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NUMERICAL OPTIMAL POLLUTION CONTROL SUBJECT TO

THE CONVECTION-DIFFUSION TRANSPORT EQUATIONS

YUJING YUAN AND DONG LIANG∗

Abstract. In this paper, we develop an optimal control approach of pollution and emission
reduction subject to convection-diffusion transport equations. A linked simulation-optimization
method has been proposed, based on solving the convection-diffusion transport equations and
solving the optimization procedure. The governing equations of the convection-diffusion-reaction
equations with pollution sources are discretized by the splitting improved upwind finite volume
scheme while the constrained differential evolution (DE) algorithm is applied to solve the global
optimization procedure. The advantage of the approach is the external linking of the numeri-
cal simulation and the optimization procedure, minimizing both the weighted deviation between
simulated concentrations and the smallest allowable concentrations at observation sites and the
emission reduction cost at the pollution sources at same time. Numerical tests first check the
convergence of numerical methods. Numerical experiments then show the performance of the ap-
proach for solving the optimal control problems of pollution and cost of emission reduction. The
developed optimal control approach is efficient and it can be applied to more complex problems
in applications.

Key words. Optimal pollution control, convection-diffusion equation, emission reduction cost,
improved-upwind FV method, splitting.

1. Introduction

There are noticeable achievements in the development of economy, but the envi-
ronment is recently deteriorating. For controlling and improving serious pollution
of environment, the emission reduction plays an important role in the practical pol-
lutant governing and balanced development. The common problems encountered
over the world are groundwater pollution and air pollution ([2, 4, 5, 10, 12]). Emis-
sion control is the essential method to improve and control pollution and to protect
the environment.

However, it is difficult to design the discharge strategy until the sources are
identified with respect to their locations and magnitudes. Over the years, some
methodologies have been proposed for groundwater source identification, such as the
non-linear least-squares method [1], the geo-statistical approach [2], the constrained
robust least square approach [15]. Paper [10] considered simultaneous estimation
of aquifer parameters and identification of unknown pollution sources. Paper [12]
used the artificial neural network for considering simple and complex scenarios,
where the results were promising even with large measurement errors. But, during
the procedure of minimizing the pollution, there is of great interest and difficulty
to consider the cost affection of the controlling and reducing pollution emission
in the real applications. Thus, it is an important task to study and develop the
optimal control approach to the global optimization of pollution by considering the
reduction cost in the environmental control and management.

In this paper, we propose a new optimal pollution control by minimizing the
difference between the simulated concentration and the best environment allowing

Received by the editors September 20, 2016 and, in revised form, February 28, 2017.
2000 Mathematics Subject Classification. 65M10, 65M15, 65N10, 65N15.
∗Corresponding author. E-mail: dliang@mathstat.yorku.ca.

437



438 Y. YUAN AND D. LIANG

concentration at observation sites and the cost of the emission reduction at the pol-
lution source points. A linked simulation-optimization model has been developed,
based on the two-dimensional convection-diffusion transport equations and the dif-
ferential evolution (DE) optimization algorithm. The advantage of the approach is
the external linking of numerical simulation and the optimization procedure. Dif-
ferent from [10], our optimization objective function includes two terms. While the
first term aims at minimizing the weighted deviation between the simulated concen-
tration and the best environment allowing concentration at observation sites over
time, the second term makes the cost of emission reduction as small as possible.
The proposed optimal pollution control model is subject to the convection-diffusion
transport equations and two other kind constraints of state and control. In the nu-
merical scheme for solving convection-diffusion transport equations, we propose to
use the operator splitting scheme combining with the improved-upwind finite vol-
ume method. The two-dimensional problems are split into two one-dimensional
problems at each time step, and the second-order improved-upwind finite volume
method avoids nonphysical oscillation and obtains the high accuracy. The con-
strained differential evolution (DE) optimization algorithm is considered to solve the
optimization procedure, which provides the advantages of its global solution solving
feature, simplicity, powerful search capability, compact structure and high conver-
gence. Numerical tests firstly show the second-order accuracy of the improved-
upwind FV method. We then give numerical experiments of the optimal control
problems of pollution. For an example without considering the emission reduction
cost, numerical results are given for the cases with different levels of perturbation to
observation data and different locations of the source points and observation sites.
Two other examples are finally considered for the cases involved emission reduc-
tion costs with different cost functions, where it also considers different observation
locations and different flow velocities. Numerical results show that the emission
reduction rates can be found for the optimal pollution control and the pollution
control depends on the choice of protected zones and also depends on the velocity
of flow. The developed optimal control approach is efficient and it can be applied
to more complex pollution control problems in applications.

This paper is organized as follows. In Section 2, we present the governing equa-
tions of the two-dimensional convection-diffusion transport problems with the local
point sources and then propose the optimal pollution control model. In Section
3, the numerical schemes and the optimization algorithm are given. In Section 4,
numerical experiments are taken and analyzed.

2. Formulation of Optimal Control Problems

2.1 The governing equations. We consider the pollution problems with a pol-
luted region Ω ⊂ R2 and boundary Γ, where the pollutant is discharged through
ns outfalls (see Figure 1). The pollution of contaminant is governed by the two-
dimensional convection diffusion reaction equations with point sources.

