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ERROR ANALYSIS OF A FINITE DIFFERENCE SCHEME FOR THE

EPITAXIAL THIN FILM MODEL WITH SLOPE SELECTION WITH AN

IMPROVED CONVERGENCE CONSTANT

ZHONGHUA QIAO, CHENG WANG, STEVEN M. WISE, AND ZHENGRU ZHANG

Abstract. In this paper we present an improved error analysis for a finite difference scheme for solving
the 1-D epitaxial thin film model with slope selection. The unique solvability and unconditional energy
stability are assured by the convex nature of the splitting scheme. A uniform-in-time Hm bound of the
numerical solution is acquired through Sobolev estimates at a discrete level. It is observed that a standard
error estimate, based on the discrete Gronwall inequality, leads to a convergence constant of the form
exp(CTε−m), where m is a positive integer, and ε is the corner rounding width, which is much smaller than
the domain size. To improve this error estimate, we employ a spectrum estimate for the linearized operator
associated with the 1-D slope selection (SS) gradient flow. With the help of the aforementioned linearized
spectrum estimate, we are able to derive a convergence analysis for the finite difference scheme, in which
the convergence constant depends on ε−1 only in a polynomial order, rather than exponential.

Key words. Epitaxial thin film growth, finite difference, convex splitting, uniform-in-time Hm stability,
linearized spectrum estimate, discrete Gronwall inequality.

1. Introduction

The epitaxial thin film growth model with slope selection, also known as the regularized
Cross-Newell equation [15, 23], has been used as a model for thin film roughening and
coarsening [30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 41, 50]. This equation contains a continuum-
level description of the Ehrlich-Schwoebel barrier, which leads to an uphill adatom “current”
and ultimately the formation of hill and valley structures [31, 37]. The model may be viewed
as a gradient flow with respect to the Aviles-Giga-type energy functional [3, 29, 34, 37], which
is given by

(1) E(φ) :=

∫

Ω

(

1

4
ε−1

(

(∂φx)
2 − 1

)2
+
ε

2
(∂2xφ)

2

)

dx,

where Ω = (0, L), φ : Ω → R is the height of the film, and ε > 0 is a positive constant that
is much smaller that the domain size L. As is standard, we assume that φ is periodic. The
chemical potential is defined to be the variational derivative of the energy (1), i.e.,

(2) µ := δφE = ε−1
[

−∂x(|∂xφ|
2∂xφ) + ∂2xφ

]

+ ε∂4xφ.

The linear term ε∂4xφ models surface diffusion. The remainder of the terms in the chemical
potential model the Ehrlich-Schwoebel barrier, which gives rise to “facets” on the film
surface. The parameter ε > 0 describes the strength of the surface diffusion. More surface
diffusion leads to more corner rounding at the junction of two facets. The epitaxial thin
film model with slope selection is the L2 gradient flow associated with the energy (1):

(3) ∂tφ = −µ = ε−1
[

∂x

(

(∂xφ)
3
)

− ∂2xφ
]

− ε∂4xφ.
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We will refer to this equation as the slope selection (SS) equation. It is easy to see that the
SS equation (3) is mass conservative, and the energy (1) is non-increasing in time along the
solution trajectories of (3). Interestingly, one will also observe that, at least in one spatial
dimension, the slope function, ∂xφ satisfies a Cahn-Hilliard equation:

(4) ∂t (∂xφ) = ε−1∂2x

[

(∂xφ)
3
− ∂xφ

]

− ε∂4x (∂xφ) .

Energy stability is an important issue for long-time numerical simulation. Convex-
splitting time discretization schemes, popularized by Eyre’s work [18], have some desirable
properties, including unique solvability and unconditional energy stability. See the related
works for the Cahn-Hilliard equation [17, 26], the phase field crystal (PFC) and modified
phase field crystal (MPFC) equations [4, 5, 28, 46, 47, 49], the Cahn-Hilliard-Hele-Shaw
(CHHS) and related models [9, 14, 16, 22, 39, 48], et cetera. In particular, for the epi-
taxial thin film growth models, the authors recall the first order convex splitting scheme
reported in [45], the second order splitting scheme in [43], and their extensions to the no-
slope-selection model [8, 10].

We are focused on error estimates and convergence analyses for the convex splitting
scheme applied to the 1-D SS model in this work. Given any fixed final time T , such an
error estimate could be derived through a standard process of consistency and stability
analyses; the convergence constant is independent of the time step s and spatial grid size h.
However, a careful calculation shows that, this constant depends singularly on T and the
reciprocal of the surface diffusion parameter ε: the specific form is exp (Cε−mT ), where m
is a positive integer. As usual, this form comes from the application of a discrete Gronwall
inequality in the analysis.

On the other hand, the authors observe that, there have been a few works on the improved
convergence constant for the Cahn-Hilliard flow. In particular, Feng and Prohl [21] proved –
for a first-order-in-time backward Euler scheme coupled with a mixed finite element spatial
discretization scheme – that the convergence constant is of order exp (C0T ) ε

−m0 , for some
positive integer m0 and a constant C0 independent of ε. In other words, the exponential
dependence on ε−1 may be replaced by a polynomial dependence. Two more recent works
of Feng, Li and Xing [19, 20] applied a similar technique to analyze the first-order-in-time,
discontinuous Galerkin schemes for the Allen-Cahn and Cahn-Hilliard equations. Both
the backward Euler and convex splitting temporal discretizations were included in their
recent works. Such an elegant improvement was based on a subtle spectrum analysis for the
linearized Cahn-Hilliard operator (with certain given structure assumptions of the solution),
provided in earlier PDE analyses [1, 2, 11, 12, 13].

In this article, we extend this idea and utilize the related methodology to derive a sim-
ilar estimate for the first order convex splitting, finite difference scheme applied to the
1-D SS equation. The multi-dimensional SS equation is much more challenging than the
Cahn-Hilliard equation, due to the higher degree of nonlinearity of the 4-Laplacian term.
Meanwhile, we observe that, the one-dimensional SS equation takes a very similar structure
as the corresponding Cahn-Hilliard one, and the linearized spectrum estimate can be de-
rived in the same manner. This estimate plays an essential role in the error estimate with
an improved constant.

Our analysis will proceed in the following way: to start with, the leading order energy
stability yields an H2 estimate of the numerical solution, independent on the final time.
Subsequently, a uniform-in-time Hm (with m ≥ 3) bound of the numerical solution may be
derived with the help of higher order energy estimates and repeated application of Sobolev
inequalities at the discrete level. These bounds are dependent on the initialHm data and ε−1
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(in a polynomial form), but are independent of the final time T . Since this bound is available
for the numerical solution for any m ≥ 3, a subtle observation implies that ‖φn+1 − φn‖Hk

(where φn is the fully discrete numerical approximation at the time instant tn and k is an
integer) is O(s), with s the time step size. In addition, the constant appearing in O(s) turns
out to be independent of T . In other words, we are able to derive a uniform-in-time O(s)
estimate for ‖φn+1 − φn‖Hk , independent of the convergence analysis.

Meanwhile, we observe that the existing works [20, 21] (for the CH equation with im-
proved convergence constant) dealt with finite element approximations in space. For a finite
difference scheme, in which the numerical solution is evaluated at collocation grid points, we
estimate the difference between the discrete Hk norm of the numerical error function and
the continuous Hk norm of its continuous interpolation, with the help of the discrete and
continuous Fourier analysis. This Fourier analysis also enables us to perform an estimate
for the difference between the discrete ℓ2 inner product associated with the nonlinear term
and its continuous interpolation, appropriately defined. Consequently, some aliasing error
control techniques have to be applied, such as those derived in [25].

Both the numerical scheme and the exact solution are evaluated at the time instant tn+1.
With all the preliminary estimates available, we could apply the spectrum analysis for the
linearized SS operator, and arrive at a discrete ℓ2 error estimate of size O(s + h2), where
the convergence constant is of the form as exp (C∗

0T ) ε
−m0 , with C∗

0 independent of ε.
In Section 2 we review the first order convex splitting numerical scheme, combined with

the finite difference approximation in space. The unique solvability, unconditional energy
stability and a uniform-in-time (discrete) H2 stability are established. In Section 3, we
present the higher order Hm (for m ≥ 3) numerical stability analysis of the approximate
solution. As a result, a uniform-in-time estimate for ‖φn+1−φn‖Hk is provided. In Section 4
we present the discrete ℓ2 error estimate of size O(s + h2), with the convergence constant
dependent on ε−1 in a polynomial form. Some concluding remarks are given in Section 5.

