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SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN

METHODS FOR LINEAR HYPERBOLIC EQUATIONS WITH

SINGULAR INITIAL DATA

LI GUO AND YANG YANG

Abstract. In this paper, we consider the discontinuous Galerkin (DG) methods to solve linear

hyperbolic equations with singular initial data. With the help of weight functions, the super-

convergence properties outside the pollution region will be investigated. We show that, by using

piecewise polynomials of degree k and suitable initial discretizations, the DG solution is (2k+1)-th

order accurate at the downwind points and (k + 2)-th order accurate at all the other downwind-

biased Radau points. Moreover, the derivative of error between the DG and exact solutions

converges at a rate of k + 1 at all the interior upwind-biased Radau points. Besides the above,

the DG solution is also (k + 2)-th order accurate towards a particular projection of the exact

solution and the numerical cell averages are (2k + 1)-th order accurate. Numerical experiments

are presented to confirm the theoretical results.

Key words. Discontinuous Galerkin (DG) method, singular initial data, linear hyperbolic equa-

tions, superconvergence, weight function, weighted norms.

1. Introduction

In this paper, we apply discontinuous Galerkin (DG) methods to solve linear

hyperbolic equation with non-smooth solution in one space dimension

ut + ux = 0, (x, t) ∈ [0, 2π]× (0, T ],(1)

u(x, 0) = u0(x), x ∈ [0, 2π],(2)

where the initial solution u0(x) has a discontinuity at x = c, but is otherwise

smooth. We consider problem with suitable Dirichlet boundary condition

(3) u(0, t) = g(t)

such that the exact solution is smooth except along the characteristic line x = t+c.

It is well known that the numerical solution has spurious oscillations around the

discontinuity line, which is regarded as “pollution region”. The early works studying

error estimates of DG methods for hyperbolic problems with discontinuities were

given by Johnson et. al. [16, 17, 18]. They proved that the width of the pollution

region is of the size at most O(h
1

2 log(1/h)) with linear space-time elements. Later,

similar results were also obtained by Cockburn and Guzmán [10] and Zhang and

Shu [26] with the RKDG methods. The main idea is to introduce special weight

functions which are very small near the singularity and are close to 1 outside the

pollution region. More recently, Yang and Shu [25] applied the same idea and proved

the (2k + 1)-th superconvergence in negative-order norms outside the pollution

region. To our best knowledge of the authors, this is the only superconvergence

result for DG methods applied to hyperbolic equations with singular exact solutions.
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The DG method was first introduced in 1973 by Reed and Hill [21], in the frame-

work of neutron linear transport. Later, the method was applied by Johnson and

Pitkäranta to a scalar linear hyperbolic equation and the Lp-norm error estimate

was proved [17]. Subsequently, Cockburn et al. developed Runge-Kutta discon-

tinuous Galerkin (RKDG) methods for hyperbolic conservation laws in a series of

papers [13, 12, 11, 14]. Generally, we choose completely discontinuous piecewise

polynomial space for DG methods. Hence, DG methods have several advantages

such as high parallel efficiency, efficient h-p adaptivity, arbitrary order of accuracy

and so on.

Superconvergence properties of DG methods for hyperbolic equations have been

studied intensively, see [1, 2, 3, 4, 27, 20, 28, 8, 9, 24, 5, 6, 7] and the references

therein. Many of the previous works are based on local error estimates or Fourier

analysis, and the results only work for some special problems. In 2010, Cheng

and Shu [9] applied energy analysis to obtain a (k + 3/2)-th superconvergence

rate for the error between the DG solution and the particular projection of the

exact solution. However, numerical experiments demonstrated the rate should be

k + 2. Recently, Yang and Shu [24] extended the results in [9] to show that, with

suitable initial discretization and upwind fluxes, the DG solution is (k+2)-th order

superclose to the exact solution at the downwind-biased Radau points. The same

convergence rate also works for the numerical cell averages. Subsequently, Cao et

al. [5] proved a (2k + 1)-th order convergence rate of the error at the downwind

point by constructing a special interpolation function. After that, in [7] and [6],

the idea was applied to problems in two space dimensions and those in one space

dimension with upwind-biased fluxes.

