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FINITE ELEMENT METHOD TO CONTROL THE DOMAIN

SINGULARITIES OF POISSON EQUATION USING THE STRESS

INTENSITY FACTOR : MIXED BOUNDARY CONDITION

SEOKCHAN KIM AND HYUNG-CHUN LEE

Abstract. In this article, we consider the Poisson equation on a polygonal domain with the
domain singularity raised from the changed boundary conditions with the inner angle ω > π

2
.

The solution of the Poisson equation with such singularity has a singular decomposition: regular
part plus singular part. The singular part is a linear combination of one or two singular functions.
The coefficients of the singular functions are usually called stress intensity factors and can be
computed by the extraction formula. In [11] we introduced a new partial differential equation

which has ‘zero’ stress intensity factor using this stress intensity factor, from whose solution
we can obtain a very accurate solution of the original problem simply by adding singular part.
Although the method in [11] works well for the Poisson problem with Dirichlet boundary condition,

it does not give optimal results for the case with stronger singularity, for example, mixed boundary
condition with bigger inner angle. In this paper we give a revised algorithm which gives optimal
convergences for both cases.

Key words. Finite element, singular function, dual singular function, stress intensity factor.

1. Introduction

Let Ω be an open, bounded polygonal domain in R2 and let ΓD and ΓN be a
partition of the boundary of Ω such that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. As a
model problem, we consider the following Poisson equation with mixed boundary
conditions:

(1)


−∆u = f in Ω,

u = 0 on ΓD,
∂u
∂ν = 0 on ΓN ,

where f ∈ L2(Ω), ∆ stands for the Laplacian operator and ν denotes the outward
unit vector normal to the boundary.

If ΓN = ∅ and the domain is convex or smooth, we expect to have an optimal
convergence rate with standard finite element method. But it is not true for Poisson
problems defined on non-convex domains. The solution u of the Poisson equation
with such singularity has a singular decomposition: u = w + ληs, where w ∈
H2(Ω) ∩H1

D(Ω), η is a smooth cut-off function and s is a singular function. Here,
H1

D(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD}.
Such lack of regularity affects the accuracy of the finite element approximation.

There were several approaches in the literatures for overcoming this difficulty. One
is based on local mesh refinement (see, e.g., [1, 13, 14, 15, 16] and references therein).
The advantage of the method of local mesh refinement is that the knowledge of the
exact forms of the singular functions is not needed. Another is done by augmenting
the space of trial functions in which one looks for the approximate solution (see,
e.g.,[2, 3, 4, 6, 7] and references therein). In [4], they introduced a new approach
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that pose a partial differential equation with regular part of the solution, then
compute the stress intensity factor and the solution.

The coefficient λ of the singular function is usually called stress intensity factor
and can be computed by the extraction formula. In [11] we introduced a new partial
differential equation which has ‘zero’ stress intensity factor, from whose solution we
got accurate solution of the original problem simply by adding singular part.

Although the method in [11] works well for the Poisson problem with Dirichlet
boundary condition, it does not give optimal results for the case with stronger
singularity, for example, mixed boundary condition with bigger inner angle. In this
paper we give a revised algorithm which gives an optimal convergence for both
cases. In this paper we assume there is only one singular point raised from mixed
Dirichlet and Neumann boundary condition.

We will use the standard notations and definitions for the Sobolev spaces Ht(Ω)
for t ≥ 0, and the associated inner products are denoted by (·, ·)t,Ω, with their
respective norms and seminorms are denoted by ∥·∥t,Ω and | · |t,Ω. The space L2(Ω)
is interpreted as H0(Ω), in which case the inner product and norm will be denoted
by (·, ·)Ω and ∥ · ∥Ω, respectively. However, we will omit Ω if there is no chance of
misunderstanding.

In section 2 we give the forms of singular functions and the dual singular functions
together with the extraction formula. In section 3 we suggest a revised algorithm
and some theorems. In section 4 and 5 we give finite element approximation and
some examples with numerical results.

2. Singular functions and extraction formula

We use a cut-off function to isolate the singular behavior of the problem. So, we
first give the definition of the cut-off functions with parameters. Set

B(r1; r2) = {(r, θ) : r1 < r < r2 and 0 < θ < ω} ∩ Ω and B(r1) = B(0; r1).

