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A SIMPLE FINITE ELEMENT METHOD FOR

NON-DIVERGENCE FORM ELLIPTIC EQUATIONS

LIN MU AND XIU YE

Abstract. We develop a simple finite element method for solving second order elliptic equations
in non-divergence form by combining least squares concept with discontinuous approximations.
This simple method has a symmetric and positive definite system and can be easily analyzed
and implemented. Also general meshes with polytopal element and hanging node can be used in
the method. We prove that our finite element solution approaches to the true solution when the
mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness
and flexibility of the method.
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1. Introduction

We consider a elliptic equations in non-divergence form

A : D2u = f, in Ω,(1)

u = 0, on ∂Ω,(2)

where Ω is a convex polytopal domain in R
d with d = 2, 3. We assume that the

model problem (1)-(2) has a unique solution and the coefficient tensor A(x) is
uniformly elliptic.

Non-divergence form elliptic partial differential equations have many applica-
tions in the areas such as stochastic processes and game theory [3]. In recent years,
many numerical methods have been developed for second order elliptic equations
in non-divergence form [1, 2, 4, 5, 6, 7] and the references therein.

The non-divergence nature of the problems makes it difficult to develop and
analyze numerical algorithms for them since sophisticated Galerkin type numerical
techniques cannot be applied directly. The goal of this work is to introduce a
simple finite element method for non-divergence form partial differential equations
which can be easily implemented and analyzed. This finite element method based
on least squares methodology with discontinuous approximations has symmetric
and positive definite system and is flexible to work with general meshes. We prove
an optimal order error estimate for the finite element approximation in a discrete
H2 norm. However, our numerical results show optimal order of convergence in a
discrete H1 and H2 norm.

2. Finite Element Methods

Let Th be a partition of a domain Ω consisting of polygons in two dimension or
polyhedra in three dimension satisfying a set of conditions specified in [8]. Denote
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by Eh the set of all edges or flat faces in Th, and let E0
h = Eh\∂Ω be the set of all

interior edges or flat faces. For every element T ∈ Th, we denote by hT its diameter
and mesh size h = maxT∈Th

hT for Th.

We define a finite element space Vh as follows for k ≥ 2,

(3) Vh = {v ∈ L2(Ω) : v ∈ Pk(T ), T ∈ Th}.

Let elements T1 and T2 have e as a common edge/face. We define a jump of φ
on e as

[φ]e =

{

φ|∂T1
− φ|∂T2

, e ∈ E0
h,

φ, e ∈ ∂Ω.

The order of T1 and T2 is non-essential as long as the difference is taken in a
consistent way.

We introduce two bilinear forms as follows

s(v, w) =
∑

e∈Eh

∫

e

hs
e[v][w]ds +

∑

e∈E0

h

∫

e

ht
e[∇v] · [∇w]ds,

a(v, w) =
∑

T∈Th

(A : D2v, A : D2w)T + s(v, w),

where s and t are two integers such that s ≥ −3 and t ≥ −1. For simplicity, we
will let s = t = −1 in the rest of the paper.

Algorithm 1. A numerical approximation for (1)-(2) can be obtained by seeking
uh ∈ Vh satisfying the following equation:

(4) a(uh, v) = (f, A : D2v) ∀v ∈ Vh.

Lemma 1. The finite element scheme (4) has a unique solution.

Proof. It suffices to show that the solution of (4) is trivial if f = 0. Assuming f = 0
and taking v = uh in (4), we have

∑

T∈Th

(A : D2uh, A : D2uh)T + s(uh, uh) = 0,

which implies that A : D2uh = 0 on each element T and uh ∈ C1
0 (Ω). Thus uh is a

solution of the problem (1)-(2) with f = 0. The uniqueness of the solution of the
model problem (1)-(2) implies uh = 0. �

We define a semi-norm ||| · ||| as follows,

|||v|||
2
= a(v, v).

Similar to the proof of Lemma 1, we can prove that ||| · ||| define a norm in Vh.

3. Error Estimate

In this section, we will estimate the difference between the true solution u and
its finite element approximation uh from (4).

For any function ϕ ∈ H1(T ), the following trace inequality holds true (see [8]
for details):

(5) ‖ϕ‖2e ≤ C
(

h−1
T ‖ϕ‖2T + hT ‖∇ϕ‖2T

)

.
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Lemma 2. The bilinear form a(·, ·) satisfies the following continuity property,

(6) a(v, w) ≤ C|||v||||||w|||.

