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MODELING THE LID DRIVEN FLOW: THEORY AND

COMPUTATION

MAKRAM HAMOUDA1,2, ROGER TEMAM2 AND LE ZHANG2

Abstract. Motivated by the study of the corner singularities in the so-called cavity flow, we
establish in the first part of this article, the existence and uniqueness of solutions in L2(Ω)2 for
the Stokes problem in a domain Ω, when Ω is a smooth domain or a convex polygon. This result
is based on a new trace theorem and we show that the trace of u can be arbitrary in L2(∂Ω)2

except for a standard compatibility condition recalled below. The results are also extended to the
linear evolution Stokes problem. Then in the second part, using a finite element discretization,
we present some numerical simulations of the Stokes equations in a square modeling thus the
well known lid-driven flow. The numerical solution of the lid driven cavity flow is facilitated
by a regularization of the boundary data, as in other related equations with corner singularities
( [9], [10], [45], [24]). The regularization of the boundary data is justified by the trace theorem in
the first part.

Key words. Stokes and related (Oseen, etc.) flows, weak solutions, existence, uniqueness,
regularity theory, lid driven cavity.

Introduction

We are interested in the first part of this article in the existence of L2−solutions
for the (linear stationary) Stokes problem in a domain Ω of R2. The set Ω is assumed
to be bounded, regular of class C2, or it could be a convex polygonal domain. More
generally Ω can be what we will call a (convex) domain of polygonal type that is Ω
a piecewise C2 domain for which the tangent to the boundary Γ has a finite number
of discontinuity points S1, . . . , SN , with a well defined left and right tangent at
these points, the angle between the tangents being 0 < αj < π; hence the domain
Ω needs not be convex in this case, we only require the angles to be convex.

Motivated by the study of a flow in such a domain Ω (see Part 2) we start with
the stationary linear Stokes problem, which, in its most general form reads:

(1)











−∆ũ+∇p̃ = f in Ω,

div ũ = h in Ω,

ũ = g on Γ = ∂Ω.

The emphasis in the second part of this article is on the so-called lid-driven cavity
problem. In this case Ω is the square (0, 1)× (0, 1), f = h = 0 and g = (0, 0) at x =
0, 1, and y = 0, and g = (1, 0), at y = 1; the discontinuities of g produce singularities
and vortices at the corners (0, 1) and (1, 1). We describe this example in more detail
in Section 3 and in Part 2 where we exhibit some numerical simulations related to
the lid-driven cavity problem using the classical finite element discretization method
together with a regularization of the boundary values of the velocity justified by
the results in Part 1.

We know that if f ∈ L2(Ω)2, h = g = 0, then the existence and uniqueness of a
solution ũ ∈ H1

0 (Ω)
2 of (1) is derived from the projection theorem, and p̃ ∈ L2(Ω)

Received by the editors March 21, 2017 and, in revised form, March 22, 2017.
2000 Mathematics Subject Classification. 76D07, 35D30, 76D03.

313



314 M. HAMOUDA, R. TEMAM AND L. ZHANG

follows from the result of Deny-Lions [13]; see also [59], [60]. If f ∈ L2(Ω)2 and h ∈
L2(Ω), with

∫

Ω
hdxdy = 0, we have existence and uniqueness of U ∈ H2(Ω)2, P ∈

H1(Ω) satisfying

(2)











−∆U +∇P = f in Ω,

div U = h in Ω,

U = 0 on Γ.

In the case where Ω is smooth, this result is proved in [8]; see also [31]. When
Ω is of polygonal type, this result is proven in [32]; see also [33]. The difference
u = ũ − U, p = p̃ − P is solution of the following problem which concentrates the
lack of regularity on the boundary value, like for the lid driven cavity problem:

(3)











−∆u+∇p = 0 in Ω,

div u = 0 in Ω,

u = g on Γ.

In Section 1 we derive a trace theorem for functions u in L2(Ω)2 satisfying (3)1,
(3)2, thus giving a meaning to (3)3. Then in Section 2 we establish the existence
and uniqueness of a solution u ∈ L2(Ω)2 of (3) provided

∫

Γ g · n dΓ = 0, see
Theorem 3; here n is the unit outward normal vector on Γ and below τ is the unit
tangent vector, such that n is directly orthogonal to τ . We discuss in more details
an example of lid driven cavity flow in Section 3. Finally in Section 4 we extend
the results to the linear evolution Stokes problem. Namely, we prove the necessary
trace theorems, then, in Theorem 5, we show that if g is given in L2(0, T ;L2(Γ)2)
satisfying

∫

Γ
g · n dΓ = 0 for a.e. t ∈ (0, T ), then there exists a unique solution

u ∈ L2(0, T ;L2(Ω)2) of

(4)























∂u

∂t
−∆u+∇p = 0 in (0, T )× Ω,

div u = 0 in Ω,

u = g on (0, T )× Γ,

u(0) = 0,

with p ∈ D′((0, T )× Ω).
There is a large literature on weak solutions of the Navier-Stokes equations start-

ing with the now classical results of J. Serrin [53] of solutions of the Navier-Stokes
equations in Lr(0, T ;Ls) up to the recent result [27] of uniqueness of solutions in
L3(0, T ;L3(R3)3), itself followed by a series of articles improving and simplifying
its proof.

In another direction Fabes, Kenig and Verchota study in [18] the stationary
Stokes problem on Lipschitz domains of R

n, n ≥ 3, using methods of harmonic
analysis. This work is extended to the time-dependent case in the articles [52], [51]
which study the evolution Stokes equation in a Lipschitz domain of Rn, n ≥ 3, in
L2 space in [52] and in some Lp spaces in [51].

In yet another direction, H. Amann introduced in [2] and [1] a concept of weak
solutions for the Navier-Stokes equations using the concept of duality or adjoint
equations. The idea is to integrate by parts all or most of the derivatives against
a smooth test function. The whole book [41] is devoted to constructing such weak
solutions of linear elliptic and parabolic equations, but they do not address the
case of the Stokes equations. The work of [1,2] has been subsequently extended in
different directions (Stokes vs Navier-Stokes, stationary vs time dependent, space
L2 vs spaces Lp) in a series of articles [22], [21], [23], [20] ; see also [46], [43]. These
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articles are mostly concerned with space dimension n = 3, and smooth domains,
However as explained in [22, b], one of the difficulties is to give a meaning to the
trace of u and to verify the boundary condition u = g on Γ. Either this question
is ignored or some partial results are established. The object of this article is to
establish a clear trace theorem and to give a precise sense to the boundary condition
u = g on Γ when u ∈ L2(Ω)2 satisfies (3)1 and (3)2. A result related to ours appear
in [3], but it is limited to the time independent case.

We conclude this introduction with an a priori estimate borrowed from [36] which
we reproduce for the sake of completeness.

Lemma 1. Assume that u, p and g are sufficiently regular (e.g. u ∈ H2(Ω)2, p ∈
H1(Ω), g ∈ H3/2(Γ)2) and satisfy (3). Then

(5) |u|L2(Ω)2 ≤ c1|g|L2(Γ)2 ,

where the constant c1 depends only on Ω.
Proof. The proof is based on a transposition argument used for general elliptic
problems by Lions and Magenes [41].

We consider v, q solution of the adjoint problem

(6)











−∆v +∇q = u in Ω,

div v = 0 in Ω,

v = 0 on Γ.