2. The numerical scheme and the leading H2 estimate

2.1. The finite difference approximation. The domain is given by Ω = (0, L), and we
take a uniform mesh with h = L

N . The height function φ is evaluated at cell center points
xi = (i−1/2) ·h, i = 1, · · · , N . For the numerical approximation we write φi = φ(xi). Edge
centered functions are represented by fi+1/2 = f(xi+1/2), i = 0, · · · , N . We assume that
grid functions are periodic. In the case of cell-centered functions, this means that

(5) φi+q·N = φi, ∀ i, q ∈ Z,

and a similar expression holds for periodic edge-centered functions.
The center-to-edge and edge-to-center differences are defined, respectively, via

(6) Dφi+1/2 =
φi+1 − φi−1

h
and dfi =

fi+1/2 − fi−1/2

h
,

where φi is a cell-centered function and fi+1/2 is an edge-centered function. The second
difference is defined as

(7) D2φi = d(Dφ)i =
φi+1 − 2φi + φi−1

h2
.

Subsequent differences of cell-centered functions φ can be defined recursively via

(8) D2k+1φi+1/2 = D(D2kφ)i+1/2 and D2k+2φi = D2(D2kφ)i.

To define the energy at the discrete level, we introduce some more notation. Given any
periodic, cell-centered grid functions φ and ψ, the discrete ℓ2 inner product and norm is



286 Z. QIAO, C. WANG, S. WISE, AND Z. ZHANG

given by

(9) ‖φ‖2 =
√

〈φ, φ〉, with 〈φ, ψ〉 = h

N
∑

i=1

φiψi.

Similarly, for periodic grid edge-centered grid functions f and g , the discrete ℓ2 inner
product and norm becomes

(10) ‖f‖2 =
√

〈f, f〉e, with 〈f, g〉e = h

N
∑

i=1

fi−1/2gi−1/2.

The following summation-by-parts formulas are available for periodic grid functions; see [5,
9, 26, 47] for the derivations:

〈φ, df〉 = −〈Dφ, f〉e ,(11)
〈

φ,D2ψ
〉

= −〈Dφ,Dψ〉e ,
〈

φ,D4ψ
〉

=
〈

D2φ,D2ψ
〉

,
〈

φ,D6ψ
〉

= −
〈

D3φ,D3ψ
〉

e
,
〈

D2φ,D6ψ
〉

=
〈

D4φ,D4ψ
〉

,
〈

D4φ,D6ψ
〉

= −
〈

D5φ,D5ψ
〉

e
.(12)

In addition, we introduce the discrete ℓp (1 ≤ p < +∞) and ℓ∞ norms for cell-centered
grid functions ψ:

(13) ‖ψ‖p = (h

N
∑

i=1

|ψi|
p)1/p, ‖ψ‖∞ = max

1≤i≤N
|ψi|.

Similar definitions hold for edge-centered functions. The correct usage should be clear from
the context.

2.2. The fully discrete numerical scheme. Let φ be a cell-centered grid function ap-
proximating the height of the thin film. The discrete energy is defined via

(14) F (φ) := ε−1

(

1

4
‖Dφ‖44 −

1

2
‖Dφ‖22 +

1

4

)

+
ε

2
‖D2φ‖22.

This is consistent with the continuous energy (1) as h → 0. The convex-concave decompo-
sition of the energy (14) is obvious: F (φ) = Fc(φ)− Fe(φ), with

(15) Fc(φ) = ε−1

(

1

4
‖Dφ‖44 +

1

4

)

+
ε

2
‖D2φ‖22, Fe(φ) =

1

2ε
‖Dφ‖22.

LetM ∈ Z
+, and set s := T/M , where T is the final time. The first order convex splitting

scheme is formulated in [45]:

(16)
φn+1
i − φni

s
= ε−1

(

d
[

(Dφn+1)3
]

i
−D2φni

)

− εD4φn+1
i .

The local truncation error of this scheme is O(s + h2): first order in time, second order in
space.

Because of the convex splitting, scheme (16) is unconditionally uniquely solvable and
unconditionally energy stable:

(17) F (φn) ≤ F (φn−1) ≤ · · · ≤ F (φ0) := C̃0,

for all n ≥ 0.
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2.3. A few related estimates for the finite difference approximation. For simplicity
of presentation, we assume N is odd. The general case can be analyzed in a similar manner
to what follows but with a few more technical details. In particular, set N = 2K + 1. For
any periodic cell-centered grid function f , its discrete Fourier representation is given by

fj =

K
∑

ℓ=−K

f̂Nℓ e2ℓπixj/L,(18)

where f̂Nℓ is the discrete Fourier transform coefficient. The extension of the grid function
to a smooth periodic function is conveniently obtained via Fourier interpolation:

(19) fF(x) =
K
∑

ℓ=−K

f̂Nℓ e2ℓπix/L.

In other words, replace xj with x. For edge-centered functions, we have analogous formulas.
The following preliminary estimates are crucial to the analyses in later sections; their

proofs will be given in Appendices A and B:

Lemma 2.1. For any periodic cell-centered grid function f , we have

κj
∥

∥∂jxfF
∥

∥ ≤
∥

∥Djf
∥

∥

2
≤
∥

∥∂jxfF
∥

∥ , ∀0 ≤ j ≤ k,(20)

‖fF‖Hk ≤ C
(

|f |+
∥

∥Dkf
∥

∥

2

)

, with f = h

N
∑

i=1

fi,(21)

∥

∥D3f
∥

∥

2
≤ C1

∥

∥D5f
∥

∥

2
,(22)

‖Df‖∞ ≤ C‖D2f‖2,(23)

‖Djf‖∞ ≤ C‖Dj+1f‖2, 1 ≤ j ≤ k,(24)

‖D3f‖2 ≤ C‖D2f‖
2/3
2 · ‖D5f‖

1/3
2 ,(25)

‖D2f‖∞ ≤ C‖D2f‖
5/6
2 · ‖D5f‖

1/6
2 ,(26)

where 0 < κj ≤ 1, 0 ≤ j ≤ k, and C > 0 is a constant that is independent of h.

Lemma 2.2. For a cell-centered grid function f , we have

0 ≤ ‖∂xfF‖
2
− ‖Df‖

2
2 ≤ Ch2 ‖fF‖

2
H2 ,(27)

0 ≤
∥

∥∂2xfF
∥

∥

2
−
∥

∥D2f
∥

∥

2

2
≤ Ch2 ‖fF‖

2
H3 ,(28)

‖∂kx(∂xfF − (Df)F)‖ ≤ Ch2‖∂k+3
x fF‖, ∀k ≥ 0,(29)

where C > 0 is a constant that is independent of h.

To analyze the finite difference scheme over a uniform grid, we have to estimate the
discrete inner product involving the nonlinear terms. To achieve this, some tools in Fourier
pseudo-spectral analysis are needed. Denote BK as the space of trigonometric polynomials
of degree up to K (note that N = 2K+1). For a continuous L-periodic function f – or more

generally, for f ∈ L2(0, L) – with the Fourier series f(x) =
∑∞

ℓ=−∞ f̂ℓe
2ℓπix/L, its projection

onto the space BK is the following truncated series

PN f(x) =

K
∑

ℓ=−K

f̂ℓe
2ℓπix/L.(30)
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On the other hand, suppose that f is a continuous L-periodic function, which may or may
not be in BK , we introduce the periodic cell-centered grid function fi = f(xi), which we refer
to as the grid projection of f . Moreover, the interpolation operator IN f ∈ BK is defined as

(31) IN f(x) = fF(x).

Clearly IN f 6= f , unless f ∈ BK . If f 6∈ BK there is aliasing error; and the Fourier
coefficients of f and IN f are different. See the related references [6, 24, 27, 44], et cetera.
On the other hand, a standard approximation analysis shows that, as long as f ∈ Hm

per(0, L),
the convergence of the derivatives of the projection and interpolation is given by

‖f(x) − PN f(x)‖Hk ≤ Chm−k‖f‖Hm , 0 ≤ k ≤ m,(32)

‖f(x) − IN f(x)‖Hk ≤ Chm−k‖f‖Hm , 0 ≤ k ≤ m, m >
d

2
,(33)

where C > 0 is an h-independent constant. See the related discussion on trigonometric
approximation theory in [7]; a similar aliasing error control result is also available in a more
recent work [25].

The following results play a very important role in the nonlinear inner product analysis;
their proofs will be given in Appendices C and D.

Lemma 2.3. Suppose f ,g ∈ Cper(0, L) with edge-centered grid projections denoted by f , g,
respectively.

(1) If f ,g ∈ BK , we have

(34) 〈f, g〉e = (f ,g) .

