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MIXED FINITE VOLUME METHOD FOR ELLIPTIC PROBLEMS

ON NON-MATCHING MULTI-BLOCK TRIANGULAR GRIDS

YANNI GAO, JUNLIANG LV∗, AND LANHUI ZHANG

Abstract. This article presents a mixed finite volume method for solving second-order elliptic
equations with Neumann boundary conditions. The computational domains can be decomposed
into non-overlapping sub-domains or blocks and the diffusion tensors may be discontinuous across
the sub-domain boundaries. We define a conforming triangular partition on each sub-domains
independently, and employ the standard mixed finite volume method within each sub-domain.
On the interfaces between different sun-domains, the grids are non-matching. The Robin type
boundary conditions are imposed on the non-matching interfaces to enhance the continuity of the
pressure and flux. Both the solvability and the first order rate of convergence for this numerical
scheme are rigorously proved. Numerical experiments are provided to illustrate the error behavior
of this scheme and confirm our theoretical results.

Key words. Mixed finite volume method, error estimate, multi-block domain, non-matching
grids.

1. Introduction

Let Ω be a bounded polygonal domain in R
2 with the boundary ∂Ω. Consider

the following single phase flow model for the pressure p and the velocity u:

u = −K(x)(∇p− β(x)p) in Ω,(1)

c(x)p+∇ · u = f in Ω,(2)

u · n = 0 on ∂Ω.(3)

Here n is the outward unit normal vector with respect to ∂Ω, the coefficient K(x) is
a symmetric and uniformly positive-definite matrix representing the permeability
divided by the viscosity, β(x) is a vector representing gravity effect, c(x) > 0
represents the compressibility of the medium, and f is a source or sink term. In
many applications, due to the complexity of the domain geometry or the solution
itself, the computational domain Ω is required to be a multi-block domain with
grids defined independently on each block. Just as introduced in [19, 20], there are
two such examples. One is the modeling of flow in a porous medium with known
faults [24], in which material properties would have incontinuity. Another one is
the modeling of wells, whose solutions are more desired to be carried out on locally
refined grids.

In the numerical simulation of (1)-(3) defined on a multi-block domain, each
block is independently covered by a local grid and the standard mixed finite ele-
ment(MFE) methods could be used within each block. However, since grids do not
match on the interfaces between different blocks, the normal trace of the velocity
space is no longer continuous across these interfaces. In order to overcome this
obstacle, several efficient techniques have been developed to enhance the continuity
of the pressure and flux. In [20], the MFE method with mortar elements is pre-
sented, in which a mortar finite element space is introduced to approximate the
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trace of the pressure on the non-matching interfaces, and a continuity condition
of the flux is also imposed weakly. This method is optimally convergent if the
mortar finite element space has one order higher approximability than the normal
trace of the velocity space. In [19], the authors constructed a non-mortar MFE
method by imposing Robin type conditions on the non-matching interfaces to unite
the sub-domain problems. This method could achieve optimal convergent rate for
both the pressure and the velocity, and is more convenient for locally refined grids.
Both forementioned methods have to solve interface problems resulting from the
additional flux-matching conditions. In [10], the authors studied an alternative ap-
proach based on enhancing the velocity space along the sub-domain interfaces. The
characteristic of this construction is that it yields a flux-continuous velocity space,
and thus no interface problems are required to be solved. These three methods
have their respective advantages and have been extended to other different physical
and numerical models. Readers are referred to [14, 1, 3, 18, 21, 5] and references
therein for their recent developments.

Finite volume(FV) methods have been one class of the most commonly used nu-
merical methods for solving partial differential equations in practice, because they
can keep a certain conservation property and have flexibility in handling compli-
cated domain geometries and boundary conditions. On the other hand, it could
lead to a better numerical treatment on the velocity by discretizing the equations
(1)-(3) directly than just computing it from the pressure. Motivated by these
reasons, mixed finite volume(MFV) methods have been proposed and analyzed in
[15, 16, 17, 6, 25, 7, 8, 9, 22, 2, 23]. However, their construction and corresponding
theoretical analysis are all executed on matching grids. In this article we consider
MFV approximation of equations (1)-(3) on non-matching triangular grids. Assume
that Ω is a union of non-overlapping polygonal blocks, each covered by a conform-
ing triangular grid. On each block, we employ the standard MFV method based
on the lowest order Raviart-Thomas space to discretize equations (1)-(3). On the
interfaces between different blocks we use the same technique as that investigated
in [19] to keep the continuity of the pressure and flux. The Robin type condi-
tions are imposed weakly on the non-matching interfaces by using double-valued
Lagrange multipliers to approximate the trace of the pressure. Since the normal
components of the velocity space are no longer continuous across the non-matching
interfaces and the term related to Lagrange multipliers also needs to be estimated,
it is difficult to extend the theoretical analysis used in the standard MFV method
on matching grids to this numerical scheme. Under proper assumptions about the
regularity of exact solutions, we give the solvability and convergence analysis of
this MFV method on non-matching grids by the main ideas employed in [19]. But
some details are quite different.

The rest of the paper is organized as follows. In the next section we introduce
some necessary notations, assumptions and definitions. Section 3 is devoted to
formulating the MFV method on non-matching multi-block triangular grids and
presenting several lemmas which are indispensable in the theoretical analysis. Then,
we prove error estimates in Section 4. In Section 5, several numerical examples are
presented to test the computational efficiency of this numerical scheme and confirm
our theoretical results. Finally, we draw a brief conclusion in Section 6.

2. Preliminaries

We assume that Ω can be divided into non-overlapping sub-domains Ωi, i =
1, 2, · · · , n, i.e. Ω =

⋃n
i=1 Ωi. Let Γi = ∂Ωi\∂Ω, Γij = ∂Ωi ∩ ∂Ωj and Γ =

⋃n
i=1 Γi
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1.a Dual element associated to interior edge e. 1.b Dual element associated to boundary
edge e.

Figure 1. Primal and dual domains.

be the interior block interface for a given block, the interface between any two
sub-domains and the union of all such interfaces, respectively. Particularly, we let
Γii = ∅.

