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PRICING EUROPEAN OPTIONS ON ZERO-COUPON BONDS

WITH A FITTED FINITE VOLUME METHOD

KAI ZHANG AND XIAO QI YANG

Abstract. We present a novel numerical scheme to price European options on discount bond,
where the single factor models are adopted for the short interest rate. This method is based on a
fitted finite volume (FFVM) scheme for the spatial discretization and an implicit scheme for the
time discretization. We show that this scheme is consistent, stable and monotone, hence it ensures
the convergence to the solution of continuous problem. Numerical experiments are performed to
verify the effectiveness and usefulness of this new method.
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1. Introduction

Interest rate derivatives, like bond options, range notes, interest rate caps, swaps
and swaptions, are commonly traded in the financial markets. A large number
of attention have been given to the development of models to price and hedge
these types of derivatives. While the Black and Scholes [4] model has been well-
known as the model for stock derivatives, many approaches to modeling interest
rate derivatives are simultaneously established among academics and practitioners,
such as Black-Karasinski model [3], Vasicek model, CIR model, HWmodel [9, 13, 6],
Brennan-Schwartz model [5], and so on. Compared to stock derivatives, the pricing
and hedging of interest rate derivatives pose greater challenges. For instance, for a
simple bond option, unlike stock derivatives, its underlying asset is a bond whose
price is dependent on interest rate and time. It is thus necessary to develop dynamic
models that describe the stochastic evolution of the whole yield curve, which makes
pricing interest rate derivatives a complex task.

In this paper, we focus on pricing European options on zero-coupon bonds under
the single factor models. In [10, 6, 13], the price of this type of options has been
investigated. Usually, this problem is formulated as a parabolic partial differen-
tial equation (PDE) with suitable boundary and terminal conditions [10]. In some
simple cases, analytical solutions are available. However, these analytical solution
usually is not easily computable [13]. Moreover, in most practical situations (for
instance, path-dependent options) analytical solutions are unavailable. Hence, nu-
merical solutions are normally sought for pricing bond options. Lattice method and
the usual finite difference method are commonly used to pricing stock options. Un-
fortunately, it is pointed out in [14] and [1] that these methods are only convergent
for certain combination of parameters.

The fitted finite volume method was first used to price the standard European
stock options in [16], then generalized to other types of options, see [8, 18], etc.
The method is based on a popular exponentially fitting technique widely used for
problems with boundary and interior layers (cf. [11, 12]). It has been shown that
this method makes greater success in pricing stock options, where the standard
Black-Scholes equations are applied. It is easy to see that the PDE resulted from
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European option model is degenerate and convection-dominated, hence the fitted
finite volume method is a natural way to overcoming these difficulties. Its success
motivates us to generalize the fitted finite volume technique to price bond options.
On this basis, in this paper we derive a novel fitted finite volume method to price
European bond options. We then apply this new fitted finite volume scheme in space
with the implicit scheme in time to numerical valuation of European options on a
discount bonds under single factor models. To guarantee the convergence of this
new numerical scheme, we show that this numerical scheme is consistent, stable
and monotone, hence convergent. To verify the accuracy and robustness of the
new numerical scheme, some numerical experiments including a vanilla European
option and a digital option on a discount bond under CIR model are implemented.
Moreover, to testify its effectiveness a vanilla European option on a discount bond
under a mean-reverting lognormal model is investigated. These numerical results
show that this numerical scheme is very accurate, efficient and robust.

The paper is organized as follows. In the next section, the mathematical model
for European options on a discount bond is presented. Then, the fitted finite
volume method is developed in Section 3. In Section 4, the full discrete scheme is
proposed and by showing the stability and monotonicity of this numerical scheme,
its convergence is investigated. Finally, in the last section three numerical examples
are given to illustrated the convergence and robustness of this numerical scheme.

2. Mathematical model for options on a zero-coupon bond

In this paper, we assume the following single factor model is applied for the
interest rate term structure. That means the short-term interest rate r is governed
by a stochastic process of the form.