∂c

∂t
+ ~v · ∇c− ∂

∂x
(Dx

∂c

∂x
) +

∂

∂y
(Dy

∂c

∂y
) +Rc =

ns
∑

l=1

ql(t)δ(x − xsl , y − ysl)(1)

(x, y) ∈ [0, Lx]× [0, Ly], t ∈ (0, T ],

c(x, y, 0) = c0(x, y), (x, y) ∈ [0, Lx]× [0, Ly],(2)
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c(0, y, t) = 0,
∂c(Lx, y, t)

∂x
= 0, y ∈ [0, Ly], t ∈ [0, T ],(3)

∂c(x, 0, t)

∂y
=

∂c(x, Ly, t)

∂y
= 0, x ∈ [0, Lx], t ∈ [0, T ],(4)

where c(x, y, t) is the dissolved concentration of pollutant, and c0(x, y) is the initial
concentration of pollutant. ~v = (vx, vy)

τ denotes the average velocity of flow; Dx

and Dy are, respectively, the longitudinal and transversal dispersion coefficients,
R is a reaction coefficient describing the self-purifying function. The right hand
side term is the point source term that causes the pollution. Suppose that all the
outfalls are located at the points Sl = (xsl , ysl), l = 1, 2, · · · , ns, where (xsl , ysl) is
the location of source point. In Figure 1, taking ns = 4 gives an example of four
point sources. Denote by ql(t) the mass disposal fluxes of pollutant at the points
sl, l = 1, 2, · · · , ns.
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Fig. 1. Diagram of the domain with source points (Si) and observa-
tion sites (Oj).

2.2 The optimal control problem. To achieve the optimal control of pollution
and reduction cost, an embedding optimization model subject to the constraint
of partial differential equations is proposed in this sub-section. The basic goal of
the optimization model is to find the strength of emission and the rate of emission
reduction for minimizing the combined objective function of the weighted differences
of simulated concentration with optimal environment allowable concentration and
the cost that needs to pay for reducing the discharges at the pollution sources.

The combined objective function is defined as

(5) J(~q) =

nr
∑

s=1

∫ T

0

ωs(t)[cs(~q, t)− c∗s(t)]
2dt+

ns
∑

l=1

∫ T

0

gl(ql)dt,

where ~q = (q1(t), q2(t), · · · , qns
(t))τ .

Then, the optimal control problem can be proposed as

(6) min
~q

J(~q)



440 Y. YUAN AND D. LIANG

subject to:

Eqns. (1)− (4),(7)

~qmin ≤ ~q ≤ ~qmax,(8)

~cmin ≤ ~c ≤ ~cmax,(9)

where ~c = (c1(t), c2(t), · · · , cnr
(t))τ is the simulated concentration vector at obser-

vation points, and ~cmin and ~cmax are the low and upper bounds of concentrations
during the time period. ~qmin = (qmin

1 , qmin
2 , · · · , qmin

ns
)τ are the lowest pollution

disposal fluxes and ~qmax = (qmax
1 , qmax

2 , · · · , qmax
ns

)τ are the upper bounds of the
pollution disposal fluxes at the pollution sources. Os, s = 1, 2, · · · , nr, are observa-
tion points and nr = 4, as shown in Figure 1.

Constraint (7) represents the externally linked simulation model that transforms
the source mass disposal fluxes at various potential source locations into concentra-
tion ~c in the pollution domain as a function of ~q. The lower and upper bounds on
the source disposal fluxes in Constraint (8) ensure that the practically acceptable
discharges are considered. Because any production will induce pollution, when the
quantity of disposal reach a certain threshold, the environment is contaminated,
the lower bounds of discharge fluxes can refer to this threshold. Constraint (9)
guarantees that once resulting concentrations are evaluated for an assumed set of
source disposal fluxes, only those ~q are acceptable, which result in the simulated
concentration ~c within some predefined lower and upper bounds. In the compu-
tation of the optimal control model presented here, all the lower bounds of the
concentrations are taken as zero, or the values close to zero. On the other hand, if
the quantity of pollutant exceeds a value, it will lead to important change in the
ecosystem, the values are thought as the upper bounds of pollutant concentration.

In the objective function (5), c∗s(t), s = 1, 2, · · · , nr, denote the environmental
allowable concentrations at observation points, they are the observed values and
usually obtained from sampling with low pollution sources. In numerical exper-
iments, we generally use the perturbed numerical results from low disposals at
pollution sources to instead the observed values. In this paper, we use the environ-
mental allowable concentrations obtained from the disposal fluxes ~q = ~qmin, and
thus the first term of the objective function is to aim at minimizing the devia-
tion between the concentrations and the concentrations from the smallest disposal
fluxes.

The weights ωs(t) are defined as:

ωs(t) =
1

[c∗s(t) + η]2
, s = 1, 2, · · · , nr,

which are intended to normalize the terms of the objective function. It is preferable
to add a constant to the observation concentration to prevent small difference at
low concentration to dominate the objective function. η generally depends on the
order of the concentration values. In the real life problem, it may be a fraction of
the difference between largest and smallest concentration values.

On the other hand, the second term of the objective function (5) is to reflect
the cost affection of emission reduction. In reality, we know that the cost will be
less when the reduction rate is smaller, which means with relative larger disposal
fluxes. For the cost function of the emission reduction, we consider the following
two kinds of functions:

gl(ql) = alQ
2
l + blQl,(10)

gl(ql) = cl(e
dlQl − 1),(11)
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where al, bl, cl and dl are parameters, l = 1, 2, · · · , ns, and Ql is the emission
reduction rate at source point Sl, which is define as

(12) Ql =
qmax
l − ql(t)

qmax
l

.

The emission reduction cost depends not only on the kind of pollutants but also on
the sort and scale of pollutants, where the different coefficients of the cost functions
will distinguish the differences. Our goal is to minimize the the objective function
(5) of the joint affection of pollution and cost of emission reduction.

3. Numerical scheme and optimization algorithm

3.1 Numerical scheme for PDEs. Before giving the numerical schemes, we first
concentrate on the two-dimensional Delta function. As we know, it has the form as

(13) δ(x, y) =

{

+∞, x = 0, y = 0,
0, otherwise,

satisfying the constraint condition

(14)

∫ +∞

−∞

∫ +∞

−∞

δ(x, y)dxdy = 1.