For the sake of simplicity, we denote p|Ωi
or its trace p|Γi

by pi. Let (·, ·)i, 〈·, ·〉i,
and 〈·, ·〉ij have the meaning of L2(Ωi) or (L

2(Ωi))
2 inner product, interface inner

product on L2(Γi), and interface inner product on L2(Γij), respectively. Similarly,
(·, ·) denotes the L2(Ω) or (L2(Ω))2 inner product.

Define function spaces:

H0(div; Ω) = {v ∈ (L2(Ω))2 : ∇ · v ∈ L2(Ω),v · n = 0 on ∂Ω},

and
H0(div; Ωi) = {v ∈ (L2(Ωi))

2 : ∇ · v ∈ L2(Ωi),v · n = 0 on ∂Ω}.

Then, the associated weak formulation of the first-order system (1)-(3) is: Find
(u, p) ∈ H0(div; Ω)× L2(Ω) such that

(K−1(x)u,v) = (p, divv) + (β(x)p,v), ∀ v ∈ H0(div; Ω),

(c(x)p, q) + (divu, q) = (f, q), ∀ q ∈ L2(Ω).

In the subsequence, we assume that there exist positive constants α1, α2, and α3

such that

α1 ≤ c(x) ≤ α2,(4)

and for any v ∈ (L2(Ω))2, q ∈ L2(Ω)

α3(‖ q ‖0,Ω + ‖ v ‖0,Ω) ≤ (c(x)q, q) + (K−1(x)v,v)− (β(x)q,v).(5)

Under this assumption, it is well known that equations (1)-(3) have a unique solu-
tion for any given f ∈ L2(Ω).

Let Th,i be a conforming and regular triangulation of Ωi, 1 ≤ i ≤ n, allowing for
the possibility that Th,i and Th,j need not match on Γi,j . TB ∈ Th,i stands for the
triangle element in Th,i whose barycenter is B. Let Th = ∪n

i=1Th,i be the union of
all such block triangulations and Ei be the set of edges of Th,i. For any given edge
e ∈ Ei, we denote two elements that share the common edge e by Te,1 and Te,2,
and denote the midpoint of edge e by Me. In particular, if the edge e is located
on ∂Ωi, we regard Te,2 as null set. Moreover, each partition Th,i, 1 ≤ i ≤ n would
induce a partition of Γi, we denote it by Γh,i.

Next we construct the dual partition T ∗
h,i associated with Th,i, 1 ≤ i ≤ n. For any

given edge e ∈ Ei, we define the dual element T ∗
e that surrounds edge e as follows.

As shown in Figure 1, the interior edge e is the common side of Te,1 = 4A1A2A3 and



MIXED FINITE VOLUME METHOD ON NON-MATCHING GRIDS 459

Te,2 = 4A1A3A4, and B1, B2 are the barycenters of these two elements. Connect
the nodes of Te,1 and Te,2 with the barycenters B1, B2 by straight segments. Thus,
the quadrilateral B1A3B2A1(dashed quadrilateral in Figure 1.a) is defined as T ∗

e . If
edge e is located on ∂Ωi, the dual element T ∗

e associated to e is a border triangular,
see Figure 1.b. For the convenience, we further denote Te,1 ∩ T ∗

e and Te,2 ∩ T ∗
e

by T ∗
e,1 and T ∗

e,2, respectively. Likewise, T ∗
e,2 is regarded as a null set, if edge e is

located on ∂Ωi.
On each Th,i, 1 ≤ i ≤ n, we take the lowest order Raviart-Thomas space Uh,i and

the piecewise constant function space Wh,i as trial function spaces to approximate
the fluid velocity and the pressure, respectively. To be special,

Uh,i = {vh,i : vh,i |T= (a+ bx, c+ by), a, b, c ∈ R,

∀ T ∈ Th,i;vh,i · n = 0, on ∂Ω},

Wh,i = {wh,i : wh,i |T is a constant, ∀ T ∈ Th,i}.

Let

Uh = {vh : vh |Ωi
∈ Uh,i, i = 1, 2, · · · , n},

Wh = {wh : wh |Ωi
∈ Wh,i, i = 1, 2, · · · , n}.

The normal components of vectors in Uh are continuous between elements within
each block Ωi, but there is no such restriction across Γ. Besides, define a operator
γh : Uh → (L2(Ω))2 as follows: for any e ∈ Ei, i = 1, 2, · · · , n,

(γhuh) |T∗

e
= uh |Te,1

(Me)χT∗

e,1
+ uh |Te,2

(Me)χT∗

e,2
,

where χT∗

e,1
and χT∗

e,2
are the characteristic functions of the sets T ∗

e,1 and T ∗
e,2,

respectively. Thus, it is obvious that for a function uh ∈ Uh its projection γhuh

is a piecewise constant vector function, which can take different constant vector
values on the left and right sides of an interior dual element and has continuous
normal components between elements within each block Ωi.

In order to ensure the continuity of p and flux on the non-matching interface
Γi,j , we choose a parameter α > 0 such that p and u satisfy the following Robin
type interface condition:

αpi − ui · ni = αpj + uj · nj on Γi,j , i, j = 1, 2, · · · , n,(6)

where ui is the trace of u on ∂Ωi, and ni is the outward unit normal vector with
respect to ∂Ωi, 1 ≤ i ≤ n. If the Robin type interface condition (6) is imposed
twice on each interface Γk,l: once for k = i, l = j, once for k = j, l = i, we can
have pi = pj and ui · ni = −uj · nj , see [19].