We know from the references quoted above that, at least, v ∈ H2(Ω)2, q ∈ H1(Ω)
so that the following integrations by parts make sense. We have, n denoting the
outside unit normal on Γ :

∫

Ω

|u|2dΩ =

∫

Ω

u (−∆v +∇q) dΩ,

= (since v = 0 on Γ and div u = div v = 0)

= −

∫

Γ

g
∂v

∂n
dΓ−

∫

Ω

∆u v dΩ +

∫

Γ

g · nq dΓ

= −

∫

Γ

(g
∂v

∂n
− g · n q) dΓ

≤ |g|H−1/2(Γ)2 |
∂v

∂n
|H1/2(Γ)2 + |g · n|H−1/2(Γ)|q|H1/2(Γ)

≤ c|g|H−1/2(Γ)2
(

|v|H2(Ω)2 + |q|H1(Ω)

)

≤ (using the H2(Ω) regularity for (6))

≤ c|g|H−1/2(Γ)2 |u|L2(Ω)

≤ c|g|L2(Γ)2 |u|L2(Ω).

The lemma is proven.

Remark 1. It follows from the proof of Lemma 1 that we can replace |g|L2(Γ)2 by
|g|H−1/2(Γ)2 in the right-hand side of (5). We will not use this improvement here

because it is not easy to compute |g|H−1/2(Γ)2 .

Remark 2. In the above we have used the H2 − H1 regularity for the Stokes
problem, that is v ∈ H2(Ω)2, q ∈ H1(Ω) when u ∈ L2(Ω)2. This is classical when
Ω is smooth, say C2 (see e.g. [8], [31]), and is proven in [33], [32] for the type of
polygonal domains we are considering.
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Part 1. A trace theorem and application

We study in this part the existence issue of the Stokes equations when the domain
has some corners, namely here the square, but our results extend to any domain
with convex corners with some additional technicalities that have to be taken into
account. One of the major issues for this problem is to define the trace of the
very weak Stokes solutions at the singular part of the boundary. This will be
the objective of this part both for the stationary and the time-dependent Stokes
problems.

1. A trace theorem

We want to define the trace on Γ of a function u ∈ L2(Ω)2 which satisfies (3)1,2
for some distribution p ∈ D′(Ω). We first recall (see e.g. [59, Theorem 1.2, Chap.
1]), that if u ∈ L2(Ω)2 and div u ∈ L2(Ω), the trace of its normal component
γn(u) = un|Γ is defined and belongs to H−1/2(Γ). Hence we only need to define
the trace of its tangential component γτ (u) = u · τ |Γ.

We will make use of the following result from Héron [37].

Theorem 1. Let

Y2(Ω) =
{

v ∈ H2(Ω)2, div v = 0
}

.

Then a pair (g0, g1) ∈ H3/2(Γ)2 × H1/2(Γ)2 is the trace on Γ of (γ0(v), γ1(v)) =
(v, ∂v

∂n ), where v ∈ Y2(Ω), if and only if

(7)

∫

Γ

g0 · n dΓ = 0,

and

(8) div Γ(g0)τ + g1 · n− 2K g0 · n = 0,

where div Γ is the tangential divergence on Γ, (g0)τ the tangential component of g0
and K is the algebraic curvature of Γ.

When we restrict to g0 = 0, we obtain the following Corollary.

Corollary 1. Let

X2(Ω) =
{

v ∈ H2(Ω), div v = 0, v = 0 on Γ
}

.

Then g1 ∈ H1/2(Γ)2 is the trace γ1(v) of ∂v/∂n on Γ where v ∈ X2(Ω), if and only
if

(9) g1 · n = 0 on Γ,

or alternatively if and only if

(10) g1 ∈ H1/2
τ (Γ)2,

the space of tangential vectors in H1/2(Γ)2.

Furthermore γ1 is surjective and continuous from X2(Ω) onto H
1/2
τ (Γ)2, and it

possesses a continuous left inverse R (lifting operator), that is Rγ1 = I.

Proof. The condition (9) - (10) is just the restriction of (7) - (8) to the case
g0 = 0. Of course the trace operator is continuous and since it is surjective, it is
also continuous and one to one from the orthogonal of its kernel inX2(Ω), (Ker γ1)

⊥

onto H
1/2
τ (Γ)2. By the closed graph theorem it is bicontinuous from (Ker γ1)

⊥ to

H
1/2
τ (Γ) and its inverse R is a left inverse of γ1. The proof is complete.
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Remark 3. In [37] Theorem 1 is proved by assuming that Γ is C3 ; the role of the
regularity of Γ is explained p. 1303. Theorem 1 extends to domains of polygonal
type.

We now want to define the tangential trace on Γ, γτ (u), for a function u which
satisfies

(11)

{

∆u = ∇p in Ω,

div u = 0 in Ω,

for some distribution p ∈ D′(Ω). Note that, by De Rham’s theory (see e.g. Deny
and Lions [13, Theorem 1.1]), the set

F (Ω) := {u ∈ L2(Ω)2 satisfying (11)},

is closed in L2(Ω)2, and is hence a Hilbert space for the norm of L2(Ω)2. Note also
that since u ∈ L2(Ω)2,∆u ∈ H−2(Ω)2 and by the results of Deny and Lions [13]
and the analogue of Proposition 1.2 in [59], p ∈ H−1(Ω).

The construction of γτ (u) will somehow mimic the construction of γn(u) = u·n|Γ
in [59].

Theorem 2. Assume that Γ is of class C2 or is of polygonal type. Then there

exists a linear continuous operator γτ ∈ L(F (Ω), H
−1/2
τ (Γ)2), such that

(12) γτu = u · τ |Γ for every u ∈ F (Ω) ∩ C2(Ω̄)2.

The following generalized Stokes formula is valid for all u ∈ F (Ω) and g1 ∈

H
1/2
τ (Γ)2 :

(13) < γτu, g1 >=

∫

Ω

u ∆v dΩ,

where v is any function of X2(Ω) such that γ1(v) = g1.

Proof. For u ∈ F (Ω) and g1 ∈ H
1/2
τ (Γ)2, we consider the expression

(14) Lu(g1) =

∫

Ω

u ∆v dΩ,

where v is any function in X2(Ω) such that γ1(v) = g1. For the coherence of the
definition we first need to show that the expression (14) is independent of the choice
of v. If v1, v2 are two such choices, and v = v1 − v2, we must show that

(15)

∫

Ω

u ∆v dΩ = 0,

whenever v ∈ X2(Ω) and γ1(v) = 0. In this case

(16) v ∈ X̃2(Ω) =
{

v ∈ H2
0 (Ω), div v = 0

}

.

We prove below, in Lemma 2 that

(17) V =
{

v ∈ D(Ω)2, div v = 0
}

is dense in X̃2(Ω). Then to prove (15) we observe that, for v ∈ V ,
∫

Ω

u ∆v dΩ = < u,∆v >D,D′

= < ∆u, v >D,D′= − < p, div v >D,D′,

and this expression vanishes since v ∈ V .
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In addition, if we write (14) with v = Rg1, R the left-inverse of γ1 given by

Corollary 1, we observe that the expression Lu(g1) is linear continuous on H
1/2
τ (Γ)2

as indeed

|Lu(g1)| = |

∫

Ω

u ∆(Rg1) dΩ|

≤ |u|L2(Ω)2 |∆(Rg1)|L2(Ω)2

≤ c|u|L2(Ω)2 |Rg1|H2(Ω)2

≤ c|g1|H1/2
τ (Γ)2

.