(2) More generally, the following estimates are valid:

|〈f, g〉e − (f ,g)| ≤ Ch4 (‖f‖H4 · ‖g‖H2 + ‖f‖H2 · ‖g‖H4) , f ,g ∈ H4
per(0, L),(35)

|〈f, g〉e − (f ,g)| ≤ Ch2 ‖f‖H2 · ‖g‖H2 , f ,g ∈ H2
per(0, L),(36)

where C > 0 is a constant that is independent of h.

Lemma 2.4. Suppose fj, 1 ≤ j ≤ 4, are periodic cell-centered grid functions, with repre-
sentations as in (18). Denote their continuous Fourier interpolants by fF,j =: fj, 1 ≤ j ≤ 4,
obtained via (19). Then we have the following estimate:

∣

∣

∣
〈Df1 ·Df2, Df3 ·Df4〉e− (∂xf1 · ∂xf2, ∂xf3 · ∂xf4)

∣

∣

∣

≤ Ch2(‖f1‖
2
H3 + ‖f2‖

2
H3 )(‖f3‖

2
H3 + ‖f4‖

2
H3),(37)

where C > 0 is a constant that is independent of h.

2.4. A uniform-in-time H2 bound of the numerical solution. We note that the
discrete energy (14) could be rewritten as

F (φ) :=
1

4
ε−1h

N
∑

i=1

(

(Dφ)i−1/2 − 1
)2

+
ε

2
‖D2φ‖22.(38)

Therefore, the energy estimate (17) yields the following result

‖D2φn‖22 ≤
2C̃0

ε
, ∀ n ≥ 0.(39)
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Meanwhile, we see that the numerical scheme (16) is mass conserving:

(40) φk = φ0 = β0, ∀ k ≥ 0, with f = h

N−1
∑

i=0

fi.

Without loss of generality, we may assume that β0 = 0. In turn, an application of elliptic
regularity indicates that

(41)
∥

∥φk
F

∥

∥

2

H2 ≤ C0

∥

∥∂2xφ
k
F

∥

∥

2
≤ C‖D2φk‖22 ≤

2CC̃0

ε
,

for any k ≥ 0, with the estimate (20) applied in the second step.
As a consequence, the following ℓ∞(0, T ;H2) bound of the numerical solution is valid: if

the initial data are sufficiently regular, say φ0 ∈ H2
per(0, L), then

(42) ‖φF‖ℓ∞(0,T ;H2) := max
0≤m≤M

‖φm
F
‖H2 ≤ Ĉ2,ε := Cε−k2 , with k2 = 1.

3. Higher order estimates of the numerical scheme

3.1. ℓ∞ (0, T ;Hm) (m ≥ 3) bound of the scheme. The leading order H2 bound (42) is
not sufficient to assure an error estimate with the desired improved convergence constant.
In this section, we establish a uniform-in-time Hm bound, for any m ≥ 3, of the numerical
solution. Such a bound depends on ε−1 in a polynomial form.

Theorem 3.1. For the numerical solution given by (16), with φ0 ∈ H3
per(0, L), we have

‖φF‖ℓ∞(0,T ;H3) := max
0≤m≤M

‖φm
F
‖H3 ≤ Ĉ3,ε := Cε−k3 ,(43)

where k3 is a positive integer and C > 0 is a constant independent of s, h, T , and ε.

Proof. Taking a discrete inner product of (16) with −2D6φn+1 gives
∥

∥D3φn+1
∥

∥

2

2
−
∥

∥D3φn
∥

∥

2

2
+
∥

∥D3(φn+1 − φn)
∥

∥

2

2
+ 2εs

∥

∥D5φn+1
∥

∥

2

2

= 2ε−1s
〈

D6φn+1, D2φn
〉

− 2ε−1s
〈

D6φn+1, d
[

(Dφn+1)3
]〉

.(44)

using the summation-by-parts formulas in (12).
For the term associated with the concave diffusion, the preliminary estimate (25) indicates

that

(45)
∥

∥D3φn
∥

∥

2
≤ C

∥

∥D2φn
∥

∥

2/3
·
∥

∥D5φn
∥

∥

1/3
≤ CĈ

2/3
2,ε ·

∥

∥D5φn
∥

∥

1/3
,

with the uniform-in-time H2 analysis (39) applied in the last step. Therefore, the following
bound is available:

〈

D6φn+1, D2φn
〉

= −
〈

D5φn+1, D3φn
〉

e
≤
∥

∥D5φn+1
∥

∥

2
·
∥

∥D3φn
∥

∥

2

≤ CĈ
2/3
2,ε ·

∥

∥D5φn
∥

∥

1/3

2
·
∥

∥D5φn+1
∥

∥

2

≤ Cε−4Ĉ2
2,ε +

1

8
ε2(
∥

∥D5φn+1
∥

∥

2

2
+
∥

∥D5φn
∥

∥

2

2
),(46)

with Young’s inequality applied in the last step.
For the nonlinear term, summation-by-parts gives

−
〈

D6φn+1, d
[

(Dn+1)3
]〉

=
〈

D5φn+1, D
{

d
[

(Dφn+1)3
]}〉

e

≤
∥

∥D5φn+1
∥

∥

2
·
∥

∥D
{

d
[

(Dn+1)3
]}
∥

∥

2
.(47)
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Meanwhile, a careful expansion yields

D
{

d
[

(Dφ)3
]}

i+1/2
= 3

(

Dφi+1/2

)2
D3φi+1/2 +

(

Dφi+3/2 + 2Dφi+1/2

) (

D2φi+1

)2

+
(

Dφi−1/2 + 2Dφi+1/2

) (

D2φi
)2
.(48)

In turn, an application of the discrete Hölder inequality shows that
∥

∥D
{

d
[

(Dφn+1)3
]}
∥

∥

2
≤ C

(

∥

∥Dφn+1
∥

∥

2

∞
·
∥

∥D3φn+1
∥

∥

2

+
∥

∥Dφn+1
∥

∥

∞
·
∥

∥D2φn+1
∥

∥

∞
·
∥

∥D2φn+1
∥

∥

2

)

.(49)

Furthermore, the following estimates could be carried out, with the help of preliminary
estimates (23), (25) and (26) in Lemma 2.1:

‖D2φn+1‖2 ≤ Ĉ2,ε,(50)

‖D3φn+1‖2 ≤ C‖D2φn+1‖
2/3
2 · ‖D5φn+1‖

1/3
2 ≤ CĈ

2/3
2,ε · ‖D5φn+1‖

1/3
2 ,(51)

‖Dφn+1‖∞ ≤ C‖D2φn+1‖2 ≤ CĈ2,ε,(52)

‖D2φn+1‖∞ ≤ C‖D2φn+1‖
5/6
2 · ‖D5φn+1‖

1/6
2 ≤ CĈ

5/6
2,ǫ · ‖D5φn+1‖

1/6
2 .(53)

As a result, a substitution of the above inequalities into (49) leads to

(54)
∥

∥D
{

d
[

(Dφn+1)3
]}
∥

∥

2
≤ C(Ĉ

8/3
2,ε · ‖D5φn+1‖

1/3
2 + Ĉ

17/6
2,ε · ‖D5φn+1‖

1/6
2 ).

Going back to (47), we arrive at

−
〈

D6φn+1, d
[

(Dφn+1)3
]〉

≤ C(Ĉ
8/3
2,ε · ‖D5φn+1‖

4/3
2 + Ĉ

17/6
2,ε · ‖D5φn+1‖

7/6
2 )

≤ Cε−4Ĉ8
2,ε +

1

8
ε2‖D5φn+1‖22,(55)

with the Young inequality applied in the last step.
Subsequently, a substitution of (46) and (55) into (44) results in

∥

∥D3φn+1
∥

∥

2

2
−
∥

∥D3φn
∥

∥

2

2
+

3

2
εs
∥

∥D5φn+1
∥

∥

2

2
≤ C3s+

1

4
εs
∥

∥D5φn
∥

∥

2

2
,(56)

with C3 = Cε−5Ĉ8
2,ε. By denoting

Gn :=
∥

∥D3φn
∥

∥

2

2
+

1

4
εs
∥

∥D5φn
∥

∥

2

2
,(57)

we obtain

Gn+1 −Gn +
5

4
εs
∥

∥D5φn+1
∥

∥

2

2
≤ C3s.(58)

Meanwhile, the discrete elliptic regularity (22) indicates that

C4G
n+1 ≤

5

4

∥

∥D5φn+1
∥

∥

2

2
, provided that εs ≤ 1,(59)

with C4 = C−2
1 . Then we get

Gn+1 −Gn + C4εsG
n+1 ≤ C3s.(60)

An application of induction (in time index) results in

Gn+1 = (1 + C4sε)
−(n+1)G0 +

C3

C4ε
≤ G0 +

C3

C4ε
:= C̃3,(61)
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where C̃3 is a global-in-time constant. Finally, (43) is a direct consequence of (61) and the
elliptic regularity (21):

∥

∥φk
F

∥

∥

H3 ≤ C
∥

∥D3φk
∥

∥

2
≤ C + (Gk)1/2 ≤ CC̃

1/2
3 := Ĉ3,ε.(62)

Note that Ĉ3,ε depends on ε−1 in a polynomial form, since Ĉ2,ε does. This completes the
proof. �

Using similar tools, a uniform-in-time Hm0 bound for the numerical solution could be
established, for any m0 ≥ 3, by taking an inner product with (16) by (−D2)m0φn+1. The
details are left for interested readers.