Proof. It follows from the Cauchy-Schwarz inequality,

a(v, w) =
∑

T∈Th

(A : D2v,A : D2w)T +
∑

e∈Eh

∫

e

h−1
e [v][w]ds

+
∑

e∈E0

h

∫

e

h−1
e [∇v] · [∇w]ds

≤(
∑

T∈Th

‖A : D2v‖2T )
1

2 (
∑

T∈Th

‖A : D2w‖2T )
1

2

+ (
∑

e∈Eh

∫

e

h−1
e [v]2ds)

1

2 (
∑

e∈Eh

∫

e

h−1
e [w]2ds)

1

2

+ (
∑

e∈E0

h

∫

e

h−1
e [∇v]2ds)

1

2 (
∑

e∈E0

h

∫

e

h−1
e [∇w]2)

1

2

≤C|||v||||||w|||,

which finishes the proof. �

Lemma 3. Let u be the solution of (1)-(2) and Qhu ∈ Vh be the L2 projection of
u defined element by element. Then we have

(7) |||u−Qhu||| ≤ Chk−1‖u‖k+1.

Proof. Using the definition of Qh and (5), we have

|||u−Qhu|||
2

=
∑

T∈Th

‖A : D2(u−Qhu)‖
2
T +

∑

e∈Eh

h−1
e ‖[u−Qhu]‖

2
e

+
∑

e∈E0

h

h−1
e ‖[∇(u−Qhu)]‖

2
e

≤ C
∑

T∈Th

(|u−Qhu|
2
H2(T ) + h−2‖u−Qhu‖

2
T + h−2‖∇(u−Qhu)‖

2
T )

≤ Ch2k−2‖u‖2k+1.

We have proved the lemma. �

Theorem 1. Let uh ∈ Vh be the finite element solution of the problem (1)-(2)
arising from (4). Then there exists a constant C such that

(8) |||u− uh||| ≤ Chk−1‖u‖k+1.

Proof. Obviously, the true solution u of (1)-(2) satisfies,

a(u, v) = (f,A : D2v), ∀v ∈ Vh.

Subtracting (4) from the above equation implies

a(u− uh, v) = 0, ∀v ∈ Vh.

By adding and subtracting Qhu in the above equation, we have

(9) a(Qhu− uh, v) = −a(u−Qhu, v), ∀v ∈ Vh.
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Using (9), (6) and (7), we arrive

|||Qhu− uh|||
2

= a(Qhu− uh, Qhu− uh)

= |a(u−Qhu,Qhu− uh)|

≤ |||u−Qhu||||||Qhu− uh|||

≤ Chk−1‖u‖k+1|||Qhu− uh|||,

which implies

(10) |||Qhu− uh||| ≤ Chk−1‖u‖k+1.

Using the triangle inequality, (7) and (10), we have

|||u− uh||| ≤ |||u−Qhu|||+ |||Qhu− uh||| ≤ Chk−1‖u‖k+1.

The proof of the theorem is completed. �

4. Numerical Experiments

In this section, two numerical examples are tested to demonstrate the robust-
ness of the method and to validate the theoretical conclusions in the previous sec-
tion. In the following experiments, rectangular mesh and quadratic polynomial
(k = 2) are used. The size of each element is denoted by h.

4.1. Test 1. In this numerical example, a non-divergence form elliptic equations
(1)-(2) is considered with Ω = (−1, 1)2. Four different coefficient matrices A = Ai

(i = 1, . . . , 4) are investigated:

A1 =

(

1 0
0 1

)

, A2 =

(

1 1
1 1

)

, A3 =

(

1 100
100 1

)

, A4 =

(

1 100
50 10

)

.

and the exact solution is chosen as

u = sin(πx) sin(πy).

The error measured in L2-norm, H1-norm, and H2-norm for the above four dif-
ferent coefficient matrices are reported in Table 1 respectively. It shows that the
rate of convergence in H2 norm is optimal order O(h), which confirms our theory.
Moreover, the error measured in H1-norm converges with an optimal convergence
rate of O(h2). The rate of convergence of the L2-error has the order O(h2).