Finally, to prove (12) we observe that if u ∈ F (Ω) ∩ C2(Ω̄)2 and v ∈ X2(Ω) then
the following integrations by parts are legitimate:

∫

Ω

u ∆v dΩ =

∫

Ω

∆u v +

∫

Γ

(u
∂v

∂n
−

∂u

∂n
v)dΓ

=

∫

Γ

u
∂v

∂n
dΓ +

∫

Ω

∇p v dΩ

=

∫

Γ

u
∂v

∂n
dΓ +

∫

Γ

p v n dΓ−

∫

Ω

p div v dΩ

=

∫

Γ

u
∂v

∂n
dΓ = 0.

We are left with proving the following:

Lemma 2. V is dense in X̃2(Ω).

Proof. It is clear that V ⊂ X̃2(Ω). We will prove the lemma by showing that any

linear continuous form ℓ on X̃2(Ω) which vanishes on V is equal to zero.

We observe that X̃2(Ω) is a closed subspace of (H2(Ω) ∩H1
0 (Ω))

2 and, noticing
that |∆v|L2(Ω) is a norm on H2(Ω)∩H1

0 (Ω), we see that ℓ is necessarily of the form

ℓ(v) =

∫

Ω

φ ∆v dΩ,

for some φ ∈ L2(Ω)2. We now write that ℓ vanishes on V :

0 = ℓ(v) =

∫

Ω

φ ∆v dΩ = < φ,∆v >D,D′,

= < ∆φ, v >D,D′, ∀v ∈ V .

But this classically implies that ∆φ = ∇π for some π ∈ D′(Ω) which actually
belongs to H−2(Ω) as observed above.

Now for any v ∈ X̃2(Ω),∇π = ∆φ ∈ H−2 and

ℓ(v) = < ∇π, v >H−2,H2 .

This expression vanishes because v ∈ H2
0 (Ω)

2. Indeed using the fact that ∇π ∈
H−2(Ω), we see that

< ∇π, v >H−2, H2

0
= lim

j→∞
< ∇π, vj >H−2, H2

0
= − lim

j→∞
< π, div vj >H−1, H1

0

= − < π, div v >H−1, H1

0
,

where vj ∈ D(Ω)2 converges to v in H2
0 (Ω)

2 (not necessarily in X̃2(Ω)). In the end

< ∇π, v >H−2, H2

0

= < π, div v > = 0.
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2. The main theorem (Time independent case)

Our aim is now to prove the existence and uniqueness of a solution u ∈ L2(Ω)2

for (3) when g is given in L2(Γ)2.

Theorem 3. We assume that Ω is of class C2 or is of polygonal type, and that g
is given in L2(Γ)2 satisfying

(18)

∫

Γ

g · n dΓ = 0.

Then there exists a unique solution u ∈ L2(Ω)2 satisfying (3) for some p ∈ D′(Ω).
Proof. It is easy to construct a sequence g̃j ∈ H3/2(Γ)2 (or possibly more regular),
which converges to g in L2(Γ)2. Considering then

(19) gj = g̃j −
1

|Γ|

(
∫

Γ

g̃j · n dΓ

)

n,

we see that the gj belong (at least) to H3/2(Γ)2, satisfy (18) and converge to g in
L2(Γ)2.

For each j, thanks to [8] when Ω is of class C2, and to [32] when Ω is of polygonal
type, we infer the existence of (uj, pj) ∈ H2(Ω)2 × H1(Ω), satisfying (3) with g
replaced by gj . We see, thanks to Lemma 1, that the sequence uj is bounded in
L2(Ω)2. More precisely, as observed before, the sequence uj is bounded in F (Ω).
As j → ∞, we infer the existence of u ∈ F (Ω) and a subsequence still denoted uj

such that
uj → u weakly in F (Ω),

that is weakly in L2(Ω)2, and u satisfies

−∆u+∇p = 0 in Ω,

div u = 0 in Ω,

for some distribution p ∈ D′(Ω).
In addition, the trace theorem from [59] for γn, and the trace Theorem 2 above

for γτ , tell us that γ0(uj) = gj converges to γ0(u) = g in H−1/2(Γ)2. Hence u
satisfies (3).

It remains to show the uniqueness of solution of (3). If (u1, p1, ), (u2, p2) are two
solutions of (3) and if u = u1 − u2, p = p1 − p2, then

(20)











−∆u+∇p = 0 in Ω,

div u = 0 in Ω,

γ0(u) = 0 on Γ.

We must show that u = p = 0. We consider (v, q) defined by (6) as in the proof of
Lemma 1. Note that v ∈ X2(Ω), and q ∈ H1(Ω). We then write

∫

Ω

|u|2dΩ = −

∫

Ω

u ∆u dΩ +

∫

Ω

u ∇q dΩ

= (using (13) and γ0(u) = 0)

=

∫

Ω

u ∇q dΩ.

(21)

According to the integration by parts formula I. (1.9) in [59], this last expression
is equal to

−( div u, q) + (γn(u), γ0(q)),

and, it thus vanishes since γn(u) = 0 by (20)3 and div u = 0 by (20)2.
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We conclude that u = 0, thus proving the uniqueness.

Remark 4. Another way to approach the problem (3) would be to introduce
the stream function Ψ such that u = (u1, u2) and u1 = ∂Ψ/∂y, u2 = −∂Ψ/∂x and
then (3) reduces to a biharmonic problem for Ψ

(22)







∆2Ψ = 0 in Ω,
∂Ψ

∂τ
= −g · n,

∂Ψ

∂n
= −g · τ on Γ.

After integration of the second equation in (22), Ψ would be prescribed on Γ as a
primitive of −g ·n. In the simpler case where g ·n = 0,Ψ = 0 on Γ and the problem
is then to find a solution Ψ of (22) in H1(Ω). When Ω is smooth such problems
are treated in Lions and Magenes [41], although the problem (22) is not explicitly
mentioned in [41]. When Ω is a convex polygon or a domain of polygonal type, the
methods of [33], [32] might apply but this remains to be done.

Remark 5. Various results describing the behavior of a fluid in a domain with
corners appear in [4], [14], [50]; see also the references quoted above and their
bibliography. In the engineering and fluid mechanics literature see [38], [42], [48]
and [49].

3. Example for a lid driven cavity flow

We are interested in the cavity flow where Ω = (0, 1) × (0, 1) and the velocity
on Γ is (0, 0) at x = 0, 1, and y = 0 and, at y = 1, g = (1, 0). This is a classical
model problem in computational fluid dynamics which has been the object of many
studies see e.g. [5], [6], [7], [16], [17], [25], [26], [29], [30], [35], [34] - in dimension 3
-, [54] and the references therein. See also [11], [12], [15]. The singularities at the
corners (0, 1), (1, 1) remain a substantial computational difficulty. In [61] the author
addresses this difficulty by replacing g by a continuous function gε which converges
to g in L2(Γ)2 as ε → 0. Such an approach has been successfully applied to the
Korteweg de Vries and nonlinear Schrödinger equations, to deal with incompatible
data; see [24] and [45]; see also [9], [10] and see [59] regarding incompatible initial
data.

We can approximate g by gε which is identical to g except for the first component
which is equal to

(23) 1− σ(x)e−x/ε − σ(1− x)e−(1−x)/ε,

where σ is a smooth function

σ(x) =











1 , 0 ≤ x ≤ 1/2

∈ [0, 1], 1
2 ≤ x ≤ 3

4

0 , 3
4 ≤ x ≤ 1.