(1) dr = A (r, t) dt+ σrξdW,

where dW is the increment of a Wiener process, A (r, t) is the instantaneous drift,
σrξ is the instantaneous volatility. Some well known-examples of one-factor interest
rate models are special cases of Equation (1). Particularly, if A (r, t)is specified to
be mean-reverting and independent of time t, and σ is a constant, the setting
ξ = 0, 1/2, 1, 3/2 produces the Vasicek model, CIR model, lognormal model and
cubic variance model, respectively.

Now, let P (r, t, s) be the price of a pure discount bond with face value $1 at its
maturity date s. Based on the standard no-arbitrage pricing arguments, the bond
price is governed by the following parabolic partial differential equation (PDE) [17]:

(2) −
∂P

∂t
=

1

2
σ2r2ξ

∂2P

∂r2
+
(

A (r, t) + σλ (r, t) rξ
) ∂P

∂r
− rP,

where λ (r, t) ≥ 0 is called the market price of risk. At the maturity date s the
price of a pure discount bond is its face value, i.e.

P (r, t = s, s) = 1.

The boundary conditions are usually given by the following form

P (0, t, s) = g0 (r, t) , r → 0,

P (r, t, s) = 0, r → ∞,

where g0(r, t) can be determined according to different interest rate models.
Let V (r, t) denote the value of an European option on a pure discount bond with

striking price K,where the holder can receive the payoff V ∗ (r, T ) at expiry date T .
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It is known that the value V (r, t) is also governed by the same type of PDE as (2),
i.e.

(3) −
∂V

∂t
=

1

2
σ2r2ξ

∂2V

∂r2
+
(

A (r, t) + σλ (r, t) rξ
) ∂V

∂r
− rV.

At t = T , we set V (r, T ) to the specified contract payoff, i.e.

V (r, t = T ) = V ∗ (r, T ) =

{

max [P (r, T, s)−K, 0] , for a call,
max [K − P (r, T, s) , 0] , for a put.

The boundary conditions are given by the following form

V (0, t) = g1 (r, t) , r → 0,(4)

V (r, t) = g2 (r, t) , r → ∞,(5)

where g1(r, t) and g2(r, t) can be determined by financial reasoning. For computa-
tional purpose, we restrict r in a region I = [0, R], where R is sufficiently large to
ensure the accuracy of the solution ([17]). Thus, (5) becomes

(6) V (R, t) = g2(R, t).

Remark 2.1. In the case of pricing vanilla European options on zero-coupon bonds,
there are several ways to determine the boundary conditions (4) and (6), see [15]
and the references therein. A popular and simple choice is as follows [7]:

V (r = 0, t) =

{

max [P (0, t, s)−KP (0, t, T ) , 0] , for a call,
0, for a put,

V (r = R, t) =

{

0, for a call,
max [KP (R, t, T )− P (R, t, s) , 0] , for a put.

Remark 2.2. It is worth noting that T < s and K < P (0, T, s) = A (T, s) for a
call option or K > A (T, s) for a put option, since otherwise the option would never
be exercised and would be worthless.

3. The fitted finite volume method

Since the bond pricing equation (2) has the same form with European bond
option pricing equation (3), in this section we will present the fitted finite vol-
ume discretization of (3). Before proceeding to the discretization scheme, we first
transform (3), (4) and (6) into the following conservative form:

(7)
∂V

∂τ
=

∂

∂r

[

ar2ξ
∂V

∂r
+ b (r, τ) V

]

− c (r, τ) V,

where τ = T − t and

a ≡ a (r, τ) = σ2/2,

b (r, τ) =
(

A (r, τ) + σλ (r, τ) rξ
)

− 2aξr2ξ−1,(8)

c (r, τ) = r +
∂b

∂r
.

