-01
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It is clear that with fewer collocation points, the spline-collocation can give better
atropinization. Then, further numerical results using stochastic spline-collocation
combined with Smolyak approximation scheme is shown in Table 3 and the numeri-
cal control is given in Figure 3. It is clear that Table 3 illustrates that the numerical
results are consistent with our theoretical results.

Table 3. The relative error for α = 1 and 53 points shown in
Figure 2 (right).

node/side/element
‖uh−u‖L2(D)

‖u‖L2(D)

‖yh,q−y‖L2
ρ(Γ,H1(D))

‖y‖L2
ρ(Γ,H1(D))

‖ph,q−p‖L2
ρ(Γ,H1(D))

‖p‖L2
ρ(Γ,H1(D))

16/33/18 0.4783 0.8741 0.4790
49/120/72 0.2175 0.4471 0.2378
169/456/288 0.0906 0.2348 0.1155

625/1776/1152 0.0417 0.1345 0.0572

Where, the node, side and element in Table 3 are nodes and sides of triangles
(element) generated by triangulation of the space D.
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Figure 3. the solutions of control u for Example 2.

5. Conclusions

In this paper, we establish stochastic spline-collocation approximation scheme,
combined with Smolyak approximation scheme according to the regularity of state
variable and costate variable with respect to random variable for an optimal con-
trol problem governed by an elliptic PDE with random field coefficients. Although
the Smolyak approximation schemes are effective collocation strategies for prob-
lems when the solutions are smooth enough with respect to the random variables,
in the actual calculation, the state or the costate often has a discontinuity point
or non-smooth points. In such cases, we can make a small sub-domain including
these point, and choose piecewise low order interpolation functions as bases func-
tions by the stochastic collocation approximation. In the rest domain, since the
state and costate are smooth enough with respect to random variable, we can take
Clenshaw-Curtis abscissas in every direction of the random space and take Lagrange
interpolation function as the basis functions and Smolyak approximation scheme.
By numerical tests, we conclude that such a domain decomposition strategy works
well for the general non-smooth case.



644 B.X. GONG, L. GE, T.J. SUN, W.F. SHEN, AND W.B. LIU

Acknowledgments

The authors would like to thank the anonymous referees for their valuable com-
ments and suggestions on an earlier version of this paper. This work was supported
by the Natural Science Foundation of China(Grant No.11271231, 11301300 and
11501326).

References

[1] J.L. Lions, Optimal control of systems governed by partial differential equations, Springer-
Verlag, Berlin, 1971.

[2] R. Glowinski, J.L. Lions, Exact and approximate controllability for distributed parameter
systems, Cambridge University Press, 1996.
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