Both g and gε satisfy the necessary conditions

(24)

∫

Γ

g · n dΓ =

∫

Γ

gε · n dΓ = 0.

It is clear that gε converges to g in L2(Γ)2 as ε → 0. In view of Theorem 3, there
exists a unique solution (u, p) to the problem (3) with u ∈ L2(Ω)2, and a (unique)
solution (uε, pε) to the problem (3) with g replaced by gε, and uε ∈ L2(Ω)2; as usual
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the uniqueness of p1, pε is meant up to the addition of a constant. In addition, when
ε → 0,

(25) gε → g in L2(Γ)2,

and consequently

(26) uε → u in L2(Ω)2.

Remark 6. If one wants to focus on one of the corner singularities only, one can
consider the following variations of the cavity problem

i) For the corner (0, 1) : g♭ is equal to g except the first component which is
equal to y at x = 1. Then g♭ε is the same as g♭ except the first component
which is equal to

1− σ(y)e−y/ε,

on y = 1.
ii) For the corners (1, 1) : g♯ is equal to g except the first component which is

equal to y at x = 0. Then g♯ε is the same as g♯ except the first component
which is equal to

1− σ(1− y)e−(1−y)/ε,

on y = 1.

It is clear that the analogues of (24), (25), (26) are still valid in this case.

4. The Time dependant case

We now want to derive the analogue of Theorem 2 in the time dependent case.
We consider T > 0 and set QT = Ω× (0, T ),ΓT = Γ× (0, T ), and we are interested
in very weak solutions (in L2(QT )) of the linearized evolution Stokes problem

(27)























∂ũ

∂t
−∆ũ+∇p̃ = f in QT ,

div ũ = h in QT ,

ũ = g on ΓT ,

ũ(0) = u0 in Ω.

As in the stationary case, with results similar in two dimensions to those of [56], [57],
we can introduce a lifting of f, h, and u0, by considering the solution U, P of

(28)























∂U

∂t
−∆U +∇P = f in QT ,

div U = h in QT ,

U = 0 on ΓT ,

U(0) = u0.

The results similar to those of [56], [57], guarantee enough regularity for f, h, u0
1,

and then u = ũ− U, p = p̃− P are solutions of

(29)























∂u

∂t
−∆u+∇p = 0 in QT ,

div u = 0 in QT ,

u = g on ΓT ,

u(0) = 0.

1As we said, motivated by the lid driven cavity flow, we are interested in low regularity in g but
assume f, h, u0 are as smooth as desirables.
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For suitable g′s, we are interested in very weak solutions of (29) of the form u ∈
L2(QT ).

Firstly we must show that (29)4 makes sense when u ∈ L2(QT ) satisfies (29)1−3

and, say, g ∈ L2(ΓT ). Let V2 be the closure of V in H2
0 (Ω)

2, then V2 ⊂ H ⊂ V ′
2 with

continuous injections and each space dense u̇ in the next one and, ∀v ∈ L2(0, T ;V),

(30)
d

dt
(u, v) =< ∆u, v > − < ∇p, v >=< u,∆v >,

and by continuity, (30) holds for every v ∈ L2(0, T ;V2); and we conclude that

(31)
∂u

∂t
∈ L2(0, T ;V ′

2),

and u(0) makes sense, since u is a.e. equal to a continuous function from [0, T ] into
V ′
2 .

A priori estimate
Our first result now will be an analogue of Lemma 2.

Lemma 3. Assume that u, p, g and u0 are sufficiently regular (e.g. u ∈
L2(0, T ;H2(Ω)2), p ∈ L2(0, T ;H1(Ω)), u0 ∈ H1(Ω)2), and satisfy (29). Then

(32) |u|L2(0,T ;L2(Ω)2) ≤ c2(|u0|L2(Ω)2 + |g|L2(0,T ;L2(Ω)2)),

where the constant c2 depends only on Ω and T.
Proof. The proof is based again on a transposition argument as in Lemma 1.

We consider v, q solutions of the adjoint system

(33)























−
∂v

∂t
−∆v +∇q = u in QT ,

div u = 0 in QT ,

v = 0 on ΓT ,

v(T ) = 0,

and we write
∫

QT

u2dxdt

=

∫

QT

u (−
∂v

∂t
−∆v +∇q) dxdt(34)

=

∫

Ω

u0 v(0)dx+

∫

QT

(
∂u

∂t
−∆u) vdxdt−

∫

ΓT

g (
∂v

∂n
− nq) dΓT

=

∫

Γ

u0 v(0)dx −

∫

QT

∇p v dQT −

∫

ΓT

g (
∂v

∂n
− nq) dΓT

=

∫

Ω

u0 v(0)dx−

∫

ΓT

g (
∂v

∂n
− nq) dΓT

≤ |u0|L2(Ω)2 |v(0)|L2(Ω)2 + |g|L2(0,T ;L2(ΓT )2)|
∂v

∂n
− nq|L2(0,T ;L2(ΓT )2).

Now setting s = t− T and writing v̂(s) = v(t), û(s) = u(t), we can rewrite (33)
in the form

(35)
dv̂

ds
+Av̂ = û, v̂(0) = 0,

where A is the abstract Stokes operator.
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It is classical using a Galerkin method (see e.g. [58, Ch. II, Sec. 3 and Ch. IV,
Sec. 9]) that the solution v̂ of (35) belongs to L∞(0, T ;V ), V = D(A1/2), and dv̂/ds
belongs to L2(0, T ;L2(Ω)2) : the necessary a priori estimate is formally obtained by
taking the scalar product in L2(Ω)2 of each side of (35) with dv̂/ds. Then equation
(35) shows that Av̂ belongs also to L2(0, T ;L2(Ω)2). In addition there exists a
constant c such that:

(36) |Av̂|L2(0,T ;L2(Ω)2) + |
dv̂

ds
|L2(0,T ;L2(Ω)2) ≤ c|û|L2(0,T ;L2(Ω)2).

Hence, returning to v and u:

(37) |Av|L2(0,T ;L2(Ω)2) + |
dv

dt
|L2(0,T ;L2(Ω)2) ≤ c|u|L2(0,T ;L2(Ω)2).

As observed in Remark 3, the Stokes problem for the domain Ω that we consider
enjoys the H2 − H1 regularity. This means that D(A) ⊂ H2(Ω)2 and the corre-
sponding q belongs to H1(Ω).
Finally for (33):

(38) |v|L2(0,T ;H2(Ω)2) + |q|L2(0,T ;H1(Ω)) + |
dv

dt
|L2(0,T ;L2(Ω)2) ≤ c|u|L2(0,T ;L2(Ω)2).

Implementing this inequality in (35), the lemma follows.

The trace issues
We next deal with the trace issues.
Let (u,p) be the solutions of the following system:

(39)















∂u

∂t
−∆u+∇p = 0 in QT ,

div u = 0 in QT

u(0) = 0 in Ω.

Then, in relation with (29) we consider the set

F(QT ) := {u ∈ L2(QT )
2 s.t. ∃ p ∈ D′(QT ) and u satisfies (39)}.