Theorem 3.2. For the numerical solution given by (16), with φ0 ∈ Hm0
per(0, L), we have

‖φF‖ℓ∞(0,T ;Hm0 ) := max
0≤m≤M

‖φm
F
‖Hm0 ≤ Ĉm0,ε := Cε−km0 ,(63)

where km0
is a positive integer and C > 0 is a positive constant that is independent of s, h,

T , and ε.

Remark 3.1. The global-in-time H3 bound for the numerical solution, CC̃
1/2
3 in (62),

depends singularly on ε. In more details, we have C3 = O(ε−13), C̃3 = O(ε−14), so that
k3 = 7. In addition, a careful calculation shows that k4 = 9, k5 = 11, ..., km0

= 2m0 + 1.

3.2. Estimates for
∥

∥(φn+1 − φn)F
∥

∥

Hk . The following estimate is needed in later analysis.

Theorem 3.3. Suppose that φ0 ∈ Hk+4
per (0, T ). The numerical solution for (16) satisfies

(64) max
0≤n≤M−1

‖(φn+1 − φn)F‖Hk ≤ D̂k,εs,

where D̂k,ε := Cεnk , nk is a positive integer, and C > 0 is a constant independent of s, h,
T , and ε.

Proof. Let us define the cell centered chemical potential

µn+1 := −ε−1
(

d
[

(Dφn+1)3
]

−D2φn
)

+ εD4φn+1.

Subsequently, the following estimates can be derived, with a repeated application of the
uniform bound (63): with repeated applications of discrete Hölder and Sobolev inequalities:

∥

∥Dk
{

d
[

(Dφn+1)3
]}∥

∥

2

≤ C
∑

i1+i2+i3=k+4

∥

∥Di1φn+1
∥

∥

∞
·
∥

∥Di2φn+1
∥

∥

∞
·
∥

∥Di3φn+1
∥

∥

2

≤ C
∑

i1+i2+i3=k+4

∥

∥Di1+1φn+1
∥

∥

2
·
∥

∥Di2+1φn+1
∥

∥

2
·
∥

∥Di3φn+1
∥

∥

2

≤ C
˜̂
Ck,ε := C

∑

i1+i2+i3=k+4

Ĉi1+1,ε · Ĉi2+1,ε · Ĉi3,ε,(65)

∥

∥Dk(D2φn)
∥

∥

2
= ‖Dk+2φn‖2 ≤ Ĉk+2,ε,(66)

∥

∥Dk(D4φn+1)
∥

∥

2
= ‖Dk+4φn+1‖2 ≤ Ĉk+4,ε.(67)
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In particular, we note that, in the analysis of the nonlinear term (65), a similar discrete
expansion as (48) has been performed, with a discrete Hölder inequality applied, and the
preliminary estimate (24) was also utilized. In turn, the numerical scheme (16) shows that

‖(φn+1 − φn)F‖Hk ≤ Cs‖Dkµn+1‖2

≤ Cs
(

∥

∥Dk
{

d
[

(Dφn+1)3
]}∥

∥

2
+
∥

∥Dk+2φn
∥

∥

2
+
∥

∥Dk+4φn+1
∥

∥

2

)

≤ D̂k,εs,(68)

where D̂k,ε := Cε−1(
˜̂
Ck,ε + 1) + εĈk+4,ε. We observe that the first step was based on the

inequality (21) in Lemma 2.1, combined with the fact that φn+1 − φn = 0. Also note that

D̂k,ε depends on ε
−1 in a polynomial form, since both Ĉk+2,ε and Ĉk+4,ε do. This completes

the proof. �

3.3. Some related estimates for the exact solution. We denote Φ as the exact solution
of the SS equation (3), with a smooth initial data. The following estimates can be derived
by performing standard energy estimates. The details are skipped for brevity.

Theorem 3.4. Suppose that the initial data satisfy Φ(0) = φ0 ∈ C∞
per(0, L). Then there is

a unique global smooth solution Φ, and the following estimates are valid:

‖Φ‖L∞(0,T ;Hm0 ) ≤ Ĉ∗
m0,ε := Cε−km0 , ∀m0 ≥ 2,(69)

‖∂tΦ‖L∞(0,T ;Hk) ≤ D̂∗
k,ε, with D̂∗

k,ε := Cε−nk , ∀ k ≥ 0,(70)
∥

∥∂2tΦ
∥

∥

L∞(0,T ;Hk)
≤ Q̂∗

k,ε, with Q̂∗
k,ε := Cε−mk , ∀k ≥ 0,(71)

max
0≤n≤M−1

∥

∥Φn+1 − Φn
∥

∥

Hk ≤ sD̂∗
k,ε, ∀k ≥ 0,(72)

where km0
and nk are positive integers and C is a positive constant independent of s, h, T ,

and ε.

Remark 3.2. With the imposed periodic boundary condition, the SS equation (3) is infinitely
smooth, both in space and time. This fact enables one to derive an Hm estimate of the
solution, at both the analytic and numerical levels.

Remark 3.3. The estimates (70) and (71) are derived by taking temporal derivatives of
(3) and using the L∞(0, T ;Hm0) estimate (69), so that the Hk norm of the first and second
order temporal derivatives are converted into certain spatial Hm norms of the exact solution.

The derivation of (72) is based on the following Taylor expansion (in time):

(73) Φn+1 − Φn = s∂tΦ(ξ), with ξ ∈ (tn, tn+1),

combined with the established estimate (70).

Furthermore, consider the Fourier projection of the exact solution into the space BK ,
ΦN (x, t) = PNΦ(x, t). The following projection approximations, which we state without
proof for the sake of brevity, are available:

‖ΦN‖L∞(0,T ;Hk) ≤ ‖Φ‖L∞(0,T ;Hk) ,(74)

‖ΦN − Φ‖L∞(0,T ;Hk) ≤ Chm−k ‖Φ‖L∞(0,T ;Hm) ,(75)
∥

∥∂ℓtΦN
∥

∥

L∞(0,T ;Hk)
≤
∥

∥∂ℓtΦ
∥

∥

L∞(0,T ;Hk)
, ∀ ℓ ≥ 1,(76)

for any 0 ≤ k ≤ m. In particular, (76) comes from the fact that ∂ℓtΦN (x, t) turns out to be
the Fourier projection of ∂ℓtΦ(x, t) onto BK .
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We denote ΦkN (x) = ΦN (x, tk). The following result is a consequence of Theorem 3.4 and
the projection approximation estimates (74) and (76).

Theorem 3.5. Suppose that Φ(0) = φ0 ∈ C∞
per(0, L). The following estimates are valid for

the projection of the solution ΦN :

max
0≤n≤M

‖ΦnN‖Hm0 ≤ Ĉ∗
m0,ε := Cε−km0 ,(77)

max
0≤n≤M−1

∥

∥Φn+1
N − ΦnN

∥

∥

Hk ≤ D̂∗
k,εs, D̂∗

k,ε := Cε−nk ,(78)

for any m0 ≥ 1 and k ≥ 0, where km0
, nk and mk are positive integers and C is a constant

independent of s, h, T , and ε.

4. Error analysis with an improved convergence constant

The numerical error function and its continuous extension are defined as

φ̃ki = ΦkN (xi)− φki , φ̃k
F
(x) = ΦkN (x) − φk

F
(x),(79)

with the formulas (18) and (19) applied in the extension. In more detail, we don’t compare
the numerical solution with the exact solution Φ directly; instead, we compare it with ΦN ,
the Fourier projection of Φ. The advantage of this approach will be demonstrated later.