One of the most significant applications of the superconvergence is the construc-

tion of adaptive methods. The key point is to use the superconvergence properties

to introduce a new numerical approximation which is superclose to the exact so-

lution. Then the error between the two numerical approximations can be used

as an error indicator to detect the regions with poor resolutions or singularities

[19]. In this paper, we would like to analyze the error of the DG method for lin-

ear hyperbolic conservation law (1) outside the pollution region. The basic idea is

to construct a suitable interpolation function uI such that the DG solution uh is

(2k + 1)-th order accurate towards uI under some weighted norms. By using the

special properties of the weight functions we can prove several superconvergence

results between the DG solution and the exact solution outside the pollution re-

gion. We will show that, under suitable initial discretizations, the DG solution is

(2k+1)-th order accurate at the downwind points and (k+2)-th order accurate at

all the other downwind-biased Radau points. Moreover, the derivative converges at

a rate of k + 1 at all the interior upwind-biased Radau points. Besides the above,

the DG solution is (k + 2)-th order accurate towards a particular projection of the

exact solution and the numerical cell averages are (2k + 1)-th order accurate.

The organization of this paper is as follows. In Section 2, we will present prelim-

inaries, including an introduction of DG scheme, some special projections, several

elementary lemmas as well as the weight functions. In Section 3, we prove the

main superconvergence results. Numerical experiments will be given in Section 4
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to validate our theoretical results. Finally, we will end in Section 5 with concluding

remarks and remarks on future works.

2. Preliminaries

In this section, we present some preliminaries that will be used throughout the

paper. For simplicity, we use C to represent a generic positive constant that does not

depend on the mesh size h, but may take different values at difference occurrences.

2.1. The DG scheme. In this subsection, we demonstrate the formulation of

DG methods for (1) with Dirichlet boundary condition (3) on the computational

domain Ω = [0, 2π].

First, we divide Ω into N cells

0 = x 1

2

< x 3

2

< · · · < xN+ 1

2

= 2π,

and denote

Ij = (xj− 1

2

, xj+ 1

2

)

as the cells. Let hj = xj+ 1

2

− xj− 1

2

denote the length of cell Ij and h = maxj hj,

hmin = minj hj be the length of the largest and smallest cells, respectively. More-

over, we define λ = h/hmin. In this paper, we consider regular meshes, i.e. there

exists a constant C, such that λ ≤ C.

Next, we define

Vh = {v : v|Ij ∈ Pk(Ij), j = 1, · · · , N}

as the finite element space, where Pk(Ij) denotes the space of polynomials of degree

at most k in Ij . The DG scheme for (1) can be formulated as: Find uh ∈ Vh, such

that for any v ∈ Vh,

aj(uh, v) = ((uh)t, v)j − (uh, vx)j + u−h v
−|j+ 1

2

− u−h v
+|j− 1

2

= 0,(4)

where (w, v)j =
∫

Ij
wvdx and v−

j+ 1

2

= v(x−
j+ 1

2

) denotes the left limit of v at xj+ 1

2

.

Likewise for v+. Moreover, we define [v]j+ 1

2

= v+
j+ 1

2

− v−
j+ 1

2

as the jump of v across

xj+ 1

2

. For simplicity of presentation, we denote

Hj(w, v) = (w, vx)j − w−v−|j+ 1

2

+ w−v+|j− 1

2

(5)

= −(wx, v)j − [w]j− 1

2

v+
j− 1

2

,

which further yields

(wt, v)j = aj(w, v) +Hj(w, v),(6)

Finally, we introduce the bilinear form a and H on the whole computational domain

as

a(w, v) =

N
∑

j=1

aj(w, v),

and

H(w, v) =

N
∑

j=1

Hj(w, v).
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2.2. Norms. In this subsection, we give the definition of weighted norms that we

will use throughout the paper. For any function u and any positive function ψ, we

define the weighted Lp-norm of u as

‖u‖0,p,ψ,D =

{

(∫

D |u|pψdx
)

1

p , 1 ≤ p <∞,

maxx∈D |uψ|, p = ∞.