We define a family of cut-off functions of r as follows:

(2) ηρ(r) =


1 in B( 12ρ),

15
16

{
8
15 − p(r) + 2

3p(r)
3 − 1

5p(r)
5
}

in B̄( 12ρ; ρ),

0 in Ω \ B̄(ρ),

where p(r) = 4r/ρ−3. Here, ρ is a parameter which will be determined so that the
singular part ηρs has the same boundary condition as the solution u of the Model
problem, s is the singular function which is given in (3)–(7). Note that ηρ(r) is C

2.
If ΓN = ∅ with the inner angle ω, π < ω < 2π, as in [11], we have one singular

function and its dual singular function:

(3) s = s(r, θ) = r
π
ω sin

πθ

ω
and s− = s−(r, θ) = r−

π
ω sin

πθ

ω
.

If ΓN ̸= ∅ and the boundary condition changes its type at vertices with the inner
angle ω, π

2 < ω < 2π, we have a list of the singular functions:

1) D/N If π
2 < ω ≤ 3π

2 , there is a singular function of the form

(4) s1 = s1(r, θ) = r
π
2ω sin

πθ

2ω
;

If 3π
2 < ω < 2π, there are two singular functions of the form

(5) s1 = s1(r, θ) = r
π
2ω sin

πθ

2ω
and s3 = s3(r, θ) = r

3π
2ω sin

3πθ

2ω
;
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2) N/D If π
2 < ω ≤ 3π

2 , there is a singular function of the form

(6) s1 = s1(r, θ) = r
π
2ω cos

πθ

2ω
;

If 3π
2 < ω < 2π, there are two singular functions of the form

(7) s1 = s1(r, θ) = r
π
2ω cos

πθ

2ω
and s3 = s3(r, θ) = r

3π
2ω cos

3πθ

2ω
.

Here, D/N and N/D mean that type of boundary conditions changes passing the
singular point.

For convenience, we denote index set of singular functions by L:

(8) L =

{
{1} for (4) and (6),

{1, 3} for (5) and (7).

It is well known that the solution of problem (1) has the following singular
function representation([4, 5]):

(9) u = w +
∑
j∈L

λjηsj ,

with w ∈ H2(Ω)∩H1
D(Ω). For the computation of the coefficient λj we need to use

the so-called dual singular functions, for j ∈ L,

(10) s−j = s−j(r, θ) = r−
jπ
2ω sin

jπθ

2ω
and s−j = s−j(r, θ) = r−

jπ
2ω cos

jπθ

2ω

corresponding to

(11) sj = sj(r, θ) = r
jπ
2ω sin

jπθ

2ω
and sj = sj(r, θ) = r

jπ
2ω cos

jπθ

2ω

respectively. Note that s1 ∈ H
π
2ω−ϵ(Ω) and s ∈ H

π
ω−ϵ(Ω) for any ϵ > 0, so the

singularity in the mixed case is much stronger.
The coefficient, λj , is called ‘stress intensity factor’ and can be computed by the

following extraction formula (see [5, 7, 17]):

(12) λj =
2

jπ

∫
Ω

fηs−jdx+
2

jπ

∫
Ω

u∆(ηs−j)dx.

Note that both sj and s−j are harmonic functions in Ω.

3. Algorithms and Theorems

In [11], we considered the Poisson problem with Dirichlet boundary condition
with one domain singularity. i.e. we assumed ΓN = ∅ and let Vh be the continuous
piecewise linear finite element space and suggested the following Algorithm:

Alg 1.: find uh ∈ Vh such that

(13) (∇uh,∇v) = (f, v) ∀ v ∈ Vh.

Alg 2.: Then compute λh by

(14) λh =
1

π

∫
Ω

fηs−dx+
1

π

∫
Ω

uh∆(ηs−)dx.

Alg 3.: find wh such that wh + λhs ∈ Vh and

(15) (∇wh,∇v) = (f, v) ∀ v ∈ Vh.

Alg 4.: Then uh = wh + λhs.
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Note that the first two steps are just the standard FEM and well-known ex-
traction formula([2, 3]). The essence of the paper [11] is Alg 3-Alg 4, given ap-
proximated stress intensity factor, which give a regular solution of a weak problem
associated with a partial differential equation with ‘zero’ stress intensity factor and
the solution of the original equation.