The fitted finite volume method is based on the self-adjoint form (7). We first
define two space partitions of I. Let I be divided into N sub-intervals

Ii = (ri, ri+1) , i = 0, . . . , N − 1,

with 0 = r0 < r1 < · · · < rN = R. For each i = 0, . . . , N − 1, let hi = ri+1 − ri.
Also, we let ri−1/2 = (ri−1 + ri)/2 and ri+1/2 = (ri+ ri+1)/2 for each i = 2, . . . , N .
These intervals Ji = (ri−1/2, ri+1/2) form a second partition of I = [0, R] if we
define r−1/2 = r0 and rN+1/2 = rN+1.
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For each i = 1, . . . , N − 1, integrating (7) over Ji, we have

(9)

∫

Ji

∂V

∂τ
dr =

[

r2ξ−1

(

ar
∂V

∂r
+ br1−2ξV

)]ri+1/2

ri−1/2

−

∫

Ji

cV dr.

Applying the one-point quadrature rule to all the terms in (9) except the first term
in the right hand side, we obtain

(10)
∂Vi
∂τ

li =
[

r2ξ−1
i+1/2ρ(V )|ri+1/2

− r2ξ−1
i−1/2ρ(V )|ri−1/2

]

− ciliVi,

for i = 1, . . . , N − 1, where li = ri+1/2 − ri−1/2 is the length of interval Ji, ci =
c (ri, τ), Vi denotes the nodal approximation to V (ri, τ) to be determined and ρ(V )
is the weighted flux density associated with V defined by

(11) ρ(V ) := arV
′

+ d (r) V,

where d (r, τ) = b (r, τ) r1−2ξ .
We now derive the approximation of the continuous flux ρ(V ) defined above at

the mid-point, on ri+1/2, of the interval Ii for all i = 0, . . . , N − 1. Consider the
following two-point boundary value problem:

(12)

(

arV ′ + di+1/2V
)′

= 0, r ∈ Ii,
V (ri) = Vi, V (ri+1) = Vi+1,

where di+1/2 = d
(

ri+1/2, τ
)

. Solving this equation analytically, we obtain

(13) ρi(V ) = di+1/2

rηii+1Vi+1 − rηii Vi

rηii+1 − rηii
,

where

(14) ηi = di+1/2/a.

Similarly, we can define the approximation of the flux at ri−1/2.
Note that the above analysis does not apply to the approximation to the flux on

I0 = (0, r1), because (12) is degenerated. To overcome this difficulty, we reconsider
(12) with an extra degree freedom in the following form:

(15)

(

arV ′ + d1/2V
)′

= C, r ∈ I0,
V (0) = V0, V (r1) = V1.

Solving this local problem analytically, we have

ρ0(V ) =
(

arV ′ + d1/2V
)

r1/2
=

1

2
[(a+ d1/2)V1 − (a− d1/2)V0],(16)

V = V0 + (V1 − V0)r/r1, r ∈ I0 = (0, r1).

Now using (13) and (16), we define a global piecewise constant approximation to
ρ(V ) by ρh(V ) satisfying

(17) ρh(V ) = ρi(V ), if r ∈ Ii

for i = 0, . . . , N − 1.
Substituting (13) and (16) into (10), we have the following semi-discretization

(18)
∂Vi
∂τ

= αiVi−1 + γiVi + βiVi+1,
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for i = 1, . . . , N − 1, where

α1 =
r2ξ−1
1

2l1

(

a− d1/2
)

,

β1 =
b3/2r

η1
2

(rη12 − rη11 ) l1
,

γ1 = −
r2ξ−1
1

2l1

(

a+ d1/2
)

−
b3/2r

η1
1

(rη12 − rη11 ) l1
− c1,

and

αi =
bi−1/2r

ηi−1

i−1
(

r
ηi−1

i − r
ηi−1

i−1

)

li
,

βi =
bi+1/2r

ηi
i+1

(

rηii+1 − rηii
)

li
,(19)

γi = −
bi−1/2r

ηi−1

i
(

r
ηi−1

i − r
ηi−1

i−1

)

li
−

bi+1/2r
ηi
i

(

rηii+1 − rηii
)

li
− ci,

for i = 2, . . . , N−1. These forms an (N−1)×(N − 1) linear system for [V1, V2, . . . VN−1]
with V0 and Vn being equal to the given boundary conditions in (4) and (6).