Moreover, the weighted Wm,p(D)-norm of u is defined as

‖u‖m,p,ψ,D =







(

∑m
j=0 ‖D

ju‖p0,p,ψ,D

)
1

p

, 1 ≤ p <∞,

maxj≤m ‖Dju‖0,∞,ψ,D, p = ∞.

If ψ = 1, the weighted norms will degenerate to the standard Sobolev norms. For

convenience, if p = 2, ψ = 1 and D = Ω, then the corresponding subscripts will be

omitted. For example, ‖u‖0 is the standard L2-norm of u on Ω.

2.3. Special projections and properties of the DG discretization. In this

subsection, we present special projections and demonstrate the properties of the

DG discretization to be used in the proof of the main theorem.

First, we define Pℓ(w) as the ℓ-th order standard L2 projection of function w

into Vh, such that

(Pℓ(w), v)j = (w, v)j , ∀v ∈ Pℓ(Ij).(7)

In addition, we also construct two Gauss-Radau projections P+ and P− by

(P+(w), v)j = (w, v)j , ∀v ∈ Pk−1(Ij) and P+(w)(x
+
j− 1

2

) = w(x+
j− 1

2

),(8)

(P−(w), v)j = (w, v)j , ∀v ∈ Pk−1(Ij) and P−(w)(x
−

j+ 1

2

) = w(x−
j+ 1

2

).(9)

Subsequently, for the above projection Ph, which is either P+ or P−, we denote the

error operator by P
⊥
h = I− Ph, where I is the identity operator.

For the bilinear form Hj , it is easy to check the following Lemma.

Lemma 1. Suppose q ∈ W 1,2(Ij) and v ∈ Vh, the two Gauss-Radau projections

satisfy

Hj(P
⊥
−q(x), v) = 0 and Hj(v,P

⊥
+q(x)) = 0.(10)

Next, we would like to roughly introduce a special interpolation function uI
which is (2k + 1)-th order superclose to uh. More details of the construction of uI
can be found in [5].

First, suppose u(x, t) has the following Radau expansion in each cell Ij , j =

1, 2, · · · , N :

u(x, t) = u(x−
j+ 1

2

, t) +

∞
∑

m=1

uj,m(t)(Lj,m − Lj,m−1)(x),

where Lj,m is the Legendre polynomial of degreem in Ij , and uj,m is the coefficient.

Second, for all v ∈ W 1,2(Ij), we define

D−1v(x) =
2

hj

∫ x

x
j− 1

2

v(τ)dτ, x ∈ Ij ,
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and

F1 = P−D
−1Lj,k, Fi = −P−D

−1Fi−1 = −(−P−D
−1)iLj,k, i ≥ 2.

The special interpolation function is defined as

uℓI = P−u−

ℓ
∑

i=1

(

hj
2

)i

∂ituj,k+1(t)Fi(x), 1 ≤ ℓ ≤ k.(11)

For the bilinear form aj , we have the following theorem (see [5] Theorem 3.2).

Theorem 2. If u ∈ W k+ℓ+2,∞(Ω) and k ≥ 1, then for 1 ≤ ℓ ≤ k and any v ∈ Vh,

we have

|aj(u− uℓI , v)| ≤ Chk+ℓ+1‖u‖k+ℓ+2,∞,Ij‖v‖0,1,Ij .(12)

2.4. The weight function. In this paper, we will consider two weight functions

ψ1(x, t) and ψ−1(x, t) which will be used to determine the left and right boundaries

of the pollution region, respectively. First, we define the cut-off exponential function

φ(r) ∈ C1 : R → R as

φ(r) =

{

2− er, r < 0,

e−r, r ≥ 0.

Then, ψβ(x, t) for β = ±1 are defined as the solutions of the linear hyperbolic

problem

ψβt + ψβx = 0,

ψβ(x, 0) = φ

(

β(x− xc)

γhσ

)

.

Following [25], we choose σ = 1
2 and xc = 2βs log(1/h)γh1/2, with s and γ to be

sufficiently large. It is very easy to check the following property.