4.1. Statement of the main theorem. The following theorem is the main result of this
paper.

Theorem 4.1. Suppose that the initial data φ0 ∈ H8
per(Ω) and that s and h satisfy the

scaling laws

(80) s ≤ CεJ1 , h ≤ CεJ2 ,

where J1 and J2 are positive integers that are sufficiently large. Also assume that ε ∈ (0, ε0),
with ε specified in Proposition 4.1. Then the following error estimate is valid:

(81) max
1≤m≤M

‖φ̃m‖2 ≤ R̂∗(s+ h2), with R̂∗ = CeC
∗

0T ε−J0 ,

where J0 is a positive integer, C∗
0 and C are positive constants that are independent of s, h

and ε.

4.2. Consistency analysis and the equation for the error function. Based on the
projection approximation estimates (75) and (76), combined with the exact SS equation (3),
we are able to derive the following estimate, whose proof is suppressed for simplicity:

(82) ∂tΦN = ε−1
(

((∂xΦN)
3)x − ∂2xΦN

)

− ε∂4xΦN + τ0,

with ‖τ0(t)‖ ≤ Ch2ε−j1 where C > 0 is a constant the is independent of t, ε, and N , and
j1 is a positive integer.

With the centered difference approximation taken in space, the following estimate is
available:

∂tΦN (xi, tn) = ε−1
(

d
[

(DΦN )3
]

(xi, tn)−D2ΦN (xi, tn)
)

− εD4ΦN (xi, tn) + τn1 (xi),(83)
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with ‖τn1 ‖ ≤ Ch2ε−j2 . Subsequently, with a first order backward Euler temporal approxi-
mation taken, the following consistency estimate could be derived:

Φn+1
N − ΦnN

s
(xi) = ε−1

(

d
[

(DΦn+1
N )3

]

(xi)−D2Φn+1
N (xi)

)

− εD4Φn+1
N (xi) + τn+1

2 (xi),(84)

where ‖τn+1
2 ‖2 ≤ C(s+ h2)ε−j3 .

For the numerical scheme (16), we rewrite it in an alternate form, to facilitate the error
analysis presented later. The following consistency holds:

(85)
φn+1 − φn

s
= ε−1

(

d
[

(Dφn+1)3
]

−D2φn+1
)

− εD4φn+1 + τn+1
3 ,

where ‖τn+1
3 ‖2 ≤ C(s+ h2)ε−j4 .

Remark 4.1. We note that the temporal discretization for both the approximate projection
solution (84) and the numerical solution (85) is very different from the original numerical
scheme (16). The purpose for these forms are to simplify the error analysis with an improved
convergence constant, as will be observed later.

The only truncation error estimate appearing in (82) come from the projection error,
and the projection estimate (74) is applied to bound ‖τn+1

0 ‖. In (83), the finite difference
truncation error is taken into consideration; we refer the readers the related references [5, 47]
for more detailed derivations. In the derivation of (84), the second order temporal derivative
of the projection solution in involved in τ2, in which the projection estimate (74) is applied.

Similarly, for the numerical solution, the truncation error term τ3 comes from the dif-
ference between D2φn+1 and D2φn, by a comparison with the numerical scheme (16). In
turn, the quantity ‖D2(φn+1 − φn)‖2 could be controlled in the following way, with the help
of Theorem 3.3:

‖D2(φn+1 − φn)‖2 ≤ sD̂2,ε, by taking k = 2 in (64).(86)

Subtracting (84) from the reformulated numerical scheme (85) yields

(87)
φ̃n+1 − φ̃n

s
= ε−1

(

d
[

(DΦn+1
N )3 − (Dφn+1)3

]

−D2φ̃n+1
)

− εD4φ̃n+1 + τn+1

where ‖τn+1‖2 ≤ C(s+ h2)ε−j5 .

4.3. A preliminary estimate for the numerical error term. By a comparison between
(63) (in Theorem 3.2), (64) (in Theorem 3.3) and (77) – (78) (for the approximate projection
solution) in Theorem 3.5, the following estimates are straightforward.

Lemma 4.1. For the numerical error function, we have

max
0≤n≤M

‖φ̃n
F
‖Hm0 ≤ Ĉ∗∗

m0,ε := Cε−km0 ,(88)

max
0≤n≤M−1

‖φ̃n+1
F

− φ̃n
F
‖Hk ≤ D̂∗∗

k,εs, D̂∗∗
k,ε := Cε−nk ,(89)

for any m0 ≥ 1 and k ≥ 0, where km0
, nk and mk are given integers and C is a constant

independent of s, h, T , and ε.

Remark 4.2. Note that these bounds for the numerical error function do not rely on the
error and convergence analysis; all of them are final time independent.
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4.4. Review of the spectrum estimate for the linearized operator. The linearized
spectrum estimate for the Cahn-Hilliard equation has been established in [1, 2, 11, 21]. We
recall it here.

Proposition 4.1. ([21]) There exist 0 < ε0 << 1 and another positive constant C0 such
that the principle eigenvalue of the linearized Cahn-Hilliard operator satisfies

λCH := inf
ψ∈H1,ψ 6=0

ε−1
((

3Φ2(t)− 1
)

ψ, ψ
)

+ ε ‖∇ψ‖
2

‖ψ‖
2
H−1

≥ −C0,(90)

for any t ≥ 0, ε ∈ (0, ε0), where Φ is the exact solution to the Cahn-Hilliard problem.

For the 1-D SS model (3), we have a similar result, under the periodic boundary condition.

Proposition 4.2. There exist 0 < ε0 << 1 and another positive constant C0 such that the
principle eigenvalue of the linearized SS operator satisfies

(91) λSS := inf
ψ∈H2

per(0,L), ψ 6=0

ε−1
((

3(∂xΦ)
2(t)− 1

)

∂xψ, ∂xψ
)

+ ε
∥

∥∂2xψ
∥

∥

2

‖ψ‖2
≥ −C0,

for any t ≥ 0, ε ∈ (0, ε0), where Φ is the exact solution to the 1-D SS problem.

Remark 4.3. The spectrum analysis (90) was derived for the linearized Cahn-Hilliard op-
erator [1, 2, 11], under a homogeneous Neumann boundary condition. An extension of this
analysis to the one with the periodic boundary condition is straightforward, and the details
are skipped for the sake of brevity. Estimate (91) is a direct application of this extension
in the one-dimensional case, upon observing that the slope function ∂xΦ satisfies the Cahn-
Hilliard equation.

4.5. Error analysis: Proof of Theorem 4.1. Taking a discrete inner product of (87)

with 2φ̃n+1 gives

‖φ̃n+1‖22 − ‖φ̃n‖22 + ‖φ̃n+1 − φ̃n‖22 + 2εs‖D2φ̃n+1‖22 − 2sε−1‖Dφ̃n+1‖22

+2ε−1s
〈

(DΦn+1
N )3 − (Dφn+1)3, Dφ̃n+1

〉

e
= 2s〈τn+1, φ̃n+1〉,(92)

with repeated application of the summation-by-parts formulas.
The term associated with the truncation error has the following bound:

2〈τn+1, φ̃n+1〉 ≤ ‖τn+1‖22 + ‖φ̃n+1‖22.(93)

For the concave diffusion term, we apply (27) (in Lemma 2.2) and get

‖∂xφ̃
n+1
F

‖2 − ‖Dφ̃n+1‖22 ≤ Ch2‖φ̃n+1
F

‖2H2 ≤ Ch2‖∂2xφ̃
n+1
F

‖2.(94)

To obtain a sharper bound on the right hand side, we have

‖∂2xφ̃
n+1
F

‖2 ≤ C‖φ̃n+1
F

‖H4 · ‖φ̃n+1
F

‖ ≤ CĈ∗∗
4,ε‖φ̃

n+1
F

‖,(95)

with the preliminary estimate (88) (in Lemma 4.1) applied in the last step. This in turn
yields

‖∂xφ̃
n+1
F

‖2 − ‖Dφ̃n+1‖22 ≤ CĈ∗∗
4,εh

2‖φ̃n+1
F

‖ ≤
ε

8
‖φ̃n+1

F
‖2 + Cε−1h4(Ĉ∗∗

4,ε)
2.(96)

The surface diffusion term could be analyzed in the same manner, with the help of (28)
(in Lemma 2.2). We state the result here; the details are skipped for the sake of brevity.