Finally, on each Γh,i, 1 ≤ i ≤ n, we define a piecewise constant function space
Λh,i, which is used to approximate the trace pi in the discretization of (6). Similarly,
let

Λh = {λh : λh |Γi
∈ Λh,i, 1 ≤ i ≤ n}.(7)
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3. MFV method on non-matching grids

Assume that the exact solution p ∈ H1(Ω), then for any given vh ∈ Uh and
e ∈ Ei, 1 ≤ i ≤ n, we have

∫

T∗

e

−∇p · γhvhdx =

∫

T∗

e ∩Te,1

−∇p · γhvhdx+

∫

T∗

e ∩Te,2

−∇p · γhvhdx

=

∫

T∗

e,1

−∇p · γhvhdx+

∫

T∗

e,2

−∇p · γhvhdx

=

∫

T∗

e,1

p∇ · (γhvh)dx−

∫

∂T∗

e,1

p(γhvh) · nds

+

∫

T∗

e,2

p∇ · (γhvh)dx−

∫

∂T∗

e,2

p(γhvh) · nds

=−

∫

∂T∗

e,1

p(γhvh) · nds−

∫

∂T∗

e,2

p(γhvh) · nds,(8)

where Green’s formulation is used. If e ∈ Ei is located in the interior of Ωi, then p
and the normal component of γhvh are continuous across edge e, and if e ∈ Ei is
located on ∂Ω, the normal component of γhvh is zero. Therefore, summarising (8)
over all edges e ∈ Ei leads to

(−∇p, γhvh)i =
∑

e∈Ei

−

∫

∂T∗

e ∩Te,1

pγhvh |Te,1
(Me) · nds

−

∫

∂T∗

e ∩Te,2

pγhvh |Te,2
(Me) · nds− 〈pi, γhvh · ni〉i.

Here and below, no matter if e ∈ Ei is located on ∂Ωi, the notations ∂T ∗
e ∩ Te,1

and ∂T ∗
e ∩ Te,2 stand for the dual element edges which are located on the interiors

of Te,1 and Te,2. For example, ∂T ∗
e ∩ Te,1 = A1B1A3 and ∂T ∗

e ∩ Te,2 = A1B2A3 in
Figure 1.a, and ∂T ∗

e ∩ Te,1 = A1B1A3 and ∂T ∗
e ∩ Te,2 = ∅ in Figure 1.b. Let

B(p,vh)i =
∑

e∈Ei

−

∫

∂T∗

e ∩Te,1

pγhvh |Te,1
(Me) · nds

−

∫

∂T∗

e ∩Te,2

pγhvh |Te,2
(Me) · nds,

B(p,vh) =

n∑

i=1

B(p,vh)i.

Using γhvh, qh ∈ Wh, and µh ∈ Λh to test equations (1), (2), and (6), respectively,
we obtain for 1 ≤ i ≤ n,

(K−1(x)u, γhvh)i = B(p,vh)i + (β(x)p, γhvh)i − 〈pi, γhvh · ni〉i,(9)

(c(x)p, qh)i + (∇ · u, qh)i = (f, qh)i,(10)

〈αpi − ui · ni, µh,i〉i =
n∑

j=1

〈αpj + uj · nj , µh,i〉i,j ,(11)

where µh,i = µh |Γi
for any 1 ≤ i ≤ n.
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Then, the MFV method we consider is: Find uh ∈ Uh, ph ∈ Wh, λh ∈ Λh such
that, for any 1 ≤ i ≤ n,

(K−1(x)uh, γhvh)i

= B(ph,vh)i + (β(x)ph, γhvh)i − 〈λh,i, γhvh · ni〉i, ∀vh ∈ Uh,(12)

(c(x)ph, qh)i + (∇ · uh, qh)i = (f, qh)i, ∀ qh ∈ Wh,(13)

〈αλh,i − uh,i · ni, µh,i〉i =
n∑

j=1

〈αλh,j + uh,j · nj , µh,i〉i,j , ∀ µh ∈ Λh,(14)

where for any 1 ≤ i ≤ n, λh,i = λh |Γi
and uh,i = uh |Ωi

.
Let ||| · |||i and ||| · |||i,j be the norms induced by the inner products 〈·, ·〉i and

〈·, ·〉i,j respectively. For any given uh = (u1,h, u2,h) ∈ Uh, we define

| uh |21,h=
∑

T∈Th

‖ ∇u1,h ‖20,T + ‖ ∇u2,h ‖20,T ,

where ‖ · ‖0,T is the norm of L2(T ). Moreover, we define

H̃1(Ω) = {v : v |Ωi
∈ H1(Ωi), 1 ≤ i ≤ n}.

There exists a projection Πh,i from (H1(Ωi))
2
⋂
H0(div; Ωi) onto Uh,i, satisfying

the following properties for any q ∈ (H1(Ωi))
2
⋂
H0(div; Ωi), see [20],

(∇ · (Πh,iq − q), wh,i)i = 0, ∀ wh,i ∈ Wh,i,(15)

〈(Πh,iq − q) · ni,vh,i · ni〉i = 0, ∀ vh,i ∈ Uh,i.(16)

Furthermore, we define a projection Πh from (H1(Ω))2
⋂
H0(div; Ω) onto Uh, sat-

isfying
(
Πhq

)
|Ωi

= Πh,i(q |Ωi
), ∀ q ∈ (H1(Ω))2

⋂
H0(div; Ω).(17)

For any g ∈ L2(Ω), let ĝ ∈ Wh be its L2(Ω) projection satisfying

(g − ĝ, wh) = 0, ∀ wh ∈ Wh.(18)

Similarly, we define the projection of a function g ∈ L2(Γi) by g ∈ Λh,i, satisfying

〈g − g, µh,i〉i = 0, ∀ µh,i ∈ Λh,i.(19)

In the rest of this article, h will denote the maximum grid size and the symbol C
will denote a positive generic constant independent of h that may take on different
values in different places.

In the theoretical analysis, the following lemmas are necessary.

Lemma 3.1. For any vh ∈ Uh and wh ∈ Wh, it follows that

B(wh,vh)i = (divvh, wh)i.(20)

Proof: First, B(wh,vh)i can be rewritten as follows

B(wh,vh)i =
∑

e∈Ei

−

∫

∂T∗

e ∩Te,1

whγhvh |Te,1
(Me) · nds

−

∫

∂T∗

e ∩Te,2

whγhvh |Te,2
(Me) · nds,

=
∑

T∈Th,i

QT (wh,vh),
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where

QT (wh,vh) =
∑

e∈∂T

−

∫

∂T∗

e ∩T

whγhvh |T (Me) · nds.(21)

Here, the notation ∂T ∗
e ∩ T still does not include the edge e, when e is located

on ∂Ωi. For example, ∂T ∗
e ∩ T = A1B1A3 in Figure 1.b. From the definition of

operator γh, we have

QT (wh,vh) =
∑

e∈∂T

−

∫

∂T∗

e ∩T

whvh |T (Me) · nds.