4. Full discretization and its convergence

4.1. Full discretization. Let’s now consider the time discretization of (18). Let
τi (i = 0, . . . ,M) be a set of portion points in [0, T ] satisfying 0 = τ0 < τ1 < . . . <
τM = T with the time step sizes ∆τn = τn − τn−1 > 0, where M > 1 is a positive
integer. There are several implicit schemes we can use. For example, the first-order
fully implicit method and the second-order Crank-Nicolson method. For discussion
simplicity, we apply the fully implicit scheme to (18), yielding

(20)
V n+1
i − V ni
∆τn+1

= αiV
n+1
i−1 + γiV

n+1
i + βiV

n+1
i+1 ,

where V ni = V (ri, τn) denotes the solution at node ri and time level τn. If we
define

V n = [V n1 , · · · , V
n
N−1]

⊤,

Rn = [α1V
n
0 , 0, · · · 0, βN−1V

n
N ]

⊤
N−1 ,

and

M =











γ1 β1
α2 γ2 β2

. . .
. . .

. . .

αN−1 γN−1











(N−1)×(N−1)

.

Then, we can write (20) as the following equivalent matrix form,

(21)
V n+1
i − V ni
∆τn+1

=
[

MV n+1 +Rn
]

i
.

It should be noted that in (21) the boundary conditions at r = 0 and r = rmax
have been incorporated, where the Dirichlet types boundary solution is applied
for specific option types as defined in (4) and (6). Also, the initial condition is
incorporated as the payoff function given for the specific option type.

For the numerical scheme (21), we establish the following result.
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Theorem 4.1. Both −M and I −∆τn+1M are M -matrices, provided that r > 0
and li → 0.

Proof. Let us first investigate αi and βi. We have

(22) −αi ≤ 0,−βi ≤ 0.

This is because it follows from (8) and (14) that

−αi =
bi−1/2r

ηi−1

i−1
(

r
ηi−1

i − r
ηi−1

i−1

)

li
= −

di−1/2r
ηi−1

i−1 r
2ξ−1
i−1/2

(

r
ηi−1

i − r
ηi−1

i−1

)

li

=
−aηi

rηii − rηii−1

(

r
ηi−1

i−1 r
2ξ−1
i−1/2

li

)

= −
ηi

rηii − rηii−1

(

σ2

2

r
ηi−1

i−1 r
2ξ−1
i−1/2

li

)

≤ 0,

for all i = 2, 3, . . .N − 1,since σ > 0, ri > ri−1 ≥ 0, li > 0 and ηi
r
ηi
i −r

ηi
i−1

> 0. In the

same way, we also get −βi ≤ 0.
On the other hand, it follows from (19), (8) and the Taylor expansions of bi−1/2

and bi+1/2 at ri that

−αi − βi − γi =−
bi−1/2r

ηi−1

i−1
(

r
ηi−1

i − r
ηi−1

i−1

)

li
−

bi+1/2r
ηi
i+1

(

rηii+1 − rηii
)

li

+
bi−1/2r

ηi−1

i
(

r
ηi−1

i − r
ηi−1

i−1

)

li
+

bi+1/2r
ηi
i

(

rηii+1 − rηii
)

li
+ ci

=
1

li

[

bi−1/2 − bi+1/2

]

+ ci

=
1

li

[

bi−1/2 − bi+1/2

]

+ ri +
∂bi
∂r

=
1

li

[

−
∂bi
∂r

li + o
(

l3i
)

]

+ ri +
∂bi
∂r

=ri + o
(

l2i
)

≥ 0,(23)

given that r > 0 and li → 0. Thus,

(24) −γi = ri + αi + βi + o
(

l2i
)

≥ 0, as li → 0

Summarizing (22), (23) and (24), we conclude that −M has non-positive off-
diagonals, positive diagonals, and is diagonally dominant. Hence, −M is an M -
matrix. Consequently, I −∆τn+1M is also an M -matrix. �

Remark 4.1. Theorem 4.1 implies that the fully discrete system (21) satisfies the
discrete maximum principle. This guarantees that the discrete arbitrage inequality
holds, which is an important property in option pricing theory.