In the case of Poisson problem with Dirichlet boundary condition the above
algorithm works well (See [11]), but in the case of mixed boundary condition the
results are not good enough. Here we remind that the accuracy of λh computed by
the extraction formula depends on the accuracy of the solution uh, which ultimately
depends on the regularity of u (See [3]).

3.1. Algorithm. Naturally we pose an algorithm which apply the idea of A3-A4
more than once. Here is the adjusted Algorithm:

A1.: Find a solution u(0) of (1) and

A2.: compute the stress intensity factors λ
(0)
j , j ∈ L, from (12).

A3.: For i = 1, 2, · · · , N ;
A3-1.: Solve, for w(i),

(16)


−∆w(i) = f in Ω,

w(i) = −
∑

j∈L λ
(i−1)
j sj on ΓD,

∂w(i)

∂ν = −
∑

j∈L λ
(i−1)
j

∂sj
∂ν on ΓN .

A3-2.: Let u(i) = w(i) +
∑

j∈L λ
(i−1)
j sj .

A3-3.: Compute λ
(i)
j by

(17) λ
(i)
j =

2

jπ

∫
Ω

fηs−jdx+
2

jπ

∫
Ω

u(i)∆(ηs−j)dx, j ∈ L.

In the loop of A3, N = 1 is enough for the cases D/N or N/D with π
2 < ω ≤ 3π

2
and cases D/D or N/N with any concave angle. Even for the more singular cases
D/N or N/D with 3π

2 < ω < 2π, N = 2 is enough.

3.2. Well-posedness. Consider the following partial differential equation.

(18)


−∆w = f in Ω,

w = −
∑

j∈L λjsj on ΓD,
∂w
∂ν = −

∑
j∈L λj

∂sj
∂ν on ΓN .

The following theorems show (18) has a regular solution.

Theorem 3.1. If (1) has a solution u as in (9) with the stress intensity factors
λj(j ∈ L), then (18) has a unique solution w in H2(Ω).

Proof. First, we note that (1) has a unique solution and its stress intensity factors
are λj , j ∈ L. The uniqueness of the solution of Poisson problem also implies that
the following equation has a unique solution, with the stress intensity factors −λj :

(19)


−∆p = 0 in Ω,

p = −
∑

j∈L λjsj on ΓD,
∂p
∂ν = −

∑
j∈L λj

∂sj
∂ν on ΓN .

( Note that p = −
∑

j∈L λjsj is the unique solution and the coefficients of the

singular function sj are the stress intensity factors.) By adding the two equations,
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(1) and (19), we have the following equation

(20)


−∆w = f in Ω,

w = −
∑

j∈L λjsj on ΓD,
∂w
∂ν = −

∑
j∈L λj

∂sj
∂ν on ΓN ,

whose solution w = u+ p belongs to H2(Ω). �

Theorem 3.2. If λj is the stress intensity factors given by (12) with the solution u
in (1), and w is the solution of (18), then u = w+

∑
j∈L λjsj is the unique solution

of (1).

Proof. We only need to show u = w +
∑

j∈L λjsj is the solution to (1) when w is

the solution of (18). Since ∆sj = 0, we have

−∆u = −∆w −
∑
j∈L

λj∆sj = −∆w = f.

Moreover, we have

u|ΓD = w|ΓD +
∑
j∈L

λjsj |ΓD = −
∑
j∈L

λjsj +
∑
j∈L

λjsj = 0,

and
∂u

∂ν
|ΓN

=
∂w

∂ν
|ΓN

+
∑
j∈L

λj
∂sj
∂ν

|ΓN
= 0.

�

Now we suggest an algorithm in variational form for the solution u of the model
problem (1) :

V1.: find u ∈ H1
D(Ω) such that

(21) (∇u,∇v) = (f, v), ∀ v ∈ H1
D(Ω).

V2.: Then compute λ
(0)
j , j ∈ L, by (12) with u.

V3.: Do the following, for i = 1, 2, · · · , N ;

V3-1.: find w(i) such that w(i) +
∑

j∈L λ
(i−1)
j sj ∈ H1

D(Ω) and

(22) (∇w(i),∇v) = (f, v)−
∑
j∈L

λj(
∂sj
∂ν

, v)|ΓN , ∀ v ∈ H1
D(Ω).