Proposition 3. For each of the weight function ψβ(x, t), the following properties

hold

1 ≤ ψβ(x, t) ≤ 2, β(x − xc − t) ≤ 0,(13)

0 ≤ ψβ(x, t) < hs, β(x − xc − t) > s log(1/h)γh1/2,(14)

max
d≤γh

1

2

∣

∣

∣

∣

Dm
x ψ(x+ d, t)

Dm
x ψ(x, t)

∣

∣

∣

∣

≤ e, m = 0, 1, 2.(15)

Besides that above, we will use several lemmas about the weight functions in

[26]. For simplicity, we will drop the superscript and use ψ for both ψβ .

Lemma 4. For any v ∈ Vh, we have the following identity

2H(v, vψ) = −
∑

j

[v]2j− 1

2

ψj− 1

2

− (v−
N+ 1

2

)2ψN+ 1

2

+ (v−1
2

)2ψ 1

2

+ (v, vψx).(16)

Lemma 5. Let Ph be a Gauss-Radau projection, either P− or P+. There exists a

positive constant C independent of h, such that for any v ∈ Vh, we have

‖P⊥
h (ψv)‖0,ψ−1,D ≤ Cγ−1h1/2‖v‖0,ψ,D,(17)

‖Ph(ψv)‖0,ψ−1,D ≤ C‖v‖0,ψ,D,(18)

where D is either the single cell Ij or the whole computational domain Ω.
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3. Superconvergence

In this section, we proceed to discuss the superconvergence properties of DG

solution at some special points including downwind points and Radau points, and

the superconvergence of the cell averages, etc. We begin with the following energy

inequality.

Lemma 6. For any v ∈ Vh with v−1
2

= 0, define w = vt − Pk−1vt ∈ Vh, then we

have

d‖v‖20,ψ
dt

≤C
(

N
∑

j=1

∣

∣

∣aj(v, w)
( w

‖w‖20,Ij
,P⊥

+(vψ)
)

j

∣

∣

∣(19)

+

N
∑

j=1

|aj(v,P+(vψ))|+ ‖v‖20,ψ

)

.

Proof. For any v ∈ Vh and weight functions ψ given in Subsection 2.4, we have

d‖v‖20,ψ
dt

= 2(vt, vψ) + (v, vψt)(20)

= 2a(v, vψ) + 2H(v, vψ) + (v, vψt)

= 2a(v, vψ) + (v, vψt) + (v, vψx)

−

N
∑

j=1

[v]2j− 1

2

ψj− 1

2

+ (v−1
2

)2ψ 1

2

− (v−
N+ 1

2

)2ψN+ 1

2

= 2a(v, vψ)−

N
∑

j=1

[v]2j− 1

2

ψj− 1

2

+ (v−1
2

)2ψ 1

2

− (v−
N+ 1

2

)2ψN+ 1

2

≤

N
∑

j=1

(

2aj(v, vψ)− [v]2j− 1

2

ψj− 1

2

)

,

where the second step follows from (6), the third step requires Lemma 4, the fourth

step holds because ψt + ψx = 0. Next by using Lemma 1, we obtain

aj(v, vψ) = (vt,P
⊥
+(vψ))j + aj(vt,P+(vψ)) −Hj(v,P

⊥
+(vψ))(21)

= (vt,P
⊥
+(vψ))j + aj(v,P+(vψ)).
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To estimate the first term on the right-hand side, we define w = vt − Pk−1vt, then

(vt,P
⊥
+(vψ))j =

(

(vt, w)j
(w,w)j

w,P⊥
+(vψ)

)

j

(22)

= (aj(v, w) +Hj(v, w))

(

w

‖w‖20,Ij
,P⊥

+(vψ)

)

j

≤

∣

∣

∣

∣

∣

∣

aj(v, w)

(

w

‖w‖20,Ij
,P⊥

+(vψ)

)

j

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

[v]j− 1

2

w+
j− 1

2

(

w

‖w‖20,Ij
,P⊥

+(vψ)

)

j

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

aj(v, w)

(

w

‖w‖20,Ij
,P⊥

+(vψ)

)

j

∣

∣

∣

∣

∣

∣

+ |[v]j− 1

2

|
√

ψj− 1

2

h−
1

2 ‖P⊥
+(vψ)‖0,Ij (ψj− 1

2

)−
1

2 ,

≤

∣

∣

∣

∣

∣

∣

aj(v, w)

(

w

‖w‖20,Ij
,P⊥

+(vψ)