Recall that we have shown in (29)-(32) that if u ∈ L2(QT )
2 satisfies (39)1−2 then

u is a.e. equal to a continuous function from [0, T ] into V ′
2 . Hence (39)3 makes sense

and the definition of F(QT ) is valid. Furthermore using the current theory [47] as
in the stationary case, we see that F(QT ) is closed in QT . Indeed if (39) holds for a
sequence un ∈ L2(QT )

2, pn ∈ D′(QT ), and un → u in L2(QT )
2, then ∇pn converges

to F = ∆u − ∂u/∂t in D′(QT ) and necessarily F = ∇p for some p ∈ D′(QT ), so
that (39) holds for u and p. Similarly div un = 0 converges to div u in D′(QT ) so
that div u = 0 and the trace un(0) being continuous, it converges to u(0) in V ′

2 .
Hence (39) holds and u ∈ F(QT ).

Concerning the trace on ΓT of a function u in F(QT ), we first observe that the
normal component of u, γn(u) = u·n|ΓT is defined and belongs to L2(0, T ;H−1/2(ΓT )

2),
according to a standard trace result in the Navier-Stokes theory [59]. So the issue
is to define the tangential component of u on ΓT , γτ (u). As in the stationary case,
we will define γτ (u) by its duality with the trace on ΓT of a suitable function v.
More precisely consider

X2(QT ) =
{

v ∈ L2(0, T ;H2(Ω)2, div v = 0, v = 0 on ΓT

}

,
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and the subspace

Y2(QT ) = {v ∈ L2(0, T ;H2(Ω)2), div v = 0,

∂v

∂t
∈ L2(0, T ;L2(Ω)2), v = 0 on ΓT , v(T ) = 0}.

Using the lifting operator R from Corollary 1, we see that γ1 is a surjective operator

from X2(QT ) onto L2(0, T ;H
1/2
τ (Γ)2). Also it is elementary to see that Y2(QT ) is

dense in X2(QT ) equipped with the norm |v|L2(0,T ;H2(Ω)2) so that the traces γ1(v)

for v ∈ Y2(QT ) are dense in L2(0, T ;H
1/2
τ (Γ)2).

Now for g1 ∈ γ1(Y2(QT )) let v be one of the functions in Y2(QT ) such that
γ1v = ∂v/∂n|ΓT = g1. For u satisfying (39), consider the expression

(40) Lu(g1) = −

∫

QT

u (
∂v

∂t
+∆v) dxdt.

For u and v smooth we have by integration by parts, and using Green’s formula,

Lu(g1) =

∫

QT

v (
∂u

∂t
−∆u) dxdt−

∫

ΓT

u
∂v

∂n
dΓT

= −

∫

QT

v ∇p dxdt−

∫

ΓT

u
∂v

∂n
dΓT

= −

∫

ΓT

u
∂v

∂n
dΓT = −

∫

ΓT

u g1 dΓT .

Hence the expression (40) has the potential to define and characterize the tangential

components of u in L2(0, T ;H
−1/2
τ (Γτ )) since the g under consideration are dense

in L2(0, T ;H
1/2
τ (ΓT )

2).
Our next task is to show that the expression Lu(g1) is independent of the choice

of v ∈ Y2(QT ) such that ∂v
∂n = g on ΓT . Consider two such functions v1, v2 and

their difference v = v1 − v2. We must show that

(41)

∫

QT

u (
∂v

∂t
+∆v) dxdt = 0,

when u ∈ F(QT ) and v ∈ Y2(QT ) satisfies ∂v/∂n = 0 on ΓT . Then such a v belongs

to L2(0, T ;H2
0(Ω)

2), that is L2(0, T ; X̃2(Ω)), X̃2(Ω) as in (16). For v in L2(0, T ;V),
the expression (41) vanishes because it is equal to

<−
∂u

∂t
+∆u, v >D′(QT ),D(QT )

= < ∇p, v >D′(QT ),D(QT ) = 0.

Since we showed in Lemma 2 that V is dense in X̃2(Ω), we infer that L2(0, T ;V) is

dense in L2(0, T ; X̃2(Ω)) and (41) holds for any v in Y2(QT ) satisfying ∂v/∂n = 0
on ΓT .

We then have the analogue of Theorem 2.

Theorem 4. Under the hypotheses of Theorem 1 (Γ of class C2 or of polygonal

type), there exists a linear continuous operator γτ ∈ L(F(QT ), L
2(0, T ;H

−1/2
τ (Γ)2))

such that

γτu = u · τ |ΓT for every u ∈ F(QT ) ∩ C2(Q̄T ).
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The following generalized Stokes formula is valid for all u ∈ F(QT ) and g1 ∈

γ1(Y2(QT )) ⊂ L2(0, T ;H
−1/2
τ (Γ)2)):

(42) < γτu, g1 >=

∫

QT

u (
∂v

∂t
+∆v) dxdt,

where v is any function of Y2(QT ) such that γ1(v) = g1.
All statements have been proven or are proven as in Section 1.

The existence and uniqueness theorem

Theorem 5. We assume that Ω is of class C2 or is of polygonal type and that g
is given in L2(0, T ;L2(Γ)2) satisfying (18) for a.e. t ∈ [0, T ].

Then there exists a unique function u ∈ L2(QT )
2 satisfying (29) for some p ∈

D′(QT ).
Proof. We approach g by a sequence gj ∈ L2(0, T ;H3/2(Γ)2) as in (19), where

gj converges to g in L2(0, T ;H−1/2(Γ)2) as j → ∞. For each j we find, by [56],
[57], uj, pj ∈ L2(0, T ;H2(Ω)2) × L2(0, T ;H1(Ω)) satisfying (29). The estimates
provided by Lemma 3 show that the sequence uj is bounded in L2(QT )

2. Therefore
uj contains a subsequence weakly convergent in L2(QT )

2 to some limit u, and u
satisfies (29) for some p ∈ D′(QT ), thanks to [47].

We are left with the uniqueness, that is proving that u = 0 when u ∈ F(QT )
satisfies (29) with g = 0. We introduce the solution v of the adjoint system as in
(33). Then v ∈ Y2(QT ) and

∫

QT

|u|2dxdt =

∫

QT

u (−
∂v

∂t
−∆v +∇q) dxdt

= ( using (42) with γ1(u) = 0)

=

∫

QT

u ∇q dxdt =

∫ T

0

∫

Ω

u ∇q dxdt,

and this last expression vanishes as in (21).
The theorem is proved.

Part 2. Numerical simulations

The second part of this article is devoted to the numerical study of the Stokes
solutions in a square. This is the well known lid-driven cavity problem. Taking
advantage of the theoretical study in Part 1 we will see how the use of the finite
element method together with the regularization of the boundary velocity can help
solving the issues due to the corners.

5. Regularized Stokes problem

As a numerical illustration, we would like to present a regularization treatment
on the lid driven cavity problem:

(43)











−∆u+∇p = 0 in Ω,

div u = 0 in Ω,

u = g on Γ.
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In this case Ω is the square (−1, 1)× (−1, 1) and Γ = ∂Ω; g = (0, 0) at x = −1, 1
and y = 0, and g = (1, 0), at y = 1; the discontinuities of g produce singularities
and vortices at the corners of the square domain (−1, 1) and (1, 1).

We call ε as the regularization parameter. According to the regularization
method proposed in Section 3, we approximate g by gε, the regularized Dirich-
let boundary condition, which is identical to g except for the first component which
is equal to

(44) 1− σ(x)e−(1+x)/ε − σ(−x)e−(1−x)/ε

on the side y = 1, where σ is chosen less smooth (C2) than in (23), that is, a
smoothstep function

(45) σ(x) =











1 , −1 ≤ x ≤ − 1
2

6(12 − x)5 − 15(12 − x)4 + 10(12 − x)3, − 1
2 ≤ x ≤ 1

2

0 , 1
2 ≤ x ≤ 1.