V3-2.: Set u(i) = w(i) +
∑

j∈L λ
(i−1)
j sj .

V3-3.: Compute λ
(i)
j , j ∈ L, by (12) with u(i).

The existence and uniqueness of the solution u and w in V1 and V3-1 are
clear([14]). By Theorem 3.1 and Theorem 3.2, we have that the solution w ∈ H2(Ω),
and that u is the solution of (1).

3.3. Comparision of the effectiveness of the algorithm. To compare the
effectiveness of our algorithm to that of DSFM, we state the simplified DSFM
algorithm as follows:

DSFM 1) Find the solution u of (1) using the standard finite element method.
DSFM 2) Compute the stress intensity factor λj , j ∈ L, using the extraction

formula (12).
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DSFM 3) Find the solution w

(23)


−∆w = f +

∑
j∈L λj∆(ηsj) in Ω,

w = 0 on Γ,
∂u
∂ν = 0 on ΓN .

DSFM 4) Set u = w +
∑

j∈L λjηsj .

Here, we note that although the algorithms used in [2, 3] are a little different from
the above one, we just use this to emphasize that, in the DSFM-type algorithms,
the input function is changed form f to f +

∑
j∈L λj∆(ηsj).

Since the errors depend linearly on the L2-norm of input functions, we may
predict the error in the new algorithm is less than that of DSFM as we see in the
following lemma.

Lemma 3.1. If we assume Ω is a L-shape domain as in Example 1 of Chapter 5,
and if f ≡ 1 in Ω, we have

(24) ∥f + λ∆(ηs)∥ ≈ 7.098 and ∥f∥ =
√
3 ≈ 1.732

with λ ≈ 0.4019.

Proof. See [11]. �

4. Finite Element Approximation

In this section we present the standard finite element approximation for u and
λ obtained in our algorithm in the L2 and H1 norms.

Let Th be a partition of the domain Ω into triangular finite elements, i.e., Ω =
∪K∈Th

K, with h = max{diamK : K ∈ Th}. Let Vh be continuous piecewise linear
finite element space; i.e.,

Vh = {ϕh ∈ C0(Ω) : ϕh|K ∈ P1(K) ∀K ∈ Th, ϕh = 0 on ΓD} ⊂ H1
D(Ω),

where P1(K) is the space of linear functions on K.
Now, we can find an approximated solution uh using the following algorithm:

FEA1.: find u
(0)
h ∈ Vh such that

(25) (∇u
(0)
h ,∇v) = (f, v), ∀ v ∈ Vh.

FEA2.: Then, compute λ
(0)
j,h by

(26) λ
(0)
j,h =

2

jπ

∫
Ω

fηs−jdx+
2

jπ

∫
Ω

u
(0)
h ∆(ηs−j)dx, j ∈ L.

FEA3.: Do the followings, for i = 1, 2, · · · , N ;

FEA3-1.: find w
(i)
h such that w

(i)
h +

∑
j∈L λ

(i−1)
j,h sj ∈ Vh and

(27) (∇w
(i)
h ,∇v) = (f, v)−

∑
j∈L

λj(
∂sj
∂ν

, v)|ΓN
, ∀ v ∈ Vh.

FEA3-2.: Set u
(i)
h = w

(i)
h +

∑
j∈L λ

(i−1)
j,h sj .

FEA3-3.: Compute λ
(i)
j,h by

(28) λ
(i)
j,h =

2

jπ

∫
Ω

fηs−jdx+
2

jπ

∫
Ω

u
(i)
j,h∆(ηs−j)dx, j ∈ L.
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Table 1. Standard FEM : The Case ω = 3π
2 for Example 1.

h ∥u− uSFEM∥L2 |u− uSFEM|H1

1/4 2.46765E-01 ratio 1.86976E+00 ratio
1/8 1.25735E-01 0.97275 1.00751E+00 0.89206
1/16 7.86280E-02 0.67727 5.55122E-01 0.85992
1/32 4.91390E-02 0.67817 3.31498E-01 0.74380
1/64 3.04667E-02 0.68963 2.14560E-01 0.62762
1/128 1.91169E-02 0.67239 1.53364E-01 0.48442
1/256 1.20800E-02 0.66223 1.16145E-01 0.40103

Table 2. DSFM : The Case ω = 3π
2 for Example 1.