In computation, we take the Gaussian function to approximate it as
(15)

ϕl(x, y) =

{

1
4πǫexp(−

(x−xsl
)2

4ǫ − (y−ysl
)2

4ǫ ), |x− xsl | ≤ 2
√
2ǫ, |y − ysl | ≤ 2

√
2ǫ,

0, otherwise,

As ε → 0, it converges to the Delta function.
To get the discretization form of problem (1) - (4), we divide Ω equally. Let

0 = x0 < x1 < · · · < xnx
= Lx and 0 = y0 < y1 < · · · < yny

= Ly be the partitions
of [0, Lx]×[0, Ly] in x and y directions, respectively. The space step sizes are defined
by hx = Lx/nx and hy = Ly/ny, and the grid points are (xi, yj) = (ihx, jhy).
Likewise, we discretize the time domain similarly by placing a grid on the temporal
axis with time step size ∆t = T/nt, where nt is the number of total temporal steps.

Notationally, we let Ck
i,j approximate c(xi, yj , tk). Let q

k
l means ql(t) at t = k∆t.

Here we suppose the pollutant source points are all in grids points, (xsl , ysl) =
(islhx, jslhy), where l = 1, 2, · · · , ns, and isl , jsl are the location index numbers of
the lth pollution point along the x-direction and the y-direction respectively.

We will apply the splitting technique to solve the two-dimensional governing
equations, where the corresponding coefficient matrix of the algebraic system for
each step is a tridiagonal matrix and the system can be easily solved with very low
computational cost. On the other hand, in the pollution procedure, the diffusion
coefficients are much smaller than transport velocity, which leads to a difficulty of
solving the convection dominated problems. They often have nonphysical oscilla-
tions into numerical solutions by the standard finite difference methods or finite
element methods while they have only first order accuracy in spacial step size by
the standard upwind schemes (see, for example, [6, 16], etc). In order to obtain the
accurate numerical solution, the modified upwind schemes improve the accuracy
without introducing the nonphysical numerical oscillations ([4, 7, 8], etc).

In computation, we propose the splitting scheme combining with the modified
upwind technique. Letting

D∗
x =

Dx

1 + hxvx
2Dx

, D∗
y =

Dy

1 +
hyvy
2Dy

,
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the improved upwind finite volume scheme (IUFVS) for solving the convection
diffusion equations is defined as

For n = 0, 1, · · · , nt − 1, do the following steps:
Step 1. For j = 0, 1, 2, · · · , ny,

(16)

C
n+1

2
i,j

−Cn
i,j

∆t
+ vx

C
n+1

2
i,j

−C
n+1

2
i−1,j

hx
−D∗

x

C
n+1

2
i+1,j

−2C
n+1

2
i,j

+C
n+1

2
i−1,j

h2
x

+RC
n+ 1

2

i,j

=
ns
∑

l=1

qn+1
l ϕl(ihx, jhy), i = 1, 2, · · · , nx.

Step 2. For i = 1, 2, · · · , nx,

(17)
C

n+1

i,j
−C

n+1
2

i,j

∆t
+ vy

C
n+1

i,j
−C

n+1

i,j−1

hy
−D∗

y

C
n+1

i,j+1
−2Cn+1

i,j
+C

n+1

i,j−1

h2
y

= 0,

j = 0, 1, · · · , ny.

The discrete boundary conditions are:

(18) C
n+ 1

2

0,j = 0, j = 0, 1, · · · , ny,

(19)
C

n+ 1
2

nx+1,j − C
n+ 1

2

nx−1,j

2hx

= 0, j = 0, 1, · · · , ny,

(20)
Cn+1

i,1 − Cn+1
i,−1

2hy

= 0, i = 1, 2, · · · , nx,

(21)
Cn+1

i,ny+1 − Cn+1
i,ny−1

2hy

= 0, i = 1, 2, · · · , nx.

With boundary condition (19), scheme (16) can be rewritten as, for j = 0, 1, · · · , ny,

(22)

aC
n+ 1

2

i−1,j + bC
n+ 1

2

i,j + dC
n+ 1

2

i+1,j = Cn
i,j +∆t

ns
∑

l=1

qn+1
l ϕl(ihx, jhy), i = 1, 2, · · · , nx − 1,

(23) (a+ d)C
n+ 1

2

nx−1,j + bC
n+ 1

2

nx,j
= Cn

nx,j
+∆t

ns
∑

l=1

qn+1
l ϕl(nxhx, jhy),

where
a = −∆t

h2
x
D∗

x − ∆t
hx

vx,

b = 1 + 2∆t
h2
x
D∗

x + ∆t
hx

vx +R∆t,

d = −∆t
h2
x
D∗

x.

With boundary condition (20) (21), scheme (17) can be rewritten as: for i =
1, 2, · · · , nx,

(24) a
′

Cn+1
i,j−1 + b

′

Cn+1
i,j + d

′

Cn+1
i,j+1 = C

n+ 1
2

i,j , j = 1, 2, · · · , ny − 1,

(25) b
′

Cn+1
i,0 + (a

′

+ d
′

)Cn+1
i,1 = C

n+ 1
2

i,0 ,

(26) (a
′

+ d
′

)Cn+1
i,ny−1 + b

′

Cn+1
i,ny

= C
n+ 1

2

i,ny
,
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where
a

′

= −∆t
h2
y
D∗

y − ∆t
hy

vy,

b
′

= 1 + 2∆t
h2
y
D∗

y +
∆t
hy

vy,

d
′

= −∆t
h2
y
D∗

y .

System (22)-(23) and system (24)-(25) are tridiagonal systems. Solving the sys-
tems alternately, we will have the numerical solutions at time level tk as

(27) Ck = F (~q, Ck−1),

where Ck = (Ck
i,j)nx×ny

, k = 1, 2, · · · , nt; F (~q, Ck−1) represents the externally
linked simulation model that transforms the source mass disposal fluxes, into con-
centration Ck, F is the solution operator of the discrete process.