4.2. Convergence of the numerical scheme (21). In this subsection, we in-
vestigate the convergence property of scheme (21). As the pricing equation (3) is
degenerate and convection-dominated with nonsmooth boundary conditions, it is
important to ensure that we generate a numerical solution which is guaranteed to
converge to its corresponding continuous solution, i.e viscosity solution [2]. It has
been shown in [2] that the solution of the discrete system (21) will converge to the
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viscosity solution if the discretization is consistent, stable and monotone. Thus, we
will show that this numerical scheme satisfies these conditions.

For convenience, let

h = max
{

max
i

∆ri,max
n

∆τn

}

,

be the mesh parameter, where ∆ri = (ri − ri−1) and ∆τn = (τn − τn−1). Assume
the partition is quasi-uniform, i.e. ∃C1, C2 > 0 independent of h, such that

C1h ≤ ∆ri,∆τn ≤ C2h,

for 0 ≤ i ≤ N and 0 ≤ n ≤ M . With these notations, we can write (21) in the
following component form:

Fn+1
i (h, V n+1

i , V n+1
i+1 , V

n+1
i−1 , V

n
i ) = 0,

where

(25) Fn+1
i =

[

(I −∆τn+1M)V n+1
]

i
− V ni −∆τn+1R

n
i .

First, we have the following consistency result for the numerical scheme (21).

Lemma 4.1. [Consistency]The discretization (21) is consistent.

Proof. From the discretization in Section 2, we can see that the consistency of
scheme (21) relies on the consistency of the flux ρ(V ). Let w be a sufficiently
smooth function and let wh be the discrete approximation of w. From (11) and
(17), it is easy to see that the exact and the discrete flux yield

∣

∣

∣
[ρ(w)− ρh(wh)]ri+1/2

∣

∣

∣
≤
∣

∣

∣
[ρ(w)− ρ (wh) + ρ (wh)− ρh(wh)]ri+1/2

∣

∣

∣

≤
∣

∣

∣
[ρ(w)− ρ (wh)]ri+1/2

∣

∣

∣
+
∣

∣

∣
[ρ (wh)− ρh(wh)]ri+1/2

∣

∣

∣

≤
∣

∣d− d
i+1/2

∣

∣ ·
∣

∣w
i+1/2

∣

∣+
∣

∣

∣
[ρ (wh)− ρh(wh)]ri+1/2

∣

∣

∣
.

From (12), we see that the mapping from ρ (w) to ρh(wh) preserve constants. There-
fore, by a standard arguments we obtain

∣

∣

∣
[ρ (wh)− ρh(wh)]ri+1/2

∣

∣

∣
≤ Ch.

Summarizing the above two inequalities, we eventually have the consistency of the
flux

∣

∣

∣
[ρ(w) − ρh(wh)]ri+1/2

∣

∣

∣
≤ Ch.

Hence, the consistency of the discretization (21) is a consequent result. �

The stability result for the numerical scheme is given as below.

Lemma 4.2. [Stability] The discretization (21) is stable, i.e.

(26) ‖V n‖∞ ≤ max(‖V 0‖∞, C3, C4),

where C3 = maxn |V
n
0 | and C4 = maxn |V

n
N |, with V n0 and V nN being the given

Dirichlet boundary conditions.