Moreover, using Green’s formula yields

QT (wh,vh) =
∑

e∈∂T

∫

e

whvh |T (Me) · nds−

∫

T∗

e ∩T

whdiv
(
vh |T (Me)

)
dx

=
∑

e∈∂T

∫

e

whvh |T (Me) · nds.(22)

On each element T ∈ Th,i, wh is a constant, and each component of vh is a linear
polynomial. In addition, Me is the midpoint of edge e. Therefore, we have from
(22) that

QT (wh,vh) =
∑

e∈∂T

∫

e

whvh |T ·nds.(23)

Again, it follows from Green’s formula that

QT (wh,vh) =

∫

T

whdivvhdx+

∫

T

∇wh · vhdx

=

∫

T

whdivvhdx.(24)

Thus, we get the desired result by summing (24) over T ∈ Th,i.

Lemma 3.2. For any vh ∈ Uh, there holds that

‖ vh − γhvh ‖0,Ω≤ Ch | vh |1,h .(25)

Proof: Let vh = (v1,h, v2,h) ∈ Uh. First, we have

‖ vh − γhvh ‖20,Ω=
∑

T∈Th

‖ vh − γhvh ‖20,T .(26)

On each element T ∈ Th, if vh is a constant vector, then vh− γhvh = 0. Therefore,
by Theorem 5 with scaling in [12], we get

‖ vh − γhvh ‖20,T≤ Ch2(| v1,h |21,T + | v2,h |21,T ).(27)

Combining (26) and (27) leads to

‖ vh − γhvh ‖0,Ω≤ Ch | vh |1,h .
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4. Solvability and Convergence

In the following theorem, we present that the proposed MFV method (12)-(14)
has a unique solution.

Theorem 4.1. If the coefficients of system (1)-(3) satisfy the assumptions (4)
and (5) and h is sufficiently small, then there exists a unique solution to the MFV
method (12)-(14).

Proof: In (12) and (13), take the test functions vh = uh and qh = ph, plus them,
cancel the terms B(ph,uh)i and (divuh, ph)i, and sum over i to get

(c(x)ph, ph) + (K−1(x)uh, γhuh) =(β(x)ph, γhuh)−
n∑

i=1

〈λh,i, γhuh · ni〉i + (f, ph).

Compared with the non-mortar mixed finite element method proposed in [19], there
is not any change in the third equation (14). Therefore, we employ the same way
to estimate (14). First, the following two equalities are valid, refer to [19] for more
details.

1

4
α

n∑

i,j=1

〈λh,i − λh,j , λh,i − λh,j〉i,j =
1

2

n∑

i,j=1

〈uh,i · ni + uh,j · nj , λh,i〉i,j ,

1

4α

n∑

i,j=1

〈uh,i · ni + uh,j · nj ,uh,i · ni + uh,j · nj〉i,j

=
1

2

n∑

i,j=1

〈λh,i,uh,i · ni − uh,j · nj〉i,j .

Next, summing the above three equalities yields

(c(x)ph, ph) + (K−1(x)uh, γhuh) +
1

4
α

n∑

i,j=1

〈λh,i − λh,j , λh,i − λh,j〉i,j(28)

+
1

4α

n∑

i,j=1

〈uh,i · ni + uh,j · nj ,uh,i · ni + uh,j · nj〉i,j

= (β(x)ph, γhuh) +
n∑

i=1

〈λh,i, (uh − γhuh) · ni〉i + (f, ph).

In equation (28) we set f = 0, and rewrite it as follows

(c(x)ph, ph) + (K−1(x)uh,uh)− (β(x)ph,uh)

+
1

4
α

n∑

i,j=1

〈λh,i − λh,j , λh,i − λh,j〉i,j

+
1

4α

n∑

i,j=1

〈uh,i · ni + uh,j · nj ,uh,i · ni + uh,j · nj〉i,j

= (K−1(x)uh, (uh − γhuh)) + (β(x)ph, γhuh − uh)

+

n∑

i=1

〈λh,i, (uh − γhuh) · ni〉i.
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By the assumption (5), we have

C(‖ ph ‖20,Ω + ‖ uh ‖20,Ω) +
1

4
α

n∑

i,j=1

||| λh,i − λh,j |||
2
i,j(29)

+
1

4α

n∑

i,j=1

||| uh,i · ni + uh,j · nj |||
2
i,j

≤ (K−1(x)uh, (uh − γhuh)) + (β(x)ph, γhuh − uh)

+

n∑

i=1

〈λh,i, (uh − γhuh) · ni〉i.

Now we begin to estimate the three terms on the right hand side of (29). For
the first term, we have

| (K−1(x)uh, (uh − γhuh)) | ≤ C ‖ uh ‖0,Ω‖ uh − γhuh ‖0,Ω

≤ Ch ‖ uh ‖0,Ω| uh |1,h,(30)

where Lemma 3.2 is used. Similarly, the second term satisfies that

| (β(x)ph, γhuh − uh) | ≤ C ‖ ph ‖0,Ω‖ uh − γhuh ‖0,Ω

≤ Ch ‖ ph ‖0,Ω| uh |1,h .(31)

For the third term, because λh,i is a piecewise constant function on the partition
Γh,i, we have

n∑

i=1

〈λh,i, (uh − γhuh) · ni〉i =
n∑

i=1

∑

e∈Γh,i

λh,i

∫

e

(uh − γhuh) · nids,

where the element e in Γh,i is also an edge in the triangulation Th,i. By the definition
of γhuh, we have

n∑

i=1

〈λh,i, (uh − γhuh) · ni〉i =
n∑

i=1

∑

e∈Γh,i

λh,i

∫

e

(uh − uh(Me)) · nids

=0,(32)

where Me is the midpoint of e.
In equation (13), taking qh = divuh and f = 0 yields

‖ divuh ‖20,Ω= −(c(x)ph, divuh),

By the assumption (4), we have

‖ divuh ‖20,Ω≤ C ‖ ph ‖0,Ω‖ divuh ‖0,Ω .

This implies that

‖ divuh ‖0,Ω≤ C ‖ ph ‖0,Ω .