In the discrete form, the discrete objective function can be described as:

(28) Jh(~q) =

nt
∑

k=1

nr
∑

s=1

∆tωk
s

(

Ck
s − C∗k

s

)2
+

nt
∑

k=1

ns
∑

l=1

∆tgl(q
k
l ).

We aim at finding ~q = (q1, q2, · · · , qns
) such that

(29) min
~q

Jh(~q)

subject to:

Ck = F (~q, Ck−1),(30)

Ck,min
s ≤ Ck

s ≤ Ck,max
s , s = 1, 2, · · · , nr,(31)

qmin
l ≤ ql ≤ qmax

l , l = 1, 2, · · · , ns,(32)

where Ck
s = Ck

is,js
, s = 1, 2, · · · , nr, are the simulated concentration at observation

sites (xis , yjs), s = 1, 2, · · · , nr, with the disposal rate ~q at pollution points. Ck,min
s

and Ck,max
s are the lower and upper bounds at the observation sites. The specified

concentration C∗k
s is corresponding to the solution with the smallest disposal rate

~q = ~qmin.

3.2 The optimization algorithm. In the computation of the optimal control
problems, we propose to apply the Differential Evolution (DE) algorithm to solve
the optimal control problem of pollution and cost optimization. This algorithm
does not need to compute the gradient of objective function, which was proposed
in [13, 14] to solve optimization problems over continuous domains. Further devel-
opment was done to solve the multi-objective problems [11]. The constrained DE
algorithm was studied to tackle constrained optimization problems in [9, 17], etc.
The DE algorithm is simple and straightforward to implement and has powerful
search capability and high accurate characteristics with using only few number of
control parameters.

We let D = [qmin
1 , qmax

1 ] × [qmin
2 , qmax

2 ] × · · · × [qmin
ns

, qmax
nr

] and the restriction
condition (31) rewritten as:

fk
i (~q) = Ck

s − Ck,max
s ≤ 0, s = 1, 2, · · · , nr, k = 1, 2, · · · , nt,

fnt+k
i (~q) = Ck,min

s − Ck
s ≤ 0, s = 1, 2, · · · , nr, k = 1, 2, · · · , nt.

Define the function φ(x), called satisfaction degree function, to estimate the
violation with the constraint boundary.
Definition 1. For above constrained optimization problem (COP), we define the

function: φ(x) : D → R and let S = {~q | ~q ∈ D ∧ fk
i ≤ 0 ∧ fnt+k

i ≤ 0}
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φ(~q) =

nt
∑

k=1

nr
∑

i=1

(Gk
i +Gnt+k

i ),

where

(33) Gk
i (~q) =

{

1/2, fk
i (~q) ≤ 0,

1/(1 + exp(fk
i (~q))), otherwise,

(34) Gnt+k
i (~q) =

{

1/2, fnt+k
i (~q) ≤ 0,

1/(1 + exp(fk
i (~q))), otherwise.

It is obvious that φ(~q) = nr ·nt when ~q ∈ S, 0 < φ(~q) < nr ·nt when ~q 6∈ S, and the
more of the number that ~q obeies the constrained conditions, the less of the value
of φ(~q).
Definition 2. Suppose that ~q and ~p are two different individuals from the next
two generations, we define the following function:

(35) prior(~q, ~p) =

{

1, φ(~q) = φ(~p) ∧ Jh(~q) < Jh(~p) ∨ φ(~q) > φ(~p),
0, otherwise.

If prior(~q, ~p) = 1, it means that ~q is prior to ~p.

Then, we give the brief outline of constrained algorithm:
Step 1. Set the control parameter: the number of the population Np, mutation

operator F , crossover rate CR, the most generation Gmax and the stop criteria.
Step 2. Initialize population. Set G = 0, and define Np ns-dimensional vectors,

so-called individuals, which encode the candidate solutions: ~qi,G = (q1i,G,· · · ,qns

i,G),
i = 1, 2, · · · , Np towards the global optimum. The initial population should better
cover the entire search space as much as possible by uniformly randomizing individ-
uals within the search space constrained by the prescribed minimum and maximum
parameter bounds ~qmin = (qmin

1 , · · · , qmin
ns

) and ~qmax = (qmax
1 , · · · , qmax

ns
). For ex-

ample, the initial value of the jth parameter in the ith individual at the generation
G is generated by:

qji,G = qmin
j + rand(0, 1) · (qmax

j − qmin
j ),

where rand(0, 1) is a random number in [0, 1].
Step 3. Mutation operation. For each vector ~qi,G, i = 1, 2, · · · , Np, a perturbed

vector ~vi,G+1, called mutant vector, is generated according:

~vi,G+1 = ~qr1,G + F · (~qr2,G − ~qr3,G),

where r1, r2, r3 ∈ [1, Np] are integers, they are chosen randomly different from each
other and different from index i. F ∈ [0, 2] is a real and constant factor, which
control the amplification of the difference variation (~qr2,G − ~qr3,G).

Remark 3.2.1 It should be noted that there are also other perturbed methods.
We list the following four methods frequently used mutation strategies implemented
in the code.

(36)

~vi,G+1 = ~qbest,G + F · (~qr1,G − ~qr2,G),
~vi,G+1 = ~qi,G + F · (~qbest,G − ~qi,G) + F · (~qr1,G − ~qr2,G),
~vi,G+1 = ~qbest,G + F · (~qr1,G − ~qr2,G) + F · (~qr3,G − ~qr4,G),
~vi,G+1 = ~qr1,G + F · (~qr2,G − ~qr3,G) + F · (~qr4,G − ~qr5,G).