Proof. It follows from (20), (22)-(24) that

(1−∆τn+1γ
n+1
i )|V n+1

i | ≤ |V ni |+∆τn+1α
n+1
i |V n+1

i−1 |+∆τn+1β
n+1
i |V n+1

i+1 |

≤ ‖V n‖∞ + ‖V n+1‖∞(αn+1
i + βn+1

i )∆τn+1.(27)

If ‖V n+1‖∞ = |V n+1
j |, 0 < j < N , then (27) becomes

(1−∆τn+1γ
n+1
j )‖V n+1‖∞ ≤ ‖V n‖∞ + ‖V n+1‖∞(αn+1

j + βn+1
j )∆τn+1.
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Thus, from (22) we obtain

(28) ‖V n+1‖∞ ≤
‖V n‖∞

1−∆τn+1(α
n+1
j + βn+1

j + γn+1
j )

=
‖V n‖∞

1 + r∆τn+1
≤ ‖V n‖∞.

If j = 0 or N , then

(29) ‖V n+1‖∞ = |V n+1
0 |, or ‖V n+1‖∞ = |V n+1

N |.

Combining (28) and (29) gives

‖V n+1‖∞ ≤ max(‖V 0‖∞, |V
n+1
0 |, |V n+1

N |),

which then results in (26). Hence the discretization (21) is stable. �

Finally, we have the following monotonicity result for the scheme (21).

Lemma 4.3. [Monotonicity] The discretization (21) is unconditionally monotone,
i.e., for any ǫ > 0, and i = 0, 1, · · · , N

(30)

Fn+1
i (h, V n+1

i , V n+1
i+1 + ǫ, V n+1

i−1 + ǫ, V ni + ǫ)
≤ Fn+1

i (h, V n+1
i , V n+1

i+1 , V
n+1
i−1 , V

n
i ),

Fn+1
i (h, V n+1

i + ǫ, V n+1
i+1 , V

n+1
i−1 , V

n
i )

≥ Fn+1
i (h, V n+1

i , V n+1
i+1 , V

n+1
i−1 , V

n
i ).

Proof. For i = 0 or N , the lemma is trivially true. When 0 < i < N , the component
form (25) of the scheme (21) is stated as

Fn+1
i (h, V n+1

i , V n+1
i+1 , V

n+1
i−1 , V

n
i )

=
[

(I −∆τn+1M)V n+1
]

i
− V ni −∆τn+1R

n
i ,(31)

Now, we examine each term in (31). From Theorem 4.1, matrix I −∆τn+1M is an
M -matrix, hence

[

(I −∆τn+1M)V n+1
]

i
is a strictly increasing function of V n+1

i ,

and non-increasing function of V n+1
i+1 and V n+1

i−1 . On the other hand, −V ni is a
decreasing function of V ni . Hence (30) is satisfied and the discretization (21) is
monotone. �

The following theorem follows from the consistency, stability and monotonicity
of the scheme (21).

Theorem 4.2. The solution of the fully implicit scheme (21) converges to the
continuous solution of (2), as h→ 0.

5. Numerical experiments

In this section, we present some numerical tests to demonstrate the performance
and convergence of the new numerical scheme. In particular, we investigate the
effectiveness and accuracy of this numerical scheme. Firstly, a numerical test on
European bond option under CIR model is under consideration, where ξ = 1/2 in
(1) . It is known that in this case the analytical pricing formula is available. Hence,
this test can be carried out to verify the accuracy of the new scheme. Secondly, a
numerical example on a digital call option under CIR model is considered to test its
robustness. Finally, to show the usefulness of the new scheme a European option
under a lognormal interest rate model, where ξ = 1 in (1) and no analytical solution
is available, is under investigation. Furthermore, we determine the numerical rates
of convergence as well. To do so, we choose a sequence of meshes by successively
halving the mesh parameters. When an analytical solution exists, we use it as the
‘exact solution’. Otherwise, we use the solution on the best mesh as the ‘exact
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Table 1. Data used to value European options on a zero-coupon
bond under CIR model.

Parameter values
κ 0.10
θ 0.08
σ 0.50
λ 0
E 100
K 60
T 1
s 5

solution’. Then, we compute the following ratios of the numerical solutions of the
consecutive meshes:

(32) Ratio(‖·‖h,∞) =

∥

∥V h∆τ − V
∥

∥

h,∞
∥

∥

∥
V
h/2
∆τ/2 − V

∥

∥

∥

h,∞

in the solution domain, where V βα denotes the computed solution on the mesh with
spatial mesh β and time mesh size α.