‖∂2xφ̃
n+1
F

‖2 − ‖D2φ̃n+1‖22 ≤ CĈ∗∗
6,εh

2‖φ̃n+1
F

‖ ≤ ‖φ̃n+1
F

‖2 + Ch4(Ĉ∗∗
6,ε)

2.(97)
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The rest work is focused on the following nonlinear inner product:

I
(d)
1 := 〈(DΦn+1

N )3 − (Dφn+1)3, Dφ̃n+1〉e

= 〈(DΦn+1
N )2 +DΦn+1

N Dφn+1 + (Dφn+1)2, (Dφ̃n+1)2〉e.(98)

Meanwhile, we denote its continuous version as

I1 :=
(

(∂xΦ
n+1
N )2 + ∂xΦ

n+1
N · ∂xφ

n+1
F

+ (∂xφ
n+1
F

)2, (∂xφ̃
n+1
F

)2
)

.(99)

The difference I
(d)
1 −I1 can be analyzed with the help of Lemma 2.4. We see that ΦN ∈ BK ,

φF and φ̃F are the continuous extensions of φ and φ̃, respectively, so that an application of
(37) leads to an estimate of the middle term:

∣

∣

∣

〈

DΦn+1
N Dφn+1, (Dφ̃n+1)2

〉

e
−
(

∂xΦ
n+1
N · ∂xφ

n+1
F

, (∂xφ̃
n+1
F

)2
)∣

∣

∣

≤ Ch2‖φ̃n+1
F

‖2H3(‖Φn+1
N ‖2H3 + ‖φn+1

F
‖2H3) ≤ Ch2‖φ̃n+1

F
‖2H3(Ĉ2

3,ε + (Ĉ∗
3,ε)

2)

≤ Ch2ε−2k3‖φ̃n+1
F

‖2H3 ≤ Ch2ε−2k3Ĉ∗∗
6,ε‖φ̃

n+1
F

‖

≤ R̂∗
0,εh

4 +
ε

12
‖φ̃n+1

F
‖2, R̂∗

0,ε = Cε−4k3−1(Ĉ∗∗
6,ε)

2,(100)

in which the established estimates (63), (77) and (88), along with the Sobolev inequality

‖φ̃n+1
F

‖2H3 ≤ CĈ∗∗
6,ε‖φ̃

n+1
F

‖ (as derived in (97)), have been applied. The two other terms
could be analyzed in the same way. Then we get

|I
(d)
1 − I1| ≤ 3R̂∗

0,εh
4 +

ε

4
‖φ̃n+1

F
‖2.(101)

Before further analysis of the nonlinear term, we make an a-priori assumption about the
numerical error.

4.5.1. An a-priori assumption up to time step tn. We assume a-priori that the nu-
merical error function has the desired convergence as given by (81), at time steps up to
tn.

(102) ‖φ̃ℓ
F
‖ ≤ R̂∗

(

s+ h2
)

, with R̂∗ = CeC
∗

0T ε−J0 , ℓ ≤ n.

For the continuous inner product I1 in (99), we begin with the following identity:

(∂xΦ
n+1
N )2 + ∂xΦ

n+1
N · ∂xφ

n+1
F

+ (∂xφ
n+1
F

)2 = 3(∂xΦ
n+1
N )2 − 3∂xΦ

n+1
N · ∂xφ̃

n+1
F

+ (∂xφ̃
n+1
F

)2.(103)

This in turn shows that

(104) I1 ≥ 3
(

(∂xΦ
n+1
N )2, (∂xφ̃

n+1
F

)2
)

+ IE, IE = −3
(

(∂xΦ
n+1
N ), (∂xφ̃

n+1
F

)3
)

.

Furthermore, we obtain

|IE| ≤ 3‖∂xΦ
n+1
N ‖L∞ · ‖∂xφ̃

n+1
F

‖3L3 ≤ C
∥

∥Φn+1
N

∥

∥

H2 · ‖∂xφ̃
n+1
F

‖3L3

≤ CĈ∗
2,ε‖∂xφ̃

n+1
F

‖3L3 ,(105)
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with the estimate (69) applied in the last step. Meanwhile, based on the identity ∂xφ̃
n+1
F

=

∂xφ̃
n
F
+ ∂x

(

φ̃n+1
F

− φ̃n
F

)

, the following analysis is performed:

‖∂xφ̃
n+1
F

‖3L3 ≤ C
(

‖∂xφ̃
n
F
‖3L3 + ‖∂x(φ̃

n+1
F

− φ̃n
F
)‖3L3

)

≤ C
(

‖∂xφ̃
n
F
‖3L3 + ‖φ̃n+1

F
− φ̃n

F
‖3H2

)

≤ C
(

‖∂xφ̃
n
F
‖3L3 + s3(D̂∗∗

2,ε)
3
)

,(106)

with the preliminary estimate (89) applied in the last step. Moreover, the Sobolev inequal-
ities indicate that

‖∂xφ̃
n
F
‖L3 ≤ C‖φ̃n

F
‖H7/6 ≤ C‖φ̃n

F
‖

23
30 · ‖φ̃n

F
‖

7
30

H5

≤ C(Ĉ∗∗
5,ε)

7
30 (R̂∗)

23
30 (s+ h2)

23
30 ,(107)

in which the estimate (88) and the a-priori assumption (102) was recalled in the last step.
Subsequently, a substitution of (106) and (107) into (105) yields

|IE| ≤ R̂∗
2,ε(s

23
10 + h

23
5 ) + R̂∗

3,εs
3,(108)

with R̂∗
2,ε = CĈ∗

2,ε(Ĉ
∗∗
5,ε)

7
10 (R̂∗)

23
10 , R̂∗

3,ε = CĈ∗
2,ε(D̂

∗∗
2,ε)

3.
Finally, a combination of (92), (93), (96), (97), (101) and (108) leads to

‖φ̃n+1‖22 − ‖φ̃n‖22 − s‖τn+1‖22

+ 2s
(

ε−1
(

3
(

(∂xΦ
n+1
N )2, (∂xφ̃

n+1
F

)2
)

− ‖∂xφ̃
n+1
F

‖2
)

+ ε‖∂2xφ̃
n+1
F

‖2
)

≤ 2s‖φ̃n+1‖22 + R̂∗
1,εs(s

2 + h4) + 2ε−1s(R̂∗
2,ε(s

23
10 + h

23
5 ) + R̂∗

3,εs
3),(109)

with R̂∗
1,ε = C(ε−1R̂∗

0,ε + ε−2(Ĉ∗∗
4,ε)

2 + ε(Ĉ∗∗
6,ε)

2). The linearized spectrum estimate (91)
(reviewed in Proposition 4.2) implies that

(110) ε−1
(

3
(

(∂xΦ
n+1
N )2, (∂xφ̃

n+1
F

)2
)

− ‖∂xφ̃
n+1
F

‖2
)

+ ε‖∂2xφ̃
n+1
F

‖2 ≥ −C0‖φ̃
n+1‖2.

Its substitution into (109) yields

‖φ̃n+1‖22 − ‖φ̃n‖22 ≤ (2C0 + 2)s‖φ̃n+1‖22 + R̂∗
4,εs(s

2 + h4)

+2ε−1sR̂∗
2,ε(s

23
10 + h

23
5 ),(111)

with R̂∗
4,ε = ε−2j5 + R̂∗

1,ε + 2R̂∗
3,εε

−1s. Under the condition that

ε−1R̂∗
2,εs

3
10 ≤

1

2
, ε−1R̂∗

2,εh
3
5 ≤

1

2
, i.e. min(s, h) ≤ (

ε

2
)

10
3 (R̂∗

2,ε)
− 10

3 ,(112)

we get

‖φ̃n+1‖22 − ‖φ̃n‖22 ≤ (2C0 + 2)s‖φ̃n+1‖22 + R̂∗
5,εs(s

2 + h4),(113)

with R̂∗
5,ε = 2R̂∗

4,ε + 1. Most importantly, observe that 2C0 + 2 is a constant independent

of ε, and R̂∗
5,ε is independent of R̂∗ appearing in (102). Clearly, R̂∗

5,ε depends on ε−1 in a
polynomial form. An application of discrete Gronwall inequality to (113) results the desired
error analysis:

‖φ̃n+1‖22 ≤ Ce(2C0+2)T R̂∗
5,ε(s

2 + h4).(114)



298 Z. QIAO, C. WANG, S. WISE, AND Z. ZHANG

4.5.2. Recovery of the a-priori assumption (102). In turn, we can take C∗
0 = C0 +1,

and the integer index J0 could be chosen according to the form of R̂∗
5,ε, to recover the

a-priori assumption (102) at time step tn+1.

Moreover, R̂∗ is determined by this convergence result, so is R̂∗
2,ε, given by R̂∗

2,ε =

CĈ∗
2,ε(Ĉ

∗∗
5,ε)

7
10 (R̂∗)

23
10 . As a result, condition (112) for s and h could be converted into

the form of (80). The proof of Theorem 4.1 is complete.

Remark 4.4. The time step and mesh size have to satisfy the scaling law as indicated in
(80): s ≤ CεJ1 , h ≤ CεJ2 . A preliminary calculation shows that J1 ≥ 20, J2 ≥ 20.