)

j

∣

∣

∣

∣

∣

∣

+
C

γ
([v]2j− 1

2

ψj− 1

2

+ ‖v‖20,ψ,Ij),

where the first equality holds because of the property of projection Pk−1, the last

second inequality holds with trace inequality as well as the last inequality arises

from (17) and (15). Plugging (22) into (21), we obtain

aj(v, vψ) ≤

∣

∣

∣

∣

∣

∣

aj(v, w)

(

w

‖w‖20,Ij
,P⊥

+(vψ)

)

j

∣

∣

∣

∣

∣

∣

+
C

γ
([v]2j− 1

2

ψj− 1

2

+ ‖v‖20,ψ,Ij )

+ aj(v,P+(vψ)).

Summing up the above equation in j and then plugging into (20), we obtain

d‖v‖20,ψ
dt

≤ 2

N
∑

j=1

∣

∣

∣

∣

∣

∣

aj(v, w)

(

w

‖w‖20,Ij
,P⊥

+(vψ)

)

j

∣

∣

∣

∣

∣

∣

(23)

+
C

γ
(

N
∑

j=1

[v]2j− 1

2

ψj− 1

2

+

N
∑

j=1

‖v‖20,ψ,Ij) + 2

N
∑

j=1

aj(v,P+(vψ)) −

N
∑

j=1

[v]2j− 1

2

ψj− 1

2

≤C





N
∑

j=1

∣

∣

∣

∣

∣

∣

aj(v, w)

(

w

‖w‖20,Ij
,P⊥

+(vψ)

)

j

∣

∣

∣

∣

∣

∣

+

N
∑

j=1

|aj(v,P+(vψ))|+ ‖v‖20,ψ



 ,

where the last step requires γ to be sufficiently large. Now, we complete our proof.

�

Next, we would like to modify the exact solution u of (1) into ũ ∈W k+ℓ+2,∞(Ω)

without changing the DG solution. More details of the construction can be found

in [25, 26]. This modification is only used for the theoretical analysis, since we

need the high-order derivatives of the exact solution. For simplicity, we also use u

instead of ũ in the rest of the paper. Now, we proceed to estimate the error between

uℓI and uh.
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Theorem 7. For the above u and uh and the special interpolation uℓI ∈ Vh, 1 ≤

ℓ ≤ k, we have

‖uh − uℓI‖0,ψ(t) ≤ C(‖uh − uℓI‖0,ψ(0) + thk+ℓ+1‖u‖k+ℓ+2,∞,ψ).(24)

Proof. Since (uh − uℓI)
−
1

2

= 0, let v = uh − uℓI in Lemma 6, we have

d‖uh − uℓI‖
2
0,ψ

dt

(25)

≤C
(

N
∑

j=1

∣

∣

∣aj(uh − uℓI , w)
( w

‖w‖20,Ij
,P⊥

+(vψ)
)

j

∣

∣

∣+

N
∑

j=1

|aj(uh − uℓI ,P+(vψ))| + ‖v‖20,ψ

)

=C
(

N
∑

j=1

∣

∣

∣aj(u− uℓI , w)
( w

‖w‖20,Ij
,P⊥

+(vψ)
)

j

∣

∣

∣+

N
∑

j=1

|aj(u − uℓI ,P+(vψ))| + ‖v‖20,ψ

)

≤C
(

N
∑

j=1

hk+ℓ+1
j ‖u‖0,k+ℓ+2,∞,Ij

(

‖w‖0,1,Ij

∣

∣

∣

( w

‖w‖20,Ij
,P⊥

+(vψ)
)

j

∣

∣

∣+ ‖P+(vψ)‖0,1,Ij

)

+ ‖v‖20,ψ

)

≤C
(

N
∑

j=1

hk+ℓ+1
j ‖u‖k+ℓ+2,∞,ψ,Ij‖v‖0,ψ,Ijh

1

2 + ‖v‖20,ψ

)

≤C(hk+ℓ+1‖u‖k+ℓ+2,∞,ψ‖uh − uℓI‖0,ψ + ‖uh − uℓI‖
2
0,ψ),

where the second step is due to the Galerkin orthogonality, step three follows from