∥

∥V h∆τ − V
∥

∥

h,∞
:= max

1≤i≤N ;1≤n≤M
|V ni − V (ri, τn)| .

The numerical order of convergence is then defined by

Rate = log2 Ratio.

All the numerical experiments were carried out with Matlab 2008a on a P4
3.0GHz Intel PC.

5.1. European option under CIR model. A vanilla call option on zero-coupon
bond has the payoff

V ∗ = max [P (r, T, s)−K, 0] ,

The parameters used for this call option on bond under CIR model are listed in
Table 1.

For the call option on bond with the parameters in Table 1, we choose rmax = 2
to ensure the desirable accuracy. The coarsest grid is defined as h = 0.01 and
∆τ = 0.01, uniformly.

In this numerical experiment, the ratio is computed at all the space and time
steps. Table 2 gives the results computed by the fitted finite volume method with
the implicit time scheme, where Nr and Nτ represent the number of space steps
and time steps, respectively; Ratio is defined in (32); CPU represents the CPU time
in second. The ‘exact solution’ is computed by the following analytical result [13]:

V (r, t) = P (r, t, s)χ2
(

2r∗ [φ+ ψ +B (T, s)] ; 4κθ
σ2 ,

2φ2reγ(T−t)

φ+ψ+B(T,s)

)

−KP (r, t, T )χ2
(

2r∗ [φ+ ψ] ; 4κθ
σ2 ,

2φ2reγ(T−t)

φ+ψ

)

.

where χ2 is the non-central chi-squared distribution and

(33)
γ =

(

κ+ λ+ 2σ2
)1/2

, φ = 2γ

σ2(eγ(T−t)−1)
,

ψ = (κ+λ+γ)
σ2 , r∗ = ln(A(T,s)/K)

B(T,s) .
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Table 2. Result of an European call option on a zero-coupon bond
under CIR model using the fitted finite volume method combined
with the implicit scheme, data as in Table 1.

Nr Nτ ‖·‖h,∞ Ratio(‖·‖h,∞) CPU

201 100 0.1794 0.015s
401 200 0.1062 1.7 0.029s
801 400 0.0640 1.7 0.054s
1601 800 0.0364 1.8 0.159s
3201 1600 0.0162 2.2 0.576s
6401 3200 0.0077 2.1 2.893s
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Figure 1. Errors at the last time step of the call option with dif-
ferent mesh grids, where the fitted finite volume method combined
with the implicit scheme is used, data as in Table 1. Nr × Nτ
represents the number of space steps times the number of time
steps.

Finally, we plot, in Figure 1, the error at the last time step of this option with
different mesh girds.

5.2. Digital option under CIR model. Now, we choose a digital call option to
test our numerical scheme. A digital call option has the discontinuous payoff

V (r, τ = 0) =

{

1, if P (r, T, s) ≥ K,
0, if P (r, T, s) < K.

We choose the same parameters defined in Table 1 for this digital call option. We
also choose the coarsest grid as h = 0.01 and ∆τ = 0.01, uniformly. The ratio is
computed at all the space and time steps. Table 3 gives the results computed by
the fitted finite volume method with the implicit time scheme. The notations in
Table 3 is defined as the same with those in the first example. The ‘exact solution’
is computed on the uniform mesh with 12801× 6400 nodes.

Finally, we plot, in Figure 2, the value of the digital call option on a zero-coupon
bond.

5.3. European option under lognormal interest rate model. As a final ex-
ample, we choose a European call option under lognormal interest rate model to
show the usefulness of our numerical scheme. Unlike the CIR model, no closed-form
solutions are available for both pure discount bond price and bond option price.
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Table 3. Result of a digital call option on a zero-coupon bond
under CIR model using the fitted finite volume method combined
with the implicit scheme, data as in Table 1.