Note that these two integer numbers have larger values than the ones reported in [19,
21], for a few reasons. The Allen-Cahn model covered in [19] has a well-known maximum
principle, which in turn would greatly simplify the corresponding analysis. The Cahn-Hilliard
model analyzed in [21] does not have the maximum principle, while its degree of nonlinearity
is lower than the SS model, due to the fact that φx satisfies the SS equation, as given by
(4). In addition, only an H−1 truncation error needs to be estimated in the Cahn-Hilliard
model, in comparison with the L2 truncation error presented in this article. This fact also
makes the truncation error dependent on ε−1 in a higher degree polynomial form.

In addition, the aliasing error estimates are needed in the finite difference analysis for
the nonlinear error terms, which in turn requires higher regularity of the exact solution and
numerical solution. This subtle fact also makes the numerical error dependent on ε−1 in
a higher degree polynomial form; in comparison, the finite element approximations were
applied in [19, 21], and no aliasing error needs to be estimated.

Remark 4.5. The authors are aware of the limitation of the 1-D SS equation (4). In fact,
the multi-dimensional versions have been extensively studied in many recent articles [36,
40, 43, 45], with local in time convergence analyses provided. However, all the estimates
are involved with a convergence constant dependent on ε−1 in an exponential growth form,
which comes from an application of discrete Gronwall inequality. The technique presented
in this article could not be directly applied to the multi-dimensional SS model, because of a
key fact that, the linearized spectrum estimate, as given by (4.2) for the 1-D equation, is not
available for the multi-dimensional SS model.

5. Conclusions

An improved error analysis is provided for an energy stable finite difference scheme to the
1-D slope selection equation. A uniform-in-time Hm bound of the numerical solution, for
anym ≥ 3, is obtained through Sobolev estimates at a discrete level. To avoid a convergence
constant of the form exp(CTε−m), we apply a spectrum estimate for the linearized operator
associated with the 1-D SS gradient flow, so that an application of the discrete Gronwall
inequality leads to a convergence constant dependent on ε−1 only in a polynomial order.
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Appendix A. Proof of Lemma 2.1

Proof. For the cell-centered grid function f and its smooth extension fF, given by (18) and
(19), Parseval identity (at both the discrete and continuous levels) implies that

‖f‖22 = ‖fF‖
2
L2 = L

K
∑

ℓ=−K

|f̂Nℓ |2, since hN = L.(115)

For the comparison between the discrete and continuous gradient, we start with the
following Fourier expansions:

Dfj+1/2 =

K
∑

ℓ=−K

µℓf̂
N
ℓ e2ℓπixj+1/2/L, µℓ = −

2i sin ℓπh
L

h
,(116)

∂xfF(x) =

K
∑

ℓ=−K

νℓf̂
N
ℓ e2ℓπix/L, νℓ = −

2iℓπ

L
.(117)

In turn, an application of Parseval identity yields

(118) ‖Df‖
2
2 = L

K
∑

ℓ=−K

|µℓ|
2|f̂Nℓ |2, ‖∂xfF‖

2
L2 = L

K
∑

ℓ=−K

|νℓ|
2|f̂Nℓ |2.

Comparison between |µℓ| and |νℓ| shows that

(119)
2

π
|νℓ| ≤ |µℓ| ≤ |νℓ|, for −K ≤ ℓ ≤ K.

This indicates that

(120)
2

π
‖∂xφF‖L2 ≤ ‖Dφ‖2 ≤ ‖∂xφF‖L2 ,

which gives (20) in Lemma 2.1, with j = 1. It can be proved analogously that

(2π−1)j‖∂jxφF‖L2 ≤ ‖Djφ‖2 ≤ ‖∂jxφF‖L2, ∀j ≥ 1,(121)

so that (20) has been established.
Estimate (22) is a direct consequence of (121), combined with the elliptic regularity at

the continuous level:
∥

∥D3f
∥

∥

2
≤
∥

∥∂3xfF
∥

∥ ≤ C∗
1

∥

∥∂5xfF
∥

∥ ≤ C∗
1 (D5)

−1
∥

∥D5f
∥

∥

2
,(122)

where C∗
1 is the elliptic regularity constant at the continuous level. In turn, (22) is valid by

taking C1 = C∗
1 (D5)

−1.
Similarly, (21) could be derived as follows:

‖fF‖Hk ≤ C

(
∫

Ω

fF dx+ ‖∂kxfF‖

)

≤ C
(

|f |+ ‖DkfF‖2
)

,(123)

in which the elliptic regularity is applied in the first step, and the fact that
∫

Ω
fF dx = f is

observed in the second step, and the estimate (20) has also been recalled.
For (23), we define the edge-centered grid function gi+1/2 = Dfi+1/2 and denote its

smooth extension as gF, with the extension formula given by (19). Based on the discrete
Fourier expansion (116) for g = Df , we see that the continuous expansion for gF becomes

gF =

K
∑

ℓ=−K

µℓf̂
N
ℓ e2ℓπix/L, µℓ = −

2i sin ℓπh
L

h
.(124)
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In turn, we have the following estimates for ∂xgF:

∂xgF =

K
∑

ℓ=−K

µℓ ·
2ℓπi

L
· f̂Nℓ e2ℓπix/L, so that(125)

‖∂xgF‖
2 = L

K
∑

ℓ=−K

|µℓ|
2 ·

∣

∣

∣

∣

2ℓπi

L

∣

∣

∣

∣

2

· |f̂Nℓ |2 ≤ L

K
∑

ℓ=−K

|νℓ|
4|f̂Nℓ |2 = ‖∂2xfF‖

2,(126)

where the last step is based on the fact that |µℓ| ·
∣

∣

2ℓπi
L

∣

∣ ≤ |νℓ|, with νℓ given by (117).
Moreover, the discrete maximum norm of g = Df could be analyzed as follows:

‖Df‖∞ = ‖g‖∞ ≤ ‖gF‖L∞ ≤ C ‖∂xgF‖ ≤ C
∥

∥∂2xfF
∥

∥ ≤ C
∥

∥D2f
∥

∥

2
.(127)

We note that the second step comes from the fact that the edge-centered grid function g is
the projection/evaluation of gF to/at the grid points. The third step is based on the 1-D
Sobolev embedding; (126) is applied in the fourth step; and the estimate (20) is recalled in
the last step. This finishes the proof of (23).

Inequality (24) could be established in the same manner, we skip the details for the sake
of brevity.

Estimates (25) and (26) could be derived with the help of the Sobolev inequalities, com-
bined with (20):

‖Df‖2 ≤‖∂3xfF‖ ≤ C‖∂2xfF‖
2/3 · ‖∂5xfF‖

1/3 ≤ C‖D2f‖
2/3
2 · ‖D5f‖

1/3
2 ,(128)

‖D2f‖∞ ≤C‖∂2xfF‖
5/6 · ‖∂5xfF‖

1/6 ≤ C‖D2f‖
5/6
2 · ‖D5f‖

1/6
2 ,(129)

with the first step in (129) derived in the same manner as (124)-(127).
The proof of Lemma 2.1 is complete. �

Appendix B. Proof of Lemma 2.2

Proof. The discrete Fourier expansion (18) for f and its continuous extension (19) yields

D2fj =

K
∑

ℓ=−K

λℓf̂
N
ℓ e2ℓπixj/L, λℓ = −

(

2 sin
ℓπh
L

h

)2

,(130)

∂2xfF(x) =

K
∑

ℓ=−K

Λℓf̂
N
ℓ e2ℓπix/L, Λℓ = −

(

2ℓπ

L

)2

.(131)

Subsequently, we apply the Parseval equality and get

‖∂xfF‖
2
− ‖Df‖

2
2 = L

K
∑

ℓ=−K

(

|νℓ|
2 − |µℓ|

2
)

∣

∣

∣
f̂Nℓ

∣

∣

∣

2

, (by (118) ),(132)

∥

∥D2f
∥

∥

2

2
= L

K
∑

ℓ=−K

|λℓ|
2 ·
∣

∣

∣
f̂Nℓ

∣

∣

∣

2

,
∥

∥∂2xfF
∥

∥

2
= L

K
∑

ℓ=−K

|Λℓ|
2 ·
∣

∣

∣
f̂Nℓ

∣

∣

∣

2

,(133)

so that

(134)
∥

∥∂2xfF
∥

∥

2
−
∥

∥D2f
∥

∥

2

2
= L

K
∑

ℓ=−K

(

|Λℓ|
2 − |λℓ|

2
)