Since | uh |1,h≤ C ‖ divuh ‖0,Ω, we get

| uh |1,h≤ C ‖ ph ‖0,Ω .

Thus, the inequalities (30) and (31) can be further estimated as

| (K−1(x)uh, (uh − γhuh)) | ≤ C(h ‖ uh ‖20,Ω +h ‖ ph ‖20,Ω),(33)

| (β(x)ph, γhuh − uh) | ≤ Ch ‖ ph ‖20,Ω,(34)

where inequality (33) is obtained by using the usual Cauchy-Schwarz inequality.



MIXED FINITE VOLUME METHOD ON NON-MATCHING GRIDS 465

Finally, combining (29), (32), (33) and (34), we have

C(1 − h) ‖ ph ‖20,Ω +C(1− h) ‖ uh ‖20,Ω +
1

4
α

n∑

i,j=1

||| λh,i − λh,j |||
2
i,j

+
1

4α

n∑

i,j=1

||| uh,i · ni + uh,j · nj |||
2
i,j≤ 0.

It is obvious that ph = 0 and uh = 0, provided sufficiently small h. Then (12)
implies that λh,i = 0, 1 ≤ i ≤ n. Thus, the proof of Theorem 4.1 is completed.

Now, we show the convergence result in the following theorem for our MFV
method (12)-(14).

Theorem 4.2. Let Th,i be a regular triangulation, {uh, ph, λh} be the solution of
the problem (12)-(14), and {u, p} be the solution of the problem (1)-(3). Under the
assumptions (4) and (5), then there holds that

‖ p− ph ‖0,Ω + ‖ u− uh ‖0,Ω +(α

n∑

i,j=1

||| λh,i − λh,j |||
2
i,j)

1/2(35)

+(
1

α

n∑

i,j=1

||| uh,i · ni + uh,j · nj |||
2
i,j)

1/2

≤ Ch
{
‖ p ‖1,Ω +(

n∑

i=1

‖ u ‖21,Ωi
)1/2 + (

n∑

i=1

α ‖ pi ‖
2
1,Γi

)1/2

+(

n∑

i=1

1

α
‖ ui ‖

2
1,Γi

)1/2
}
,

provided that u ∈ H0(div,Ω)
⋂
(H̃1(Ω))2, p ∈ H1(Ω), and the traces ui ∈ (H1(Γi))

2,
pi ∈ H1(Γi).

Proof: For the convenience of analysis, we define the errors as

ϕ = p− ph, ψ = u− uh, φi = pi − λh,i.

Subtract (12) and (13) from (9) and (10), respectively, and sum over i to obtain

(K−1(x)ψ, γhvh) = B(ϕ,vh) + (β(x)ϕ, γhvh)−
n∑

i=1

〈φi, γhvh · ni〉i, ∀vh ∈ Uh,(36)

(c(x)ϕ, qh) + (divψ, qh) = 0, ∀ qh ∈ Wh.(37)

Taking vh = Πhψ and qh = ϕ̂ in (36) and (37), respectively, and then summing
these two equations leads to

(c(x)ϕ, ϕ̂) + (K−1(x)ψ, γh(Πhψ)) + (divψ, ϕ̂) =B(ϕ,Πhψ) + (β(x)ϕ, γh(Πhψ))

−
n∑

i=1

〈φi, γh(Πhψ) · ni〉i.(38)

The first two terms of the left hand side of (38) can be formulated as

(c(x)ϕ, ϕ̂) =(c(x)ϕ, ϕ) + (c(x)ϕ, ϕ̂ − ϕ),(39)

(K−1(x)ψ, γh(Πhψ)) =(K−1(x)ψ,ψ) + (K−1(x)ψ, γh(Πhψ)−Πhψ)(40)

+ (K−1(x)ψ,Πhψ −ψ).



466 Y.N. GAO, J.L. LV, AND L.H. ZHANG

Due to

ϕ̂− ϕ = (p̂− ph)− (p− ph) = p̂− p,

Πhψ −ψ = (Πhu− uh)− (u − uh) = Πhu− u,

we further have

(c(x)ϕ, ϕ̂) =(c(x)ϕ, ϕ) + (c(x)ϕ, p̂− p),(41)

(K−1(x)ψ, γh(Πhψ)) =(K−1(x)ψ,ψ) + (K−1(x)ψ, γh(Πhψ)−Πhψ)(42)

+ (K−1(x)ψ,Πhu− u).

Similarly, the last two terms of the right hand side of (38) can be formulated as

(β(x)ϕ, γh(Πhψ)) =(β(x)ϕ,ψ) + (β(x)ϕ, γh(Πhψ)−Πhψ)(43)

+ (β(x)ϕ,Πhu− u),

−
n∑

i=1

〈φi, γh(Πhψ) · ni〉i =
n∑

i=1

〈φi, (Πhψ − γh(Πhψ)) · ni〉i(44)

−
n∑

i=1

〈φi,Πhψ · ni〉i.

Now turn to consider the terms (divψ, ϕ̂) and B(ϕ,Πhψ) in (38). It follows from
the definitions of Πh and ϕ̂ that

(divψ, ϕ̂) = (div(Πhψ), ϕ̂) = (div(Πhψ), ϕ).

Using Green’s formula in above equation yields

(divψ, ϕ̂) =
∑

T∈Th

∑

e∈∂T

∫

e

(Πhψ) · nϕds− (Πhψ,∇ϕ).(45)

Besides,

B(ϕ,Πhψ) =

n∑

i=1

B(ϕ,Πhψ)i

=
n∑

i=1

∑

e∈Ei

{
−

∫

∂T∗

e ∩Te,1

ϕγh(Πhψ) |Te,1
(Me) · nds

−

∫

∂T∗

e ∩Te,2

ϕγh(Πhψ) |Te,2
(Me) · nds

}

=
∑

T∈Th

∑

e∈∂T

−

∫

∂T∗

e

⋂
T

ϕγh(Πhψ) |T (Me) · nds.(46)

Here, the notation ∂T ∗
e ∩ T has the same meaning as that in (21). Again using

Green’s formula in (46), we have

B(ϕ,Πhψ) =
∑

T∈Th

∑

e∈∂T

∫

e

ϕγh(Πhψ) |T (Me) · nds− (γh(Πhψ),∇ϕ).(47)
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Thus, subtracting (45) from (47) leads to

B(ϕ,Πhψ)− (divψ, ϕ̂) =
∑

T∈Th

∑

e∈∂T

∫

e

ϕ(γh(Πhψ) |T (Me)(48)

−Πhψ) · nds− (γh(Πhψ)−Πhψ,∇ϕ)

=
∑

T∈Th

∑

e∈∂T

∫

e

(p− ph)((Πhψ) |T (Me)

−Πhψ) · nds− (γh(Πhψ)−Πhψ,∇ϕ).