Step 4. Crossover operation. Crossover operation is applied to each pair of
target vector ~qi,G and its corresponding mutant vector ~vi,G+1 to generate a trial
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Fig. 2. Schematic representation of the Differential Evolution (DE) algorithm.

vector: ~ui,G+1 = (u1
i,G+1, . . . , u

ns

i,G+1). In the basic version, DE employs the bino-
mial crossover defined as bellow:

(37) uj
i,G+1 =

{

vji,G+1, if randb(j) ≤ CR or j = rnbr(i),

qji,G, otherwise,

where j = 1, 2, · · · , ns, randb is a list of random number and randb(j) is the jth
number, rnbr is a randomly chosen integer in [1, ns], the crossover rate CR is a
user-specified constant within the range [0, 1].

Remark 3.2.2 There exists another exponential crossover operator in addition to
binomial crossover.

Step 5. Selection operation. After the mutation and crossover operations, the
trial vector ~ui,G+1 is compared to the old vector ~qi,G. If the trial vector has an equal
or better objective value, then it replaces the old vector in the next generation. This
can be presented as follows:

(38) ~qi,G+1 =

{

~ui,G+1, if prior(~ui,G+1, ~qi,G) = 1,
~qi,G, otherwise.
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Step 6. Let G = G+1. If G ≤ Gmax and the stop criteria is not satisfied, turn
to Step 2. Otherwise, output the optimal solution ~qi,G+1.

4. Numerical experiments

4.1 Numerical tests for solving pollution problem. In this sub-section, we
will first give examples to show the error and ratio of the improved upwind finite
volume scheme (IUFVS) for solving the pollution problems.

Example 1. In the first example, we consider a problem with the right side
function as

f(x, y, t) = exp (t)x(x− 1)2y2(y − 1)2

+ exp (t)y2(y − 1)2[−Dx(6x− 4) + vx(3x
2 − 4x+ 1)]

+ exp (t)x(x − 1)2[−Dy(12y
2 − 12y + 2) + vy(4y

3 − 6y2 + 2y)],

the initial value is u0(x, y) = x(x − 1)2y2(y − 1)2. In this case, the exact solution
is u(x, y, t) = exp (t)x(x − 1)2y2(y − 1)2.

In numerical computation, the domain is Ω = [0, 1]× [0, 1], the spatial step sizes
are taken as hx = 1/N and hy = 1/N , and the final time is T = 1. The errors
and the error orders in L2-norm are given in Table 1, where N = 10, 20, 40, 80 and
∆t = 10−4. From Table 1, we can see clearly that our IUFVS is second order in
the spatial step size.

Table 1. Errors and Ratios of the IUFVS for Example 1 with
vx = 0.1, vy = 0, and Dx = Dy = 10−l, l = 1, 2, 3, and T = 1.

Dx = Dy = 10−3
Dx = Dy = 10−2

Dx = Dy = 10−1

N L
2-error Ratio L

2-error Ratio L
2-error Ratio

10 5.0718(10−4) 2.4970(10−4) 5.2545(10−4)
20 2.2271(10−4) 1.1873 6.7738(10−5) 1.8821 1.1846(10−4) 2.1492
40 8.7516(10−5) 1.3476 1.7620(10−5) 1.9427 2.7593(10−5) 2.1020
80 3.0262(10−5) 1.5320 4.3701(10−6) 2.0115 6.4180(10−6) 2.1041

Example 2. We consider the pollution problem with the dispersion coefficients
Dx = Dy = 0.1, and velocity components vx = 0.5 and vy = 0, and the reaction
coefficient R = 0.01. Suppose every outfall has the same discharge flux ql = 5.0, l =
1, 2, · · · , ns. The domain is Ω = [0, 1] × [0, 1]. The space step sizes are hx =
hy = 0.01 and the time step size is ∆t = 10−2. The concentration distribution of
pollution in the whole domain at different time are shown in Figures 3 - 5.

Further, Figure 6 shows the comparisons of the pollutant concentrations on the
line of y = 0.5 with different space step sizes and for the same discharge rates of
outfalls ql = 5.0, l = 1, 2, · · · , ns. From these figures, we can see that the IUFVS is
convergent when the step size decreases.

4.2 Numerical experiments for the optimal control problems

In this subsection, we will present numerical experiments to show the perfor-
mance of the proposed optimal control approach. While the first experiment shows
the numerical results for the objective problem of only the weighted deviation be-
tween simulation concentration and the allowable environmental concentration, the
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Fig. 3. Concentration distributions at T = 0.1 (left) and at T = 0.3 (right).
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Fig. 4. Concentration distributions at T = 0.5 (left) and at T = 0.7 (right).
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Fig. 5. Concentration distributions at T = 0.9 (left) and at T = 1.1 (right).

following two experiments will consider the global optimal control problems of min-
imizing both the concentration differences and the emission reduction cost.

Simulation 1. In this simulation, we consider the optimal control problem of
minimizing the concentration differences. The observation concentrations are taken
from the concentrations obtained by perturbing the numerically concentrations,
which are evaluated from an actual smallest disposal flux, as defined by

(39) C∗k
s = Ck

s + ξCk
s (2rand(·) − 1),

for s = 1, 2, · · · , nr.
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Fig. 6. Concentration distributions on line y = 0.5 with different space steps
at T = 0.5 (left) and at T = 1.0 (right).

Perturbing the numerically simulated concentrations is analogous to collecting
and then testing multiple samples of pollutant at spatiotemporal observation lo-
cations. It is assumed that observation datum obey a normal distribution. The
mean of the normal distribution is the exact datum Ck

s , which can be computed
from the simulation with actual smallest fluxes. The standard deviations equal to
some fraction ξ of the exact datum, called noise levels. While ξ = 0 means that it
is error free. The rand(·) is a random number between (0, 1). We can use this way
to identify the disposal flux on the condition that knowing the observation data in
advance.