h λBD ∥u− uDSFM∥L2 |u− uDSFM|H1

1/4 -0.84491 2.19156E-01 ratio 1.96950E+00 ratio
1/8 0.79786 4.80179E-02 2.19032 1.23294E+00 0.67572
1/16 0.93744 1.58683E-02 1.59743 6.78013E-01 0.86272
1/32 0.98311 3.69430E-03 2.10277 3.58807E-01 0.91810
1/64 0.99528 9.82260E-04 1.91113 1.84002E-01 0.96349
1/128 0.99892 2.34049E-04 2.06930 9.07121E-02 1.02035
1/256 0.99971 5.82881E-05 2.00553 4.49938E-02 1.01157

5. Numerical Experiments

We consider two examples: with one on the L-shape domain and the other on an
almost crack domain with mixed boundary conditions. The computational results
will be given by using FreeFEM++ code([8]).

Figure 1. L-shape domain with mesh for Example 1.

5.1. Example 1. Consider a Poisson equation (1) in the L-shape domain Ω1 =
((−1,−1) × (1, 1))\([0, 1) × (−1, 0]), with ΓD = ((0, 1) × {0}) ∪ ((−1, 1) × {1}) =
D1 ∪D2 and ΓN = ∂Ω\ΓD = N1 ∪N2 ∪N3 ∪N4 as in Figure 1.
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Table 3. Our algorithm with N = 1 : The Case ω = 3π
2 for

Example 1.

h λ(0) ∥u− u(1)∥L2 |u− u(1)|H1

1/4 -0.84491 4.34723E-01 ratio 2.08117E+00 ratio
1/8 0.79786 4.50666E-02 3.26997 9.43866E-01 1.14074
1/16 0.93744 1.40804E-02 1.67837 4.86763E-01 0.95536
1/32 0.98311 2.35463E-03 2.58011 2.35669E-01 1.04646
1/64 0.99528 6.24569E-04 1.91457 1.20646E-01 0.96598
1/128 0.99892 1.52077E-04 2.03806 5.98963E-02 1.01024
1/256 0.99971 3.92520E-05 1.95396 3.00458E-02 0.99531

Table 4. Our algorithm with N = 2 : The Case ω = 3π
2 for

Example 1.

h λ(1) ∥u− u(2)∥L2 |u− u(2)|H1

1/4 -0.785380 4.23798E-01 ratio 2.07828E+00 ratio
1/8 0.798366 4.50292E-02 3.23444 9.43832E-01 1.13879
1/16 0.937380 1.40840E-02 1.67680 4.86768E-01 0.9553
1/32 0.983200 2.35470E-03 2.58045 2.35659E-01 1.04653
1/64 0.995326 6.24160E-04 1.91555 1.20640E-01 0.966
1/128 0.998943 1.51952E-04 2.03830 5.98918E-02 1.01027
1/256 0.999724 3.91789E-05 1.95547 3.00421E-02 0.99537

Note that the inner angle is ω = 3π
2 and the singular function is

s = s(r, θ) = r
1
3 sin

θ

3
.

The exact solution is given by uexact = η0.75s + 3y3 + 2y2 − 5y, so that the input
function is f = −∆(η0.75s)− 18y − 4.

In Table 1, 2, 3 and 4, we give the computational results by three algorithms: 1)
standard FEM, 2) DSFM given in the subsection 3.3, and 3) our algorithms with
N = 1 and 2, respectively.

Figure 2. Domain and its mesh for Example 2.
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Table 5. Standard FEM : The Case ω = 39π
20 for Example 2.

h ∥u− uSFEM∥L2 |u− uSFEM|H1

1/4 2.11325E-01 ratio 1.87152 ratio
1/8 1.05863E-01 0.99727 1.15871 0.69169
1/16 6.12617E-02 0.78914 0.69622 0.73491
1/32 3.98885E-02 0.61901 0.45169 0.62419
1/64 2.71520E-02 0.55491 0.32560 0.47227
1/128 1.86719E-02 0.54019 0.25365 0.36025
1/256 1.29394E-02 0.52910 0.20595 0.30056

Table 6. DSFM : The Case ω = 39π
20 for Example 2.