Theorem 2, step four requires Lemma 5 and step five holds based on the Cauchy-

Schwarz inequality. From (25) it is easy to obtain

d‖uh − uℓI‖0,ψ
dt

≤ C(hk+ℓ+1‖u‖k+ℓ+2,∞,ψ + ‖uh − uℓI‖0,ψ),(26)

which further implies

‖uh − uℓI‖0,ψ(t) ≤ C(‖uh − uℓI‖0,ψ(0) + thk+ℓ+1‖u‖k+ℓ+2,∞,ψ),(27)

by Gronwall’s inequality. �

Remark 8. From Theorem 7, a natural choice of the initial discretization is

uh(x, 0) = ukI (x, 0), ∀x ∈ Ω,(28)

then we have

‖uh − ukI‖0,ψ(t) ≤ Cth2k+1‖u‖2k+2,∞,ψ.

We will demonstrate the right-hand side of the above estimate is indeed (2k+1)-

th order accurate, i.e. ‖u‖2k+2,∞,ψ is bounded. Following [25, 26], we define xL(t) =

t − |xc| = t − 2s log(1/h)γh1/2 as the left boundary of the pollution region and

consider the weight function ψ = ψ1. Moreover, we define

w(t) = max

{

xj+ 1

2

: xj− 1

2

< t−
1

2
|xc|

}

and R1(t) = (0, w(t)), R2 = [0, 2π] \ R1(t). It is easy to check that R1 stays away

from the bad interval [t − h, t + h] which contains the discontinuity of the exact
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solution and on R2 we have ψ1 ≤ hs. Therefore, we can take s to be sufficiently

large, such that ‖u‖2k+2,∞,ψ1 ≤ C, which further yields

‖uh − ukI‖0,ψ1,RL(t) ≤ ‖uh − ukI‖0,ψ1 ≤ Ch2k+1,

where RL(t) = [0, xL(t)]. Since 1 ≤ ψ1 ≤ 2 on RL(t), we have

‖uh − ukI‖0,RL(t) ≤ C‖uh − ukI‖0,ψ1,RL(t) ≤ Ch2k+1.

Similarly, we also define t+ |xc| = t+2s log(1/h)γh1/2 to be the right boundary of

the pollution region and RR(t) = [t + |xc|, 2π]. Following the same analysis above

and replace ψ1 by ψ−1, we have

‖uh − ukI‖0,RR(t) ≤ Ch2k+1.

Combine the above two inequalities together to obtain

‖uh − ukI‖0,R(t) ≤ Ch2k+1,(29)

where R(t) = RL(t) ∪ RR(t). Then, we can present the superconvergence of the

DG solution on R. The results are given in the following theorem. For simplicity

of presentation, we define

S = {j : Ij ∈ R(t)} and Ns = |S|.

Now we are ready to demonstrate the main result of this paper, i.e. superconver-

gence properties at some special cases outside the pollution region in the following

theorem. The proof of the theorem depends on the superconvergence of u − uI
which were given in [5], so we omit the proof.

Theorem 9. With the initial discretization (28), we can claim the following super-

convergence properties at several special points (including downwind point, downwind-

biased Radau points and upwind-biased Radau points), for special projection P− and

cell averages.

(I) The superconvergence at the downwind point:

|(u− uh)(x
−

j+ 1

2

, t)| ≤ Ch2k+
1

2 , ∀ j ∈ S,





1

Ns

∑

j∈S

(u− uh)
2(x−

j+ 1

2

, t)





1

2

≤ Ch2k+1.

(II) The superconvergence at downwind-biased Radau points:

|(u − uh)(R
r
j,ℓ, t)| ≤ Chk+2,

where Rrj,ℓ, with ℓ = 0, 1, · · · , k, are the k + 1 zeros of the downwind-biased Radau

polynomial Lj,k+1 − Lj,k in Ij , ∀ j ∈ S, except the point Rrj,0 = xj+ 1

2

.

(III) The superconvergence of the derivative at upwind-biased Radau

points:

|(u − uh)x(R
l
j,ℓ, t)| ≤ Chk+1,

where Rlj,ℓ, with ℓ = 0, · · · , k, are the k interior zeros of the upwind-biased Radau

polynomial Lj,k + Lj,k+1 in Ij , ∀ j ∈ S, except the point Rlj,0 = xj− 1

2

.
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(IV) The DG solutions are superclose to P−:

‖uh − P−u‖0,R(t) ≤ Chk+2.