Nr Nτ ‖·‖h,∞ Ratio(‖·‖h,∞) CPU

201 100 0.01469 0.020s
401 200 0.01087 1.4 0.031s
801 400 0.00743 1.5 0.065s
1601 800 0.00379 2.0 0.179s
3201 1600 0.00197 1.9 0.622s
6401 3200 0.00104 1.9 2.642s
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Figure 2. Digital call option value using the fitted finite volume
method combined with the implicit scheme, data as in Table 1.
Grid: Nr = 201, Nτ = 100.

Table 4. Data used to value European options on a zero-coupon
bond under lognormal interest rate model.

Parameter values
κ 0.06
θ 0.03
σ 0.80
λ 0
E 100
K 60
T 1
s 5

Hence, we first need to price the bond price numerically and then use the numerical
prices to compute the valuation of European options. The parameters used for this
call option on bond under lognormal model are listed in Table 4.
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Table 5. Results of a pure discount bond and a European option
on this bond under lognormal interest rate model using the fitted
finite volume method combined with the implicit scheme, data as
in Table 4.

r 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
P (r, t = 0, s) 90.56 84.36 78.97 74.22 69.96 66.11 62.61 59.41 56.46 53.74
V (r, t = 0) 30.17 24.77 20.49 17.07 14.32 12.10 10.29 8.80 7.57 6.54

Table 6. Result of a European call option on a zero-coupon bond
under lognormal interest rate using the fitted finite volume method
combined with the implicit scheme, data as in Table 4.

Nr Nτ ‖·‖h,∞ Ratio(‖·‖h,∞) CPU

501 100 0.02635 0.030s
1001 200 0.01895 1.4 0.090s
2001 400 0.01207 1.6 0.232s
4001 800 0.00678 1.8 0.883s
8001 1600 0.00376 1.8 3.471s
16001 3200 0.00221 1.7 12.29s

For this example, we choose rmax = 5 to ensure the desirable accuracy. Table
5 lists the bond prices and options prices on the uniform mesh with 32001× 6400
nodes.

Table 6 gives the numerical convergence results computed by the fitted finite
volume method with the implicit time scheme, where the coarsest grid Nr ×Nτ is
set to 501× 100, uniformly. The ‘exact solution’ is computed on the uniform mesh
with 32001× 6400 nodes.

Finally, we plot the values of the pure discount bond and the European call
option on this bond in Figure 3.

In view of the results in Tables 2, 3 and 6, we can draw some desirable con-
clusions. Firstly, the columns ‘‖·‖h,∞’ in these tables clearly show a convergence
trend. Furthermore, the columns ‘Ratio’ implies a linear convergence rate, which
is consistent with the property of the fully implicit scheme. As we have proved
in the previous sections, the fitted finite volume method combined with the fully
implicit scheme is a consistent, stable and monotonic numerical scheme. Hence, the
option values in these tables converge to their corresponding continuous solution.
Secondly, the computed results in Tables 2 and 3 show this new numerical scheme
is fast and robust. Especially, for the digital call option on bond where a boundary
layer exits, Figure 2 shows that the numerical solution from our method is quali-
tatively very good and contains no oscillations or kinks. It shows that the fitted
finite volume method combined with the implicit scheme is robust. Finally, Table
5 and Figure 3 clearly show that the new scheme is quite effective and robust when
the interest rate follows a lognormal model.

6. Conclusion

In this work we developed a novel fitted finite volume method for the spatial dis-
cretization of the PDE arising from pricing European bond options. The method
is coupled with a fully implicit time-stepping scheme. We have shown that the
discretization scheme is consistent, stable and monotonic, hence the convergence
is guaranteed. Numerical experiments were performed by using three models to
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Figure 3. Bond price (top) and option price (bottom) at the last
time step, where the fitted finite volume method combined with
the implicit scheme is used, data as in Table 4.

demonstrate the convergence, efficiency and usefulness of this method. The nu-
merical results show that the method is stable and the rate of convergence is of
approximate 1st-order.
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