h λBD,1 λBD,3 ∥u− uDSFM∥L2 |u− uDSFM|H1

1/4 0.23835 0.36859 2.03082E-01 ratio 2.01337 ratio
1/8 0.72528 0.82065 8.02292E-02 1.33986 1.65080 0.28645
1/16 1.01487 0.95525 2.44261E-02 1.71570 1.00758 0.71227
1/32 1.04674 0.98894 6.87108E-03 1.82981 0.53495 0.91342
1/64 1.04547 0.99727 2.10963E-03 1.70355 0.27016 0.98559
1/128 1.03446 0.99941 7.68869E-04 1.45618 0.13477 1.00327
1/256 1.02469 0.99988 3.34263E-04 1.20175 0.0673861 1.00002

Table 7. Our algorithm with N = 1 : The Case ω = 39π
20 for

Example 2.

h λ
(0)
1 λ

(0)
3 ∥u− u(1)∥L2 |u− u(1)|H1

1/4 0.23835 0.36859 1.88000E-01 ratio 1.84260E+00 ratio
1/8 0.72528 0.82065 5.63905E-02 1.74095 1.06591E+00 0.78966
1/16 1.01487 0.95525 1.33097E-02 2.08297 5.42950E-01 0.97319
1/32 1.04674 0.98894 3.80401E-03 1.80689 2.68317E-01 1.01688
1/64 1.04547 0.99727 1.41426E-03 1.42747 1.26153E-01 1.08876
1/128 1.03446 0.99941 6.58249E-04 1.10334 5.36991E-02 1.23220
1/256 1.02469 0.99988 3.18017E-04 1.04953 1.48306E-02 1.85632

5.2. Example 2. Consider a Poisson equation (1) on a domain Ω2 = ((−1,−1)×
(1, 1))\

{
(x, y) : 0 ≤ x ≤ 1,− tan( π

20 )x ≤ y ≤ 0
}
as in Figure 2. Note that the inner

angle ω = 39π
20 , and the singular functions are given by

s1 = s1(r, θ) = r
10
39 sin

10θ

39
and s3 = s3(r, θ) = r

10
13 sin

10θ

13
.

Let f = −∆(η0.75s1)−∆(η0.75s3) with the exact solution uexact = η0.75s1+η0.75s3.
We list the computational results in Table 5, 6, 7 and 8, from using three algo-

rithms as in Example 1.

6. Conclusion

For the L-shaped domain problem, DSFM in the subsection 3.3 gives the optimal
speed of convergence and our algorithm with eitherN = 1 orN = 2 give the optimal
speed in L2-norm and H1-seminorm. So, we note that N = 1 is enough and that
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Table 8. Our algorithm with N = 2 : The Case ω = 39π
20 for

Example 2.

h λ
(1)
1 λ

(1)
3 ∥u− u(2)∥L2 |u− u(2)|H1

1/4 0.18510 0.35974 1.93311E-01 ratio 1.84864 ratio
1/8 0.58836 0.82353 6.39505E-02 1.59590 1.08339 0.77091
1/16 0.90148 0.95423 1.52319E-02 2.06986 5.61886E-01 0.94720
1/32 0.96636 0.98868 3.85761E-03 1.98132 2.86476E-01 0.97186
1/64 0.99057 0.99711 9.55834E-04 2.01288 1.43644E-01 0.99592
1/128 0.99695 0.99932 2.33957E-04 2.03052 7.14834E-02 1.00682
1/256 0.99892 0.99981 5.86432E-05 1.99621 3.57906E-02 0.99803

Figure 3. Convergences in the L2-norm and H1-seminorm of
uexact−uh on an L-shaped domain (left) and crack domain (right).

the errors obtained with our algorithm are smaller than those with the others in
L2-norm.

For the case of almost crack domain, both DSFM in the subsection 3.3 and our
algorithm with N = 1, do not give the optimal speed of convergence in L2-norm.
But our algorithm with N = 2 gives the optimal convergence rate in L2-norm and
H1-seminorm. Moreover, the errors obtained with our algorithm are smaller than
those with the others in L2-norm andH1-seminorm. Figure 3 shows the convergence
rates in L2-norm and H1-seminorm of uexact − uh on an on an L-shaped domain
and crack domain for four cases.
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We conclude that our algorithm with N = 2 give optimal convergence for the
Poisson problems with singularity raised by the mixed boundary condition with
smaller errors than those of DSFM.
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