Therefore, both g and gε satisfy the necessary conditions

(46)

∫

Γ

g · n dΓ =

∫

Γ

gε · n dΓ = 0,

where n is the outward normal vector alongside Γ. It is clear that gε converges to
g in L2(Γ)2 as ε → 0. In view of Theorem 3, there exists a unique solution (u, p) to
the problem (43) with u ∈ L2(Ω)2, and a unique solution (uε, pε) to the problem
(43) with g replaced by gε, and uε ∈ L2(Ω)2; as usual the uniqueness of p, pε is
meant up to the addition of a constant. In addition, when ε → 0,

(47) gε → g in L2(Γ)2,

and consequently

(48) uε → u in L2(Ω)2.

6. Discretization of the Stokes problem and its regularized version

In this section, we introduce the discretized version of both the original Stokes
problem and its regularized version. In fact, the two problems can be written
in the same discrete form despite a superscription ε. First, we state the weak
formulation of the Stokes problem. We define the continuous bilinear forms a :
H1(Ω)2 ×H1(Ω)2 → R, and b : H1(Ω)2 × L2(Ω) → R so that

(49) a(u, v) :=

∫

Ω

∇u · ∇v =

2
∑

i=1

∫

Ω

∇ui · ∇vi

(50) b(u, q) := −

∫

Ω

q∇ · u.

Therefore the weak formulation of the Stokes problem (43) can be written as follows:

Find u ∈ H1(Ω)2 and p ∈ L2(Ω), u|Γ = g, such that

(51)
a(u, v) + b(v, p) = 0 for all v ∈ H1

0 (Ω)
2;

b(u, q) = 0 for all q ∈ L2(Ω).

To discretize the Stokes equations, we first introduce a quadrilateral finite ele-
ment partition Mh consisting of squares of area h2 on domain Ω. We use different
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types of finite elements construction on Mh. The following plot in Figure 1 is an
illustration of a Q2 − P1 mixed finite elements partition.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 1. Q2−P1 finite element subdivisions, where ◦ are velocity
nodes and ∗ are pressure nodes.

We will use the example of Q2 − P1 finite element method to describe the dis-
cretized problems. Here the velocity nodes are approximated on each rectangular
element using Q2 functions of the form (ax2+bx+c)(dy2+ey+f), which are linear
combinations of the nine terms 1, x, y, x2, xy, y2, x2y, xy2, x2y2. The pressure
nodes are approximated on each rectangular element using P1 functions, which are
linear combinations of the terms 1, 2

h (x − x̄) and 2
h (y − ȳ), where (x̄, ȳ) are the

coordinates of the centroid of the element. Therefore, we define the following finite
dimensional spaces on partition Mh:

(52) Xh(Ω)2 := {v ∈ C0(Ω)2; v|E ∈ Q2 for all E ∈ Mh},

(53) Xh
0 (Ω)

2 := {v ∈ C0(Ω)2, v = 0 on ∂Ω; v|E ∈ Q2 for all E ∈ Mh},

(54) Mh(Ω) := {q ∈ C0(Ω); q|E ∈ P1 for all E ∈ Mh}.

The formal aspects of the finite elements discretization of the Stokes equa-
tions (43) are defined using two finite dimensional spaces Xh

0 (Ω)
2 ⊂ H1

0 (Ω)
2 and

Mh(Ω) ⊂ L2(Ω), which is commonly identified as a mixed finite element approx-
imation method. Specifically for the Q2 − P1 method, given the velocity solution
space Xh(Ω)2 as defined in (52) and the pressure solution space Mh(Ω) as defined
in (54), the discrete problem can be written as follows:

Find uh ∈ Xh(Ω)2 and ph ∈ Mh(Ω) with uh|Γ = gh such that

(55)
a(uh, vh) + b(vh, ph) = 0 for all vh ∈ Xh

0 (Ω)
2;

b(uh, qh) = 0 for all qh ∈ Mh(Ω).

Here gh is a discretization of g consistent with the mesh.
The discrete problem of the regularized Stokes problem is the same as (55) except

for replacing uh by uε
h, ph by pεh and gh by gεh. Here gεh is a discretization of gh

consistent with the mesh.
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7. Effectiveness of the regularization method

The purpose of this section is to explore the effectiveness of our proposed regu-
larization method and its relevance to the regularization parameter ε. According
to the regularized Dirichlet boundary condition gε proposed in (44) and (45), we
know it is a second order smooth “bump” function. It is fair to expect that the
effectiveness of the regularization method depends on different choices of ε. More
specifically speaking, a smaller ε may not always be a better choice. This is be-
cause gε → g when ε → 0, hence we are almost solving the original discrete Stokes
problem if the bump up or bump down at the corners (−1, 1) and (1, 1) happens
within the unit difference in the horizontal direction.

-0.5
1

0

0.5 1

0.5

0

1

0
-0.5

-1 -1

(a) The first velocity component u1

-0.5
1

0.5 1

0

0

0.5

0
-0.5

-1 -1

(b) The second velocity component u2

Figure 2. Velocity plots of the Stokes problem with mesh size =
26 × 26.

To determine an optimal choice of ε, we need to discuss the behavior of the
velocity and pressure solutions under a fixed mesh size. In this section, we adopt
a quadrilateral finite element partition Mh consisting of square elements of area
h2 on the domain Ω. In consideration of the balance of illustration purpose and
computation time, we choose h = 2−6. Moreover, we implement a Q1 − P0 mixed
finite element approximation.

First, we compare the results between the Stokes problem and its regularized
version in the following plots. In consideration of showing the effectiveness of the
regularization method, we choose a not so small value, namely ε = 0.1, to give
a visually smooth Dirichlet boundary condition. The Figures 2 to 7 provide an
intuitive view of effectiveness of the regularization method: Figure 2 and 3 plot both
components of velocity solutions u of the Stokes problem and uε of the problem
respectively; Figure 4 and 5 plot contour views of u and uε ; Figure 6 and 7 plot the
stream lines and pressure solutions of both the Stokes problem and its regularized
version respectively.



MODELING THE LID DRIVEN FLOW: THEORY AND COMPUTATION 329

-0.5
1

0

0.5 1

0.5

0

1

0
-0.5

-1 -1

(a) The first velocity component uε
1
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(b) The second velocity component uε
2

Figure 3. Velocity plots of the regularized Stokes problem with
mesh size = 26 × 26.

From Figure 2, we can see that although the discontinuities exist exclusively
in the first component of the Dirichlet boundary conditions, the velocity disconti-
nuities happen at the corners (−1, 1) and (1, 1) for both components u1 and u2.
While from Figure 3, due to the implementation of a smooth regularized Dirichlet
boundary condition gε, the velocity components uε

1 and uε
2 are smoothly running

in the vicinity of all four corners of the domain Ω.

solution u1
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(a) Contour view of u1

solution u2
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(b) Contour view of u2

Figure 4. Contour views of the velocity solutions of the Stokes
problem with mesh size = 26 × 26.
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solution u1
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(a) Contour view of u1

solution u2
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(b) Contour view of u2

Figure 5. Contour views of the velocity solutions of the regular-
ized Stokes problem with mesh size = 26 × 26.

From the contour views of the velocity solutions plotted in Figures 4 and 5, even
though it is not significant, we can still see that the contour lines near the corners
(−1, 1) and (1, 1) of the solutions to the regularized Stokes problem have less sharp
corners than those of the solutions to the original Stoke problem.