4.2. Test 2. For this test we take A as the following continuous matrix-valued
function:

A(x) =

(

|x|1/2 + 1 −|x|1/2

−|x|1/2 5|x|1/2 + 1

)

.

Let Ω = (−1/2, 1/2)2 and choose f such that the exact solution is given by

u(x, y) = sin(2πx) sin(2πy) exp(x cos(y)).

It is easy to see that the problem is coupled with homogeneous boundary condition.

The error measured in L2-norm, H1-norm, and H2-norm are reported in Table
2. Again the error measured in the H2-norm is of order O(h) as expected. The
errors measured in H1-norm and L2-norm converge at the order O(h2).
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Table 1. Example 1. Convergence test on rectangular mesh for
k = 2.

1/h ‖u− uh‖ Rate ‖∇u−∇uh‖ Rate ‖D2u−D2uh‖ Rate
A = A1

2 1.4952E-01 9.4428E-01 5.7801E+00
4 4.6597E-02 1.68 2.6559E-01 1.83 3.0925E+00 0.90
8 1.2618E-02 1.88 6.6617E-02 2.00 1.5732E+00 0.98
16 3.2025E-03 1.98 1.6675E-02 2.00 7.9000E-01 0.99
32 8.0271E-04 2.00 4.1624E-03 2.00 3.9543E-01 1.00
64 2.0077E-04 2.00 1.0389E-03 2.00 1.9777E-01 1.00
128 5.0198E-05 2.00 2.5946E-04 2.00 9.8890E-02 1.00

A = A2

2 1.5229E-01 8.8746E-01 8.1743E+00
4 7.0955E-02 1.10 3.7333E-01 1.25 4.3735E+00 0.90
8 2.3711E-02 1.58 1.1844E-01 1.66 2.2248E+00 0.98
16 7.2493E-03 1.71 3.6778E-02 1.69 1.1172E+00 0.99
32 2.1085E-03 1.78 1.1180E-02 1.72 5.5922E-01 1.00
64 5.8423E-04 1.85 3.2542E-03 1.78 2.7969E-01 1.00
128 1.5567E-04 1.91 9.0403E-04 1.85 1.3985E-01 1.00

A = A3

2 1.2647E-01 6.8922E-01 5.7804E+02
4 4.0909E-02 1.63 2.2186E-01 1.64 3.0927E+02 0.90
8 1.1112E-02 1.88 5.9639E-02 1.90 1.5732E+02 0.98
16 2.8509E-03 1.96 1.5228E-02 1.97 7.9004E+01 0.99
32 7.1948E-04 1.99 3.8336E-03 1.99 3.9545E+01 1.00
64 1.8066E-04 1.99 9.6125E-04 2.00 1.9778E+01 1.00
128 4.5301E-05 2.00 2.4080E-04 2.00 9.8895E+00 1.00

A = A4

2 1.2839E-01 6.9736E-01 4.3467E+02
4 4.2163E-02 1.61 2.2787E-01 1.61 2.3256E+02 0.90
8 1.1654E-02 1.86 6.2194E-02 1.87 1.1830E+02 0.98
16 3.0432E-03 1.94 1.6091E-02 1.95 5.9409E+01 0.99
32 7.7716E-04 1.97 4.0870E-03 1.98 2.9737E+01 1.00
64 1.9680E-04 1.98 1.0331E-03 1.98 1.4872E+01 1.00
128 4.9736E-05 1.98 2.6138E-04 1.98 7.4367E+00 1.00

Table 2. Example 2. Convergence test on rectangular mesh for
k = 2.

1/h ‖u− uh‖ Rate ‖∇u−∇uh‖ Rate ‖D2u−D2uh‖ Rate
2 2.0604E-01 2.7963E+00 6.8799E+01
4 1.8951E-01 0.12 2.1934E+00 0.35 6.3871E+01 0.11
8 6.5922E-02 1.52 6.8159E-01 1.69 3.4699E+01 0.88
16 1.8674E-02 1.82 1.8351E-01 1.89 1.7719E+01 0.97
32 4.8056E-03 1.96 4.6848E-02 1.97 8.9097E+00 0.99
64 1.1913E-03 2.01 1.1738E-02 2.00 4.4630E+00 1.00
128 2.9070E-04 2.03 2.9413E-03 2.00 2.2334E+00 1.00
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