∣

∣

∣
f̂Nℓ

∣

∣

∣

2

,
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with µℓ and νℓ given by (116), (117). Furthermore, the following estimates are available:

|νℓ|+ |µℓ| ≤ 2|νℓ| =
4ℓπ

L
, |λℓ|+ |Λℓ| ≤ 2|Λℓ| = 2

(

2ℓπ

L

)2

(135)

sin
ℓπh

L
=
ℓπh

L
−

cos η

6

(

ℓπh

L

)3

, with η ∈ (0, π2 ),(136)

so that

0 ≤ |νℓ| − |µℓ| =
2ℓπ

L
−

2 sin ℓπh
L

h
≤
h2

3

(

ℓπ

L

)3

,(137)

0 ≤ ‖νℓ|
2 − |µℓ|

2 = (|νℓ| − |µℓ|) · (|νℓ|+ |µℓ|) ≤
h2

24

(

2ℓπ

L

)4

,(138)

0 ≤ |Λℓ|
2 − |λℓ|

2 = (|Λℓ| − |λℓ|) · (|Λℓ|+ |λℓ|) ≤
h2

12

(

2ℓπ

L

)6

,(139)

where a Taylor expansion was performed in (136), and the fact that |λ| = |µ|2, |Λ| = |ν|2

was applied in (139). Going back to (132), (134), we arrive at

0 ≤ ‖∂xfF‖
2
− ‖Df‖

2
2 ≤

L

24

K
∑

ℓ=−K

h2
(

2ℓπ

L

)4
∣

∣

∣
f̂Nℓ

∣

∣

∣

2

=
h2

24

∥

∥∂2xfF
∥

∥

2
,(140)

0 ≤
∥

∥∂2xfF
∥

∥

2
−
∥

∥D2f
∥

∥

2

2
≤

L

12

K
∑

ℓ=−K

h2
(

2ℓπ

L

)6
∣

∣

∣
f̂Nℓ

∣

∣

∣

2

=
h2

12

∥

∥∂3xfF
∥

∥

2
.(141)

Inequality (29) could be similarly proven, by making a comparison between the Fourier
expansions of Df and ∂xfF, given by (116), (117), combined with the estimate (137). The
details are skipped for the sake of brevity.

The proof of Lemma 2.2 is complete. �

Appendix C. Proof of Lemma 2.3

Proof. (1) In addition to (18) and (19), we set the discrete Fourier expansion for g and its
continuous extension given by

gi =

K
∑

ℓ=−K

ĝNℓ e2ℓπixi/L, g(x) = gF(x) =

K
∑

ℓ=−K

ĝNℓ e2ℓπix/L.(142)

In turn, we assume the Fourier expansion for the product function f · g as

(f · g)(x) =
2K
∑

ℓ=−2K

ĥNℓ e2ℓπix/L.(143)

In particular, it is observed that f · g ∈ B2K . Consequently, the discrete product function
f · g turns out to be the projection of f · g at the numerical grid points:

(f · g)i = (f · g)(xi) = IN (f · g) (xi).(144)

A more careful expansion shows that

f · g =

∫

Ω

IN (f · g)dx =

∫

Ω

f · gdx,(145)
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which is equivalent to (34). In more detail, the first step comes from the fact that IN f · g ∈
BK , and the second step is based on the fact that, there is no aliasing error on the mode of
ℓ = 0, between f · g ∈ B2K and its projection onto BK .

(2) In the general case, we note that f and g are discrete interpolations of IN f ∈ BK and
INg ∈ BK . By (34), we arrive at

|〈f, g〉e − (f ,g)| = |(IN f , INg)− (f ,g)| ≤ |(IN f − f , INg)|+ |(f , INg − g)|

≤ ‖IN f − f‖ · ‖INg‖+ ‖f‖ · ‖INg− g‖

≤ Ch4 (‖f‖H4 · ‖g‖H2 + ‖f‖H2 · ‖g‖H4 ) ,(146)

which gives (35), with the Fourier spectral interpolation approximation (33) applied at the
last step.

Estimate (35) could be established in the same fashion. The proof of Lemma 2.3 is
complete. �

Appendix D. Proof of Lemma 2.4

Proof. We assume that fj and its continuous extension fj have the following Fourier expan-
sions, 1 ≤ j ≤ 4:

(fj)k =

K
∑

ℓ=−K

f̂N(j),ℓe
2ℓπixk/L, fj(x) =

K
∑

ℓ

f̂N(j),ℓe
2ℓπix/L.(147)

We also denote periodic grid functions (gj)k+1/2 = (Dfj)k+1/2, and denote their continuous
extensions as gj , 1 ≤ j ≤ 4, using a similar formula as (18) – (19). A more detailed
calculation shows that

(gj)k+1/2 =

K
∑

ℓ=−K

µℓf̂
N
(j),ℓe

2ℓπixk+1/2/L, gj(x) =

K
∑

ℓ

µℓf̂
N
(j),ℓe

2ℓπix/L,(148)

with µℓ given by (116). Moreover, by a careful comparison between the Fourier coefficients of
gj and ∂xfj , we could perform a similar analysis as in (116) – (121) and derive the following
estimate:

2π−1‖∂k+1
x fj‖ ≤ ‖∂kxgj‖ ≤ ‖∂k+1

x fj‖, ∀k ≥ 0.(149)

The details are skipped for the sake of brevity.
In addition, the following O(h2) consistency estimate could be derived, following (29) (in

Lemma 2.2):

‖∂kx(∂xfj − gj)‖ ≤ Ch2‖∂k+3
x fj‖, ∀k ≥ 0.(150)

Due to the fact that

gj = Dfj is the interpolation of the continuos function gj , 1 ≤ j ≤ 4,(151)

we apply (36) (in Lemma 2.3) and conclude that

|〈Df1 ·Df2, Df3 ·Df4〉e − (g1g2,g3g4)|

≤ Ch2 ‖g1g2‖H2 · ‖g3g4‖H2 ≤ Ch2‖g1‖H2 · ‖g2‖H2 · ‖g3‖H2 · ‖g4‖H2

≤ Ch2(‖g1‖
2
H2 + ‖g2‖

2
H2 )(‖g3‖

2
H2 + ‖g4‖

2
H2)

≤ Ch2(‖f1‖
2
H3 + ‖f2‖

2
H3)(‖f3‖

2
H3 + ‖f4‖

2
H3),(152)

in which the estimate (149) (with k = 4) is applied in the last step.
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On the other hand, we have to estimate the difference between (g1 · g2,g3 · g4) and
(∂xf1 · ∂xf2, ∂xf3 · ∂xf4):

(g1 · g2,g3 · g4)− (∂xf1 · ∂xf2, ∂xf3 · ∂xf4)

= (g1 · g2 − ∂xf1 · ∂xf2,g3 · g4)

+ (∂xf1 · ∂xf2, ∂xf1 · ∂xf2 − ∂xf3 · ∂xf4)

= (g1 − ∂xf1, ∂xf2 · g3 · g4) + (g2 − ∂xf2,g1 · g3 · g4)

+ (g3 − ∂xf3, ∂xf4 · ∂xf1 · ∂xf2) + (g4 − ∂xf4,g3∂xf1 · ∂xf2) .(153)

The following preliminary estimates are available, for 1 ≤ j ≤ 4:

‖gj − ∂xfj‖ ≤ Ch2‖fj‖H3 , (by taking k = 0 in (150) ),(154)

‖∂xfj‖L∞ ≤ C‖fj‖H2 , ‖gj‖L∞ ≤ C‖gj‖H1 ≤ C‖fj‖H2 ,(155)

with Sobolev inequalities applied in (155). In turn, the first term in (153) could be bounded
as follows:

|(g1 − ∂xf1, ∂xf2g3 · g4)| ≤ ‖g1 − ∂xf1‖ · ‖∂xf2‖L∞ · ‖g3‖L∞ · ‖g4‖L∞

≤ Ch2‖f1‖H3 · ‖f2‖H2 · ‖f3‖H2 · ‖f4‖H2

≤ Ch2(‖f1‖
2
H3 + ‖f2‖

2
H3 )(‖f3‖

2
H3 + ‖f4‖

2
H3).(156)

The three other terms in (153) could be analyzed in the same way. Then we arrive at
∣

∣

∣
(g1 · g2,g3 · g4)− (∂xf1 · ∂xf2, ∂xf3 · ∂xf4)

∣

∣

∣

≤Ch2(‖f1‖
2
H3 + ‖f2‖

2
H3)(‖f3‖

2
H3 + ‖f4‖

2
H3 ).(157)

Finally, a combination of (152) and (157) yields (37). This finishes the proof of Lemma 2.4.
�
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