Similar to (22) and (23), the following equality holds

∑

T∈Th

∑

e∈∂T

∫

e

ph((Πhψ) |T (Me)−Πhψ) · nds = 0.(49)

Since p and the normal component of Πhψ are continuous within each block, we
have

∑

T∈Th

∑

e∈∂T

∫

e

p((Πhψ) |T (Me)−Πhψ) · nds(50)

=

n∑

i=1

∑

e∈Γh,i

∫

e

p((Πhψ)(Me)−Πhψ) · nds.

Because pi is a constant on e ∈ Γh,i, one can get

∫

e

pi((Πhψ)(Me)−Πhψ) · nds = 0.

Then it holds that

∑

T∈Th

∑

e∈∂T

∫

e

p((Πhψ) |T (Me)−Πhψ) · nds(51)

=

n∑

i=1

∑

e∈Γh,i

∫

e

(p− pi)((Πhψ)(Me)−Πhψ) · nds.

Combining (48), (49) and (51) yields

B(ϕ,Πhψ)− (divψ, ϕ̂) =

n∑

i=1

∑

e∈Γh,i

∫

e

(p− pi)((Πhψ)(Me)−Πhψ) · nds(52)

− (γh(Πhψ)−Πhψ,∇ϕ)

=

n∑

i=1

〈p− pi, (γh(Πhψ)−Πhψ) · ni〉i

− (γh(Πhψ)−Πhψ,∇ϕ).
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Substitute (41), (42), (43), (44) and (52) into (38) to obtain

(c(x)ϕ, ϕ) + (K−1(x)ψ,ψ)− (β(x)ϕ,ψ)(53)

=(c(x)ϕ, p− p̂) + (K−1(x)ψ,u−Πhu)− (β(x)ϕ,u−Πhu)

+ (K−1(x)ψ,Πhψ − γh(Πhψ)) + (β(x)ϕ, γh(Πhψ)−Πhψ)

+

n∑

i=1

〈φi, (Πhψ − γh(Πhψ)) · ni〉i −
n∑

i=1

〈φi,Πhψ · ni〉i

+
n∑

i=1

〈p− pi, (γh(Πhψ)−Πhψ) · ni〉i − (γh(Πhψ)−Πhψ,∇ϕ).

Since the equations (14) and (11) are the same as the MFE method in [19], the
authors of [19] have derived

n∑

i,j=1

α ||| φi − φj |||
2
i,j +

n∑

i,j=1

1

α
||| ψi · ni +ψj · nj |||

2
i,j(54)

≤ C
(
α ||| p− pi |||

2
i +

1

α
||| (u−Πhu) · ni |||

2
i

)
+

n∑

i=1

〈φi,Πhψ · ni〉i.

Taking qh = divΠhψ in (37), we have

− (c(x)ϕ, divΠhψ) = (divψ, divΠhψ) = (divΠhψ, divΠhψ),(55)

where the second equality is derived by using (15). Thus, it follows from (55) that

| Πhψ |1,h≤ C ‖ divΠhψ ‖0,Ω≤ C ‖ ϕ ‖0,Ω .(56)

Now, we begin to estimate equation (53). First, from the assumption (5), we
have

C(‖ ϕ ‖20,Ω + ‖ ψ ‖20,Ω)(57)

≤(c(x)ϕ, p− p̂) + (K−1(x)ψ,u−Πhu)− (β(x)ϕ,u−Πhu)

+ (K−1(x)ψ,Πhψ − γh(Πhψ)) + (β(x)ϕ, γh(Πhψ)−Πhψ)

+

n∑

i=1

〈φi, (Πhψ − γh(Πhψ)) · ni〉i −
n∑

i=1

〈φi,Πhψ · ni〉i

+
n∑

i=1

〈p− pi, (γh(Πhψ)−Πhψ) · ni〉i − (γh(Πhψ)−Πhψ,∇ϕ).

From the Young’s inequality, we know that the first three terms of the right hand
side of (57) satisfy

| (c(x)ϕ, p− p̂) |≤C ‖ ϕ ‖0,Ω‖ p− p̂ ‖0,Ω

≤Cε ‖ ϕ ‖20,Ω +
C

ε
‖ p− p̂ ‖20,Ω,(58)

| (K−1(x)ψ,u−Πhu) |≤C ‖ ψ ‖0,Ω‖ u−Πhu ‖0,Ω

≤Cε ‖ ψ ‖20,Ω +
C

ε
‖ u−Πhu ‖20,Ω,(59)

| −(β(x)ϕ,u−Πhu) |≤C ‖ ϕ ‖0,Ω‖ u−Πhu ‖0,Ω

≤Cε ‖ ϕ ‖20,Ω +
C

ε
‖ u−Πhu ‖20,Ω,(60)



MIXED FINITE VOLUME METHOD ON NON-MATCHING GRIDS 469

where ε is a positive constant, which will be determined at the end of this proof.
It follows from (25) and (56) that

(K−1(x)ψ,Πhψ − γh(Πhψ)) + (β(x)ϕ, γh(Πhψ)−Πhψ)

≤C ‖ ψ ‖0,Ω‖ Πhψ − γh(Πhψ) ‖0,Ω +C ‖ ϕ ‖0,Ω‖ γh(Πhψ)−Πhψ ‖0,Ω

≤Ch ‖ ψ ‖0,Ω| Πhψ |1,h +Ch ‖ ϕ ‖0,Ω| Πhψ |1,h

≤Ch ‖ ψ ‖0,Ω‖ ϕ ‖0,Ω +Ch ‖ ϕ ‖20,Ω

≤Ch ‖ ψ ‖20,Ω +Ch ‖ ϕ ‖20,Ω +Ch ‖ ϕ ‖20,Ω,(61)

where the last inequality is obtained from the Cauchy inequality. On each e ∈ Γh,i,

since φi is a constant, we have
∫

e

φi(Πhψ − γh(Πhψ)) · nds =

∫

e

φi(Πhψ − (Πhψ)(Me)) · nds = 0.