We next show the stream and pressure solutions plots in Figures 6 and 7. The
vortices observed from the stream solution of the regularized Stokes problem near
the corners (−1, 1) and (1, 1) are less severe than those from the original Stokes
problem. By comparing the plots of the pressure solutions between the two systems,
they imply that the regularized Stokes pressure solution has sharp spikes as low as
half of those from the original Stokes problem, in the vicinity of the two corners
(−1, 1) and (1, 1). A higher pressure causes the incompressible fluid flows at a higher
velocity, which pushes the stream harder to the corners and produces singularities.

Streamlines: uniform

(a) Stream solution plot
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(b) Pressure plot p

Figure 6. Contour view of the stream solution and 3-D view of
the pressure solution to the original Stokes problem with mesh size
= 26 × 26.
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Streamlines: uniform

(a) Stream solution plot
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(b) Pressure plot p

Figure 7. Contour view of the stream solution and 3-D view of
the pressure solution to the regularized Stokes problem with mesh
size = 26 × 26.

We introduce here a combined symmetric bilinear form

(56) B((u, p); (v, q)) := a(u, v) + b(v, p) + b(u, q).

Therefore, the weak formulation (51) can be rewritten in the following form:
Find (u, p) ∈ H1(Ω)2 × L2(Ω), u|Γ = g, such that

(57) B((u, p); (v, q)) = 0, for all (v, q) ∈ H1
0 (Ω)

2 ×Mh(Ω).

We then define the two elementwise interior residual estimators by

(58) RT := (∇2uh −∇ph)|T ,

and

(59) RT := (∇ · uh)|T .

Moreover, the inter-element stress jump across the edge E adjoining elements T
and S can be defined as

(60) RE := {(∇uh − phI)|T − ((∇uh − phI)|S}nE,T ,

where I is 2 × 2 identity matrix. Together with the Dirichlet boundary edges, we
define the elementwise boundary residual estimator
(61)

R
∗
E :=















1

2
{(∇uh − phI)|T − ((∇uh − phI)|S}nE,T , when E is an inter-element edge,

0, when E is on the Dirichlet boundary.
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Then we define the discretization errors (e, ǫ) := (u−uh, p−ph) ∈ H1
0 (Ω)

2×L2(Ω)
that can be characterized by

(62)

∑

T∈M

{

(∇e,∇v)T − (ǫ,∇ · v)T

}

=
∑

T∈M

{

{

(∇u,∇v)T − (p,∇ · v)T } − {(∇uh,∇v)T − (ph,∇ · v)T }
}

=
∑

T∈M

{

{

B((u, p); (v, q))− b(u, q)
}

−
{

{B((uh, ph); (v, q)) − b(uh, q)
}

}

=
∑

T∈M

{

B((u − uh, p− ph); (v, q))− b(e, q)
}

=
∑

T∈M

{

(RT , v)T −
∑

E∈E(T )

〈

R∗
E , v

〉

E

}

−
∑

T∈M

(q,∇ · e) +
∑

T∈M

(RT , q)T .

Now we introduce (and then we compare) the local and global error estimators
between the original and the regularized Stokes problems which read, respectively,
as follows:

(63)
η2T := ||∇2eT ||

2
T + ||ǫT ||

2
T

= ||∇2eT ||
2
T + ||∇ · uh||

2
T ,

and

(64) η := (
∑

T∈Th

η2T )
1/2,

where uh is defined by (55), and e, ǫ are defined by (62). This comparison provides
a substantial view of the effectiveness of the regularization method. Let ηT and
ηεT denote the element-wise error estimators and η and ηε denote the global error
estimators. Figure 8 gives graphs of ηT and Figure 9 gives graphs of ηεT .

Estimated energy error
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Figure 8. Element-wise energy estimator ηT of the original Stoke problem.
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It is not surprising that the maximum values happen near both of the corners
(−1, 1) and (1, 1), appearing on the local error estimator plot are the two positive
spikes at these two corners. From the calculated element-wise local error estimator,
we see that the regularization method reduces the maximum of the local energy
estimators from 0.7091 to 0.1029, which is approximately 1/7 as low as those from
the original Stokes equations.

Finally, we compare the global error estimator. According to the simulation
results from the two Stokes problems, η = 1.3992 and ηε = 0.4202, the global
energy error estimate is rapidly decreased.

Estimated energy error
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Figure 9. Element-wise energy estimator ηεT of the regularized
Stokes problem.

The next step is to find, an optimized ε, on the same mesh grid size of 26 × 26,
such that the a posteriori error is reduced, while the regularized boundary condition
is close to the original. Here we need to introduce a utility function in order to
set a measure to quatify the effectiveness of the regularization method. Since the
global error estimator η only gives an estimate of the difference between the actual
solution and the simulated solution, it is not sufficiently robust to determine the
effectiveness of the regularization method. In fact, when ε = 0.5, the solution
is very different from our original problem. Hence, it is meaningless to study a
regularized Stokes problem with such a large ε. We give the plots of the velocity
solutions to the regularized Stokes problem with ε = 0.5 as in Figure 10.

The following Figure 11 plots η depending on a set of ε ranging from 0 to 0.6.
With a larger value of ε, we have less severe bumps near the vicinity of the two
corners (−1, 1) and (1, 1). Therefore, we can see from the results of Figure 11 below,
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(b) The second velocity component uε
2

Figure 10. Velocity plots of the regularized Stokes problem with
ε = 0.5.

the a posteriori global error estimates caused by the singularities near these two
corners decrease as ε increases. It lacks evidence of the existence of an optimal ε.
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0.8
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1.4
A Posteriori Global Error Estimate

Figure 11. The global energy estimator ηε decreases as ε increases.

Therefore the discussion above implies that the a posteriori global error estimate
is not helpful to determine the optimal ε. In this consideration, we introduce the
following norm to measure the difference between the original solution u and the
regularized solution uε. Define

(65) ξ = |u− uε|Xh(Ω)2 .

We can find the value of ξ by solving the following system, i.e. subtracting the
Stokes problem (43) from its regularized version gives

(66)











−∆(u− uε) +∇(p− pε) = 0 in Ω,

div (u− uε) = 0 in Ω,

u = g − gε on Γ.

The solution of the problem above gives ξ to measure the difference between the
Stokes problem and its regularized version. Moreover, we can measure the difference
between the simulated solution of the regularized Stokes problem and the actual
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solution of the original Stokes problem by observing that

(67)

|uε
h − u|2Xh(Ω)2 = |uε

h − uε + uε − u|2Xh(Ω)2

≤ 2(|uε
h − uε|2Xh(Ω)2 + |uε − u|2)Xh(Ω)2

≤ 2(η2 + ξ2).

Therefore, we can drop the constant multiplier and define the regularization effec-
tiveness θ as

(68) θ = (η2 + ξ2)1/2

such that, θ implies both the a posteriori error estimate from the numerical simula-
tion and the difference between the orignal Stokes and its regularized version. We
now use θ to measure the effectiveness of our regularization method. It is natural
to conclude that the smaller θ is, the more effective the regularization method is.

The Figure 12 plots θ corresponding to a set of ε ranging from 0 to 0.6. We
can see that when ε increases, θ first decreases fast near 0, then increases as ε gets
larger. When ε is approximately 2−5 = 2h, which is about the same size as two
element patches, θ is minimized. The table of calculated a posteriori errors with
some selected choices of ε follows:

Table 1. Table of regularization effectiveness θ with selected ε.