(V) The superconvergence for cell averages:




1

Ns

∑

j∈S

(

1

hj

∫

Ij

(u− uh)dx

)2




1

2

≤ Ch2k+1.

Remark 10. To obtain the above theorem, we need to start from (29). For example,

it is easy to obtain




1

Ns

∑

j∈S

(ukI − uh)
2(x−

j+ 1

2

, t)





1

2

≤ Ch2k+1.

Moreover, for any j ∈ S, the error between u and ukI at the downwind point is given

as [5]

|(ukI − u)(x−
j+ 1

2

, t)| ≤ Ch2k+1.

The above two inequalities further yield the second result in part I of Theorem 9.

We can basically follow the same line to obtain other estimates in Theorem 9.

4. Numerical experiments

Before we proceed to the numerical experiments, we introduce the high order

time discrezation. There exists kinds of time discretiztions (see e.g. [23, 22, 15]) to

solve the ODE system ut = L(u). In this paper, we would like to apply third-order

Runge-Kutta method [23]

u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4

(

u(1) +∆tL(u(1))
)

,(30)

un+1 =
1

3
un +

2

3

(

u(2) +∆tL(u(2))
)

,

where un is the coefficient vector of polynomials P k at the time t = n∆t. Here, we

choose the time step ∆t = 0.1h(2k+1)/3 to reduce the time error. Now, we obtain

the fully discrete scheme.

In this section, we use numerical experiments to verify Theorem 9. We use

P 3 polynomials to solve (1) with u0 = sin(x) + δ(x − 1.2), and g(t) = sin(−t) and

compute up to T = 0.1. It is easy to see that, at t = 0.1, the δ-singularity is located

at x = 1.3. In [26], the authors have numerically verified the size of the pollution

region, and the main goal of this paper is to demonstrate the superconvergence

rates outside. Therefore, we compute the following errors over a fixed interval

I = [0, 0.6] ∪ [2, 2π].

ef = maxj∈S |(u− uh)(x
−

j− 1

2

, T )|, ec =

(

1
Ns

∑

j∈S

(

1
hj

∫

Ij
(u− uh)dx

)2
)

1

2

,

er = maxj∈S |(u − uh)(R
r
j,ℓ, T )|, ed = maxj∈S |(u− uh)x(R

l
j,ℓ, T )|,

where S = {j : Ij ∈ I} and Ns = |S|.
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The results are given in Table 1. The table demonstrates superconvergence rates

Table 1. Various errors with Radau interpolation of the Dirichlet

boundary condition for k = 3.

ec ef er ed
n error order error order error order error order

200 4.51e-16 - 8.67e-16 - 1.47e-12 - 4.49e-10 -

400 1.69e-19 11.4 3.81e-19 11.2 4.60e-14 5.00 2.80e-11 4.00

800 1.32e-21 7.01 2.67e-21 7.16 1.44e-15 5.00 1.75e-12 4.00

1600 1.04e-23 6.98 2.11e-23 6.98 4.59e-17 5.00 1.10e-13 4.00

2k+1 (the polynomial degree is k = 3) for the numerical cell average and numerical

approximation at downwind point (ec and ef ), k + 2 for the numerical solution at

right Radau points (er), and k + 1 for the derivative of the approximation at the

interior left Radau points (ed) between the DG approximation and the analytic

solution, which confirm our theoretical results in Theorems 9.

5. Conclusion

In this paper, we use the DG method to solve hyperbolic conservation laws with

singular initial data. We investigate the superconvergence properties outside the

pollution region. We have shown the (2k + 1)-th order superconvergence rate for

the DG solutions at downwind points and for the cell averages. Moreover, the DG

solutions are also (k + 2)-th order accurate at the downwind-biased Radau points

and the derivatives of the error are (k+1)-th order superconvergent at the upwind-

biased Radau points. Numerical experiments were given to verify the theoretical

results of DG method. In the future, we will consider the superconvergence of

nonlinear conservation laws.
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