Therefore,

n∑

i=1

〈φi, (Πhψ − γh(Πhψ)) · ni〉i +
n∑

i=1

〈p− pi, (γh(Πhψ)−Πhψ) · ni〉i(62)

=

n∑

i=1

〈φi − φi, (Πhψ − γh(Πhψ)) · ni〉i +
n∑

i=1

〈p− pi, (γh(Πhψ)−Πhψ) · ni〉i

=

n∑

i=1

〈pi − pi, (Πhψ − γh(Πhψ)) · ni〉i +
n∑

i=1

〈p− pi, (γh(Πhψ)−Πhψ) · ni〉i

=0,

where we have used the fact that φi − φi = (pi − λh,i) − (pi − λh,i). For the last
term on the right hand side of (57), it is obvious that

(γh(Πhψ)−Πhψ,∇ϕ) = (γh(Πhψ)−Πhψ,∇p).

Using (25), (56) and the Young’s inequality in above equality, we have

(γh(Πhψ)−Πhψ,∇ϕ) ≤Ch | Πhψ |1,h‖ ∇p ‖0,Ω

≤Ch ‖ ϕ ‖0,Ω‖ ∇p ‖0,Ω

≤Cε ‖ ϕ ‖20,Ω +
C

ε
h2 ‖ ∇p ‖20,Ω .(63)

Substitute (58), (59), (60), (61), (62) and (63) into (57) to obtain

(C − Cε− Ch) ‖ ϕ ‖20,Ω +(C − Cε− Ch) ‖ ψ ‖20,Ω

≤
C

ε
‖ p− p̂ ‖20,Ω +

C

ε
‖ u−Πhu ‖20,Ω +

C

ε
h2 ‖ ∇p ‖20,Ω −

n∑

i=1

〈φi,Πhψ · ni〉i.

It is easy to see that there exists a positive constant ε which is independent of h,
such that

‖ ϕ ‖20,Ω + ‖ ψ ‖20,Ω

≤C ‖ p− p̂ ‖20,Ω +C ‖ u−Πhu ‖20,Ω +Ch2 ‖ ∇p ‖20,Ω −
n∑

i=1

〈φi,Πhψ · ni〉i,(64)

provided sufficiently small h .
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Figure 2. Initial grids for Example 1 and Example 2.
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Figure 3. Computed velocity and exact velocity for Example 1.

We finally plus (54) and (64) to get

‖ ϕ ‖20,Ω + ‖ ψ ‖20,Ω +
n∑

i,j=1

α ||| φi − φj |||
2
i,j +

n∑

i,j=1

1

α
||| ψi · ni +ψj · nj |||

2
i,j

≤C ‖ p− p̂ ‖20,Ω +C ‖ u−Πhu ‖20,Ω +Ch2 ‖ ∇p ‖20,Ω

+C
(
α ||| p− pi |||

2
i +

1

α
||| (u−Πhu) · ni |||

2
i

)
.

From the approximate properties presented in [20], the desired result (35) is ob-
tained immediately.

5. Numerical examples

In this section, we report some numerical results yielded by the MFV method
proposed in this article. We compare them with the numerical results obtained
by the non-mortar MFE method presented in [19]. For simplicity we choose the
unit square as the initial domain Ω in all examples, which is divided into four
sub-domains with interfaces along the lines x = 1/2 and y = 1/2 . Let h be the
maximum grid size in every triangulation. In addition, we define the following norm
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Figure 4. Computed pressure and exact pressure for Example 1.

Table 1. Errors and convergence rates for Example 1 using the
MFE method.

1/h ‖ u− uh ‖0,Ω Order ‖ p− ph ‖0,Ω Order ‖ p− λh ‖L Order
4 1.3565× 10−1 − 5.3189× 10−2 − 1.0216× 10−1 −
8 6.4991× 10−2 1.0615 2.7212× 10−2 0.9668 4.5157× 10−2 1.1778
16 3.1283× 10−2 1.0548 1.3691× 10−2 0.9910 2.0516× 10−2 1.1382
32 1.5234× 10−2 1.0380 6.8512× 10−3 0.9987 9.5879× 10−3 1.0974
64 7.6110× 10−3 1.0147 3.4263× 10−3 0.9999 4.6839× 10−3 1.0335

to measure the error p− λh:

‖ p− λh ‖L=

( n∑

i=1

||| pi − λh,i |||
2
i

)1/2

.

Example 1: We consider the problem (1)-(3) with β(x) ≡ 0 and c(x) ≡ 1.
The source term f(x) is chosen in such a way that the exact solution and tensor
coefficient are

p(x, y) =
cos(πx)cos(πy)

π
,

and

K(x) = I, for 0 ≤ y ≤ 1/2, K(x) =

(
2y 0
0 1

)
, for 1/2 ≤ y ≤ 1.

It is easy to find that K(x) is smooth on the whole domain Ω. The initial non-
matching grid is shown in Figure 2.a. Numerical errors and convergence rates are
presented in Table 2. We note that optimal convergence O(h) is observed for uh,
ph and λh, which conforms to our theoretical results. From Tables 1 and 2, it can
be seen that the MFV method is comparable to the MFE method. The computed
solutions and the exact solutions are shown in Figures 3 and 4 for both pressure
and velocity.
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Table 2. Errors and convergence rates for Example 1 using the
MFV method.