ε ηε θ
0 1.3992166632 1.3992166632

0.001 1.3992164888 1.3992164888
0.005 1.3535723177 1.3556063758
0.01 1.1977452192 1.2424769311
0.02 0.9773442412 1.1798006234
0.025 0.8997346841 1.1753470829
0.03 0.8342184564 1.1755834200
2−5 0.8193522005 1.1760985764
0.035 0.7778433423 1.1784442289
0.04 0.7287624950 1.1830037818
0.05 0.6475161959 1.1951386669
0.1 0.4201681138 1.2642598827
0.2 0.2531435181 1.3585403309
0.3 0.1839190614 1.4196779532
0.4 0.1456914817 1.4662024339
0.5 0.1213483106 1.5037638424
0.6 0.1044166356 1.5348455531
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Figure 12. Plot of θ depend on ε.

We come to the conclusion that the regularization method is most effective when
ε ≈ 2h.

8. Advantage of the regularization method

The previous section focuses on finding the most effective regularization method
on a grid of given mesh size. Besides improved a posteriori error estimates, the
regularization method brings more advantages. In order to explore these benefits,
we first fix a reasonable ε. Based on the observations from the previous section, we
choose ε = 0.1, which leads to a solution close enough but not numerically identical
to the original one.

Now we simulate both the original and regularized Stokes problems using four
popular mixed finite element schemes, namely Q1 − Q1, Q1 − P0, Q2 − Q1 and
Q2−P1 as illustrations. For each fixed mesh size, for example on a 24× 24 grid, all
the finite element scheme have the same velocity nodes, i.e. 17 in each direction.
The number of pressure nodes varies based on the scheme.

Table 2. A Posteriori estimates on various grids.

ε Finite Element Method 24 × 24 25 × 25 26 × 26 27 × 27 28 × 28

0 Q1 − Q1 1.445234 1.446634 1.446958 1.447031 1.447049

Q1 − P0 1.396908 1.398758 1.399216 1.399325 1.399351

Q2 − Q1 2.353259 2.353237 2.353045 2.352993 2.352981

Q2 − P1 1.075365 1.074823 1.074466 1.074365 1.074341

0.1 Q1 − Q1 0.879755 0.596736 0.370109 0.216801 0.122542

Q1 − P0 0.895467 0.646189 0.420168 0.253920 0.146491

Q2 − Q1 1.551221 0.916437 0.483511 0.245228 0.123041

Q2 − P1 0.757472 0.478988 0.264134 0.136427 0.068842

From the table above, the top part with ε = 0 are the a posteriori error estimates
for the original Stokes problem; the bottom part with ε = 0.1 are the a posteriori
error estimates for the regularized Stokes problem.

Now according to the Table 2 above and Figure 13 below, we can see the main
advantage of adopting a regularization method. The a posteriori energy estimate
of the original Stokes problem keeps at the same level without much noticeable
differences between coarser and finer grids, i.e. a finer mesh grid cannot improve the
a posteriori error estimates. However, with the regularized system, the a posteriori
error estimates decreases as the mesh grid gets finer.

The reason is as follows. With the original system, the discontinuities at both
corners (−1, 1) and (1, 1) always happen within a single element patch at each



MODELING THE LID DRIVEN FLOW: THEORY AND COMPUTATION 337

4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.2

0.4

0.6

0.8

1

1.2

Original Stokes on Uniform Grid
Regularized Stokes on Uniform Grid

Figure 13. Plot of a posteriori error estimates with Q2 − P1.

corner. It maintains the elementwise energy estimates ηT at a constant level, which
has a dominant impact on the global error estimate η. On the other hand, with
the regularized system, even ε is very small, the boundary is always second order
smooth. We can always find a mesh fine enough, such that the “bump” near the
two top corners can be distributed into several element patches. Therefore both
elementwise and global a posteriori error estimates are reduced.

The experiments above guarantee that with a fixed ε we can get a better ap-
proximation with a finer mesh regardless of the computational time.

9. Experiments on stretched grids

According to the results above, we consider to use stretched mesh grids to reduce
the a posteriori error estimates without increasing the computational time.

As a starting point, we introduce a stretched mesh grid consisting of rectangles
of dimension h× k, where both h and k are decreasing from the center to all four
edges x = ±1 and y = ±1. The following Figure 14 is an example of Q2 −P1 finite
element subdivision on a 23 × 23 stretched mesh gird. The circles ◦ are velocity
nodes and the ∗ stand for centroid pressure nodes.
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Q2-P1 finite element subdivision

Figure 14. Plot of Q2−P1 finite element subdivision on a 23×23

stretched mesh grid.

Then we again fix ε = 0.1 to make sure the results are comparable to those on
the uniform mesh grids from the previous section. We also use the same mixed
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finite element methods Q1 −Q1, Q1 − P0, Q2 −Q1 and Q2 − P1 in this numerical
experiment and the results are as follows.

From the table below, the top half part with ε = 0 gives the a posteriori error
estimates for the original Stokes problem; the bottom half part with ε = 0.1 gives
the a posteriori error estimates for the regularized Stokes problem.

Table 3. Posteriori estimates on various grids.

ε Finite Element Method 24 × 24 25 × 25 26 × 26 27 × 27 28 × 28

0 Q1 − Q1 1.450230 1.448173 1.446205 1.445683 1.445873

Q1 − P0 1.503844 1.473941 1.442801 1.422594 1.411408

Q2 − Q1 2.298074 2.296589 2.310039 2.324835 2.335895

Q2 − P1 1.204518 1.144282 1.110241 1.093193 1.084458

0.1 Q1 − Q1 0.556979 0.279458 0.134037 0.064728 0.032229

Q1 − P0 0.772454 0.441244 0.234534 0.123222 0.065335

Q2 − Q1 0.847015 0.283549 0.092135 0.030159 0.009947

Q2 − P1 0.536132 0.189310 0.060319 0.019062 0.006098

We come to the following conclusions. By comparing the top half of Tables 2
and 3, we can see that a finer stretched mesh grid cannot improve a posteriori
error estimates of the original Stokes problem. On the other hand, according to the
bottom half of Tables 2 and 3, the a posteriori error estimates are reduced a lot with
stretched mesh grids. Using the finite element method Q2 − P1 as an example, we
plot the errors in Figure 14. The top dash curve are the a posteriori error estimates
from the original Stokes equations on the stretched grids; the middle ◦ curve are
the a posteriori error estimates from the regularized Stokes equations on uniform
grids; the bottom × curve are the a posteriori error estimates from the regularized
Stokes equations on stretched grids. We observe that, for the Q2 − P1 method, a
26× 26 stretched mesh grid can achieve a similar level of a posteriori error estimate
as a 28 × 28 uniform mesh grid. Moreover, on the same level of mesh grid, i.e.
28 × 28, the a posteriori error estimate is significantly reduced from 6 × 10−2 to
6× 10−3.

4 4.5 5 5.5 6 6.5 7 7.5 8
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Figure 15. Plot of a Posteriori Error Estimates with Q2 − P1.
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pressible, Proc. Second Intern. Conf. on Numerical Methods in Fluids Dynamics, Lecture
Notes in Physics, vol. 8, Springer-Verlag, 1971.

[26] M. Fortin, R. Peyret and R. Temam, Résolution numérique des équations de Navier-Stokes
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[27] Furioli, Giulia and Lemarié-Rieusset, Pierre G. and Terraneo, Elide, Unicité dans L3(R3)
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