We consider that the pollution flow occurs in a rectangle domain Ω = [0, 2]×[0, 1]
during a period of T = 1.0. The diffusion coefficients are Dx = Dy = 0.1. The
velocity components are vx = 0.5 in the direction of x-direction and vy = 0 in the
y-direction. The self-purifying coefficient is R = 0.01. Besides, the initial value is
taken as c0(x, y) = 0.

Case 1.1

Assuming that there are four pollution sources and four observation points,
located symmetrically in the domain. The pollution source locations are set as
S1 = (0.7, 0.3), S2 = (1.3, 0.3), S3 = (1.3, 0.6), S4 = (0.7, 0.6) and the obser-
vation points are located at O1 = (0.4, 0.2),O2 = (1.6, 0.2), O3 = (1.6, 0.7), and
O4 = (0.4, 0.7). Performance evaluations are done for error free and with noise
level of ξ = 0.005 and ξ = 0.01 in observation data. The numerical results of solv-
ing the optimal control problem are presented in Tables 2-3. In Table 2, the space
step sizes are ∆x = 0.05 and ∆y = 0.05, the time step size is ∆t = 0.05 , while in
Table 3, the step sizes are taken smaller as ∆x = ∆y = 0.025 and ∆t = 0.025.

Table 2. Numerical simulation results of the optimal control
problems with sources at Sl, l = 1, 2, 3, 4 by ∆x = ∆y = 0.05
and ∆t = 0.05.

ξ = 0 ξ = 0.005 ξ = 0.01
actual flux simul. flux simul. flux err (10−4) simul. flux err (10−3)

S1 2.1 2.1000 2.1004 2.119 2.0915 4.058
S2 4.1 4.1000 4.0967 7.949 4.0958 1.011
S3 6.1 6.1000 6.0975 4.123 6.0758 3.975
S4 8.1 8.0999 8.0978 2.663 8.1119 1.471
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Table 3. Numerical simulation results of the optimal control
problem with sources at Sl, l = 1, 2, 3, 4 by ∆x = ∆y = 0.025
and ∆t = 0.025.

ξ = 0 ξ = 0.005 ξ = 0.01
actual flux simul. flux simul. flux err (10−4) simul. flux err (10−3)

S1 2.1 2.1000 2.1003 1.481 2.1024 1.149
S2 4.1 4.0999 4.1009 2.312 4.1049 1.192
S3 6.1 6.1000 6.1015 2.502 6.0983 0.276
S4 8.1 8.1000 8.0988 1.507 8.0976 0.299

From Tables 2 - 3, we can see that the numerical optimized fluxes are in great
agreement with actual values. When some bigger noises are used in observed data
the optimized fluxes are of error. Comparing the errors of the computed fluxes with
different space and time steps, the errors are smaller when the step sizes are small.
This indicates that the optimal control simulation results are better if the schemes
have higher accuracy.

Case 1.2

In this case, we consider that the four pollution sources are asymmetrically
located in the domain. The locations of pollution sources are at S1 = (0.7, 0.3),
S′
2 = (1.3, 0.4), S′

3 = (1.3, 0.7), and S′
4 = (0.8, 0.6), while the observation locations

are at the same points as Case 1.1. Tables 4 - 5 give the numerical results and
relative errors by using different noise levels in observed measurement data, where
the actual disposal fluxes are polluted differently. The space step sizes are used as
∆x = 0.025 and ∆y = 0.025 and the time step size is used as ∆t = 0.025.

Table 4. Numerical simulation results of the optimal control
problem with sources at S1, S

′
l , l = 2, 3, 4 by ∆x = ∆y = 0.025

and ∆t = 0.025.

ξ = 0 ξ = 0.005 ξ = 0.01
actual flux simul. flux simul. flux err (10−4) simul. flux err (10−3)

S1 2.1 2.1000 2.0983 8.295 2.0972 1.314
S′
2 4.1 4.1000 4.0986 3.410 4.0998 0.032

S′
3 6.1 6.0999 6.1008 0.128 6.1027 0.450

S′
4 8.1 8.1000 8.0955 5.591 8.0996 0.045

Table 5. Numerical simulation results of the optimal control
problem with sources at S1, S

′
l , l = 2, 3, 4 by ∆x = ∆y = 0.025

and ∆t = 0.025.

ξ = 0 ξ = 0.005 ξ = 0.01
actual flux simul. flux simul. flux err (10−4) simul. flux err (10−3)

S1 22 22.0000 22.0000 0.001 22.0468 2.127
S′
2 24 24.0000 24.0115 4.783 24.0227 0.947

S′
3 26 26.0000 25.9950 1.935 26.0173 0.664

S′
4 28 28.0000 28.0030 1.057 27.9234 2.734
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The results in Tables 4 - 5 for Case 1.2 are consistent with results for Case 1.1.
They show that no matter how much the values of the actual fluxes are, the optimal
identified disposal fluxes have small errors if the random measurements are at small
error levels.

Simulation 2. Now, we consider the global optimal control problems of mini-
mizing both the weighted concentration differences between the simulated concen-
trations and the allowable smallest environmental concentrations and the emission
reduction cost.

The domain is Ω = [0, 5]× [0, 1] and the time period is T = 1.0. The diffusion
coefficients are Dx = 0.1 and Dy = 0.1, the velocity is vx = 1.0, and vy = 0,
and the self-purifying coefficient is R = 0.001. The initial value is c0(x, y) = 0.
In computation, we take ∆x = 0.025, ∆y = 0.025, and ∆t = 0.025. There are
four pollution sources in the domain. There are four small domains that need be
protected, where the pollution concentrations are restricted in a certain extent. In
the case, we consider the special areas as some points, which are the observation
location points. Further, the lower bound of the disposal fluxes is the minimal
emission amount and the upper bound of disposal flux can refer to the situation
that the worsest pollution achieves.