1/h ‖ u− uh ‖0,Ω Order ‖ p− ph ‖0,Ω Order ‖ p− λh ‖L Order
4 1.3565× 10−1 − 5.3287× 10−2 − 1.0230× 10−1 −
8 6.4990× 10−2 1.0615 2.7220× 10−2 0.9691 4.5169× 10−2 1.1794
16 3.1282× 10−2 1.0548 1.3692× 10−2 0.9913 2.0510× 10−2 1.1390
32 1.5230× 10−2 1.0384 6.8489× 10−3 0.9993 9.5800× 10−3 1.0982
64 7.6108× 10−3 1.0150 3.4109× 10−3 1.0057 3.3428× 10−3 1.0348
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Figure 5. Computed velocity and exact velocity for Example 2.

Example 2: Consider the following Dirichlet boundary value problem:

u = −K(x)∇p inΩi,(65)

∇ · u = q inΩi,(66)

p|∂Ω = g on ∂Ω,(67)

where the exact solution is

p(x, y) =

{
x2y3 + cos(xy), 0 6 x 6 1

2
,

(2x+99
200

)2y3 + cos(2x+99
200

y), 1
2
6 x 6 1,

and the coefficient

K(x) = I, for 0 6 x 6
1

2
, K(x) = 100 ∗ I, for

1

2
6 x 6 1.

In this example, the coefficient K(x) is discontinuous across the interfaces, and
the MFV method proposed for problems with Neumann boundary condition is
extended to Dirichlet boundary value problems. The initial non-matching grid is
shown in Figure 2.b. Numerical errors and convergence rates filled in Tables 3 and
4 indicate that this MFV method on non-matching grid is convergent at O(h) rate
for all variables and the computational results of MFE method and MFV method
are almost the same. By the stability estimate and the error analysis used in this
article, we could get conclusions similar to these in Theorems 4.1 and 4.2, except
that there are no terms associated with the pressure. But it can be estimated
additionally by the duality argument, we refer readers to [20] for a similar analysis.
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Figure 6. Computed pressure and exact pressure for Example 2.

Table 3. Errors and convergence rates for Example 2 using the
MFE method.

1/h ‖ u− uh ‖0,Ω Order ‖ p− ph ‖0,Ω Order ‖ p− λh ‖L Order
4 7.4465× 10−2 − 1.8007× 10−2 − 6.7140× 10−2 −
8 3.7975× 10−2 0.9715 9.1334× 10−3 0.9793 3.3782× 10−2 0.9909
16 1.7750× 10−2 1.0972 4.5832× 10−3 0.9947 1.5825× 10−2 1.0403
32 7.3916× 10−3 1.0638 2.2936× 10−3 0.9987 6.9380× 10−3 1.1432
64 3.3621× 10−3 1.1365 1.1437× 10−3 1.0039 3.1464× 10−3 1.1408

Table 4. Errors and convergence rates for Example 2 using the
MFV method.

1/h ‖ u− uh ‖0,Ω Order ‖ p− ph ‖0,Ω Order ‖ p− λh ‖L Order
4 8.1843× 10−2 − 1.8013× 10−2 − 7.5458× 10−2 −
8 4.1933× 10−2 0.9647 9.1342× 10−3 0.9796 3.8232× 10−2 0.9808
16 1.9528× 10−2 1.1025 4.5833× 10−3 0.9948 1.8666× 10−2 1.0343
32 8.9488× 10−3 1.1257 2.2937× 10−3 0.9987 8.5317× 10−3 1.1295
64 4.1004× 10−3 1.1259 1.1466× 10−3 1.0003 3.8982× 10−3 1.1300

Table 5. Errors and convergence rates for Example 3 using the
MFE method.

1/h ‖ u− uh ‖0,Ω Order ‖ p− ph ‖0,Ω Order ‖ p− λh ‖L Order
4 2.1274× 10−1 − 4.3351× 10−2 − 1.7710× 10−1 −
8 1.2550× 10−1 0.7614 2.1374× 10−2 1.0202 1.0023× 10−1 0.8212
16 6.7228× 10−2 0.9005 1.0382× 10−2 1.0417 5.2904× 10−2 0.9218
32 3.4467× 10−2 0.9638 5.1334× 10−3 1.0160 2.7112× 10−2 0.9644
64 1.7264× 10−2 0.9974 2.5489× 10−3 1.0100 1.3706× 10−2 0.9841

Example 3: We consider the problem (65)-(67) with K(x) = I and the source
term q is chosen in such a way that the exact solution is

p(x, y) = bx(eax − ea)y(eay − ea), a = 10, b = 0.90909× 10−9.

This solution obviously changes substantially in the upper right corner of the do-
main Ω. Therefore, we apply a locally refined grid as the initial grid, on which the



474 Y.N. GAO, J.L. LV, AND L.H. ZHANG

Table 6. Errors and convergence rates for Example 3 using the
MFV method.

1/h ‖ u− uh ‖0,Ω Order ‖ p− ph ‖0,Ω Order ‖ p− λh ‖L Order
4 2.1320× 10−1 − 4.5729× 10−2 − 1.7627× 10−1 −
8 1.2556× 10−1 0.7638 2.1860× 10−2 1.0648 1.0008× 10−1 0.8166
16 6.7236× 10−2 0.9010 1.0456× 10−2 1.0639 5.2885× 10−2 0.9202
32 3.4468× 10−2 0.9639 5.1435× 10−3 1.0235 2.7109× 10−2 0.9640
64 1.7273× 10−2 0.9967 2.5310× 10−3 1.0230 1.3700× 10−2 0.9845
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Figure 7. Computed velocity and exact velocity for Example 3.
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8.a Computed pressure for Example 3
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Figure 8. Computed pressure and exact pressure for Example 3.

grid on the upper-right sub-domain is four times finer than the rest of the grids.
The numerical results for both MFE method and MFV method are summarized
in Tables 5 and 6 , respectively. The pressures and velocities on the first level of
refinement are shown in Figures 7 and 8.

6. Conclusion

In this paper, we have developed a mixed finite volume scheme on non-matching
multi-block triangular grid which is an extension of the non-mortar mixed finite
element method, see [19]. We verify the scheme has the optimal convergence rates
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in L2-norm for velocity and pressure under some suitable assumptions on both the
coefficients in original equations and the regularity of the exact solutions. The
numerical results provided in last section not only confirm our theoretical analysis,
but also indicate this MFV method has almost the same computational efficiency
as the non-mortar mixed finite element method.
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