We use C∗
s , s = 1, 2, · · · , nr, to be the concentrations that obtained when the

disposal fluxes are the lower bounds and with a noise ξ = 0.01. In the view of the
global optimal control, we will aim at determining the disposal fluxes that mini-
mum the deviations between C∗

s and the computed concentrations and ensuring the
emission reduction cost as smaller as possible, where the cost part of the objective
function is as

(40) gl(ql) = c1(l)Q
2
l + c2(l)Ql, l = 1, 2, · · · , ns,

and Ql =
qmax−ql
qmax

is called the emission reduction rate at source Sl, and c1(l) and

c2(l) are parameters.

Case 2.1

We consider that the four pollution sources are symmetrically located in the
domain and the observation sites are located around the pollution sources, where
the sources are at S1 = (2.0, 0.3), S2 = (3.0, 0.3), S3 = (3.0, 0.7), S4 = (2.0, 0.7)
and the observations are at O1 = (1.0, 0.2),O2 = (4.0, 0.2), O3 = (4.0, 0.8), and
O4 = (1.0, 0.8). The lower and upper bounds of the disposal fluxes are ~qmin =
(6.0, 5.0, 5.0, 6.0)τ and ~qmax = (20.0, 20.0, 20.0, 20.0)τ.

Table 6. Numerical results of the disposal fluxes with different
cost functions at sources Sl, l = 1, 2, 3, 4, and the observation loca-
tions at Os, s = 1, 2, 3, 4.

same cost function different cost functions
fluxes without cost fluxes reduction rate fluxes reduction rate

S1 6.0000 11.3721 43.14% 10.5782 47.11%
S2 5.0218 5.9963 70.02% 5.7380 71.31%
S3 5.0008 5.9504 70.25% 5.5334 72.33%
S4 6.0000 11.1525 44.24% 16.3900 18.05%

The numerical results are presented in Table 6. For the case of one same cost
function at four source points, the coefficients are c1(l) = 26.0, l = 1, 2, 3, 4,and
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c2(l) = 15.0, l = 1, 2, 3, 4, while for the case of the different cost functions at four
source points, the coefficients are c1(1) = 32.0, c2(1) = 15.0, c1(2) = 25.0, c2(2) =
12.0, c1(3) = 15.0, c2(3) = 9.0, and c1(4) = 47.0, c2(4) = 38.0, respectively.

Case 2.2

In this case, we show the affection of the observation locations over affections of
reduction rates at pollution sources. The lower and upper bounds of the disposal
fluxes at source points are ~qmin = (8.0, 5.0, 5.0, 8.0)τ and ~qmax = (30.0, 30.0, 30.0, 30.0)τ.
According to the observation positions, where they are in the upstream or down-
stream, the four situations for the observation zones are different from the situation
in Case 2.1.

In Table 7, the observation sites are all in the upstream of the pollution sources,
they are O1 = (1.0, 0.2),O′

2 = (1.5, 0.2), O′
3 = (1.5, 0.8), and O4 = (1.0, 0.8). In

Table 8, two sites are located in upstream, and the other two located between
the pollution sources, they are O1 = (1.0, 0.2),O∗

2 = (2.5, 0.2), O∗
3 = (2.5, 0.8),

O4 = (1.0, 0.8). In Table 9, all the four observation sites are in the downstream,
they are O′

1 = (3.5, 0.2),O2 = (4.0, 0.2), O3 = (4.0, 0.8), and O′
4 = (3.5, 0.8). In

Table 10, two sites are located in downstream, and the other two located among
the pollution sources, they are O∗

1 = (2.5, 0.2),O2 = (4.0, 0.2), O3 = (4.0, 0.8), and
O∗

4 = (2.5, 0.8).

Table 7. Numerical results of the disposal fluxes with different
cost functions at sources Sl, l = 1, 2, 3, 4, with observations at
Os, s = 1, 4 and O′

s, s = 2, 3.

same cost function different cost functions
fluxes without cost fluxes reduction rate fluxes reduction rate

S1 8.0006 8.7555 70.82% 8.4276 71.91%
S2 5.0000 30.000 0% 30.000 0%
S3 5.0000 30.000 0% 30.000 0%
S4 8.0110 8.7695 70.77% 9.8059 67.31%

From Table 7, we can see that the disposal fluxes are almost the minimum
fluxes when doesn’t consider the reduction cost optimization. For the two pollution
sources in the downstream, the disposal fluxes contain the upper bounds unchanged
whether in situation for different cost functions or same function. In the situation
of same cost function, the first emission rate is close to the fourth one, which means
that the two pollutants in the upstream should reduce almost the same amount of
emission when the unit price is the same. While for different cost function, the
fourth pollutant has a higher cost function coefficients, its emission reduction rate
is smaller than the first one.

The disposal fluxes in Table 8 are still almost the minimum fluxes when doesn’t
consider the reduction cost optimization in this case. With considering the reduc-
tion cost term, there are two pollutants, which located in the downstream, almost
does not need reduce the emission. While the emission reduction rates are same
with same cost function, it is smaller when the cost is bigger.

Comparing this case in Table 8 with the previous one in Table 7, the simula-
tion results have the same trends. It can be concluded that the pollutants in the
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Table 8. Numerical results of the disposal fluxes with different
cost functions at sources Sl, l = 1, 2, 3, 4 and with observations at
Os, s = 1, 4 and O∗

s , s = 2, 3.

same cost function different cost functions
fluxes without cost fluxes reduction rate fluxes reduction rate

S1 8.00000 8.5373 71.542% 8.3609 72.13%
S2 5.00001 30.000 0% 30.000 0%
S3 5.00005 30.000 0% 29.999 0.003%
S4 8.01367 8.5369 71.543% 8.5808 71.40%

downstream almost don’t need to reduce the emission, while the pollutants in the
upstream need reduce so much to tend to the lower bounds.

Table 9. Numerical results of the disposal fluxes with different
cost functions at sources Sl, l = 1, 2, 3, 4 and with observations at
O′

s, s = 1, 4 and Os, s = 2, 3.

same cost function different cost functions
fluxes without cost fluxes reduction rate fluxes reduction rate

S1 8.0133 29.8273 0.58% 16.2644 45.79%
S2 5.0002 5.3831 82.06% 5.0000 83.33%
S3 5.0055 5.3246 82.25% 5.0000 83.33%
S4 8.0003 22.5125 24.96% 29.3126 2.29%

For this situation, the observation site are all in the downstream compared to
the pollution sources. From Table 9, we can see that the disposal fluxes are almost
the minimum fluxes without considering the cost optimization. For the second and
third pollution sources, which located close to the observation site, the disposal
fluxes reduced to the lower bounds when adopting different cost function, or close
to the lower bounds when with the same cost function. That is to say, the pollu-
tion sources close to the protected zones should make more contribute to reduce
the pollutant.

Table 10. Numerical results of the disposal fluxes with different
cost functions at sources Sl, l = 1, 2, 3, 4 and with observations at
O∗

s , s = 1, 4 and Os, s = 2, 3.

same cost function different cost functions
fluxes without cost fluxes reduction rate fluxes reduction rate

S1 8.0002 8.7188 70.94% 8.0000 73.33%
S2 5.0000 5.2035 82.66% 5.9651 80.12%
S3 5.0006 5.8181 80.61% 5.1954 82.68%
S4 8.0070 9.2581 69.14% 10.4364 65.21%

From Table 10, no matter the cost functions are different or same, the plants
should reduce the emission nearly to the lower bounds, this is suitable for the sit-
uation that every protected zone is located in the downstream of each pollution
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sources. In the column of fluxes with different cost functions, comparing the first
with the fourth, the fourth that has higher price per unite reduces less than the
first. Similar conclusion is held for the second and third.

Case 2.3

We numerically observe the effects of flow velocities to the optimal control results.
Numerical results are presented in Table 11 where the flow velocity is vx = 2.0 and
vy = 0.0 and in Table 12 where the velocity is vx = 0.5 and vy = 0.0.

Table 11. Numerical simulation results of the disposal fluxes with
different cost functions at sources Sl, l = 1, 2, 3, 4 and with velocity
vx = 2.0 and vy = 0.0.

same cost function different cost functions
fluxes without cost fluxes reduction rate fluxes reduction rate

S1 6.0000 16.7060 16.47% 12.9393 35.30%
S2 5.0000 5.0000 75.00% 5.0000 75.00%
S3 5.0097 5.0000 75.00% 5.0000 75.00%
S4 6.0000 15.5710 22.15% 19.5625 2.19%

Table 12. Numerical results of the disposal fluxes with different
cost functions at sources Sl, l = 1, 2, 3, 4 and with velocity of vx =
0.5 and vy = 0.0.

same cost function different cost functions
fluxes without cost fluxes reduction rate fluxes reduction rate

S1 6.0000 7.4293 62.85% 6.5568 66.67%
S2 5.0000 5.8906 70.55% 5.3181 68.41%
S3 5.0065 5.9014 70.49% 5.2587 73.71%
S4 6.0108 7.4433 62.78% 9.5326 52.34%

From Tables 11 - 12 and Table 6, we can see that a smaller emission reduction
rate in the upstream can be made when the flow has a bigger velocity, while a bigger
reduction rate in the downstream can be applied. Further, the disposal fluxes in the
downstream can be reduced to the minimum value if the flow velocity is big enough.

Simulation 3. In this simulation, we consider the exponential cost function like
(11). That is because the unit cost of emission reduction of some pollutants are
huge, it vary as the form of exponents. For others’ small variation of cost, we still
use polynomial cost function (10).

The domain is still Ω = [0, 5]× [0, 1] and T = 1.0. The numerical results of dis-
charge fluxes obtained by solving the optimal control model are displayed in Table
13. The lower and upper bounds of the disposal fluxes are ~qmin = (6.0, 5.0, 5.0, 6.0)τ

and ~qmax = (26.0, 25.0, 25.0, 26.0)τ. The first and the fourth pollution source points
adopt the polynomial function as the cost of emission reduction, while the second
and the third proposal the exponential function, they are:

(41) gl(ql) = c1(l)(e
c2(l)Ql − 1), l = 2, 3.
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The coefficients of the same cost function are c1(1) = c1(4) = 26.0, c2(1) = c2(4) =
15.0 and c1(2) = c1(3) = 15.0, c2(2) = c2(3) = 8.0. The coefficients of the different
cost functions are c1(1) = 46.0, c2(1) = 23.0, c1(2) = 21.0, c2(2) = 14.0, c1(3) =
15.0, c2(3) = 8.0, and c1(4) = 26.0, c2(4) = 15.0.

Table 13. Numerical simulation results of disposal fluxes with
joint polynomial and exponential cost functions at sources Sl, l =
1, 2, 3, 4 and with observations at Os, s = 1, 2, 3, 4.

same cost function different cost functions
fluxes without cost fluxes reduction rate fluxes reduction rate

S1 6.0080 11.0867 57.36% 12.2442 52.91%
S2 5.0000 15.7917 36.83% 20.9011 16.39%
S3 5.0071 16.7075 33.17% 14.9261 40.29%
S4 6.0135 11.0537 57.49% 10.6517 59.03%

From Table 13, the emission reduction rates are nearly identical for same cost
function, while those pollution sources have a small reduction rate because the cost
of reducing one unit pollutant is big. But the important point is that the pollutants
that adopt exponential cost functions require much smaller emission reduction rate
than those with polynomial cost functions.
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