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HIGH-RESOLUTION IMAGE RECONSTRUCTION: AN envℓ1/TV MODEL

AND A FIXED-POINT PROXIMITY ALGORITHM

WENTING LONG, YAO LU, LIXIN SHEN, AND YUESHENG XU

Abstract. High-resolution image reconstruction obtains one high-resolution image from multiple low-
resolution, shifted, degraded samples of a true scene. This is a typical ill-posed problem and optimization
models such as the ℓ2/TV model are previously studied for solving this problem. It is based on the as-

sumption that during acquisition digital images are polluted by Gaussian noise. In this work, we propose
a new optimization model arising from the statistical assumption for mixed Gaussian and impulse noises,
which leads us to choose the Moreau envelop of the ℓ1-norm as the fidelity term. The developed envℓ1/TV

model is effective to suppress mixed noises, combining the advantages of the ℓ1/TV and the ℓ2/TV models.
Furthermore, a fixed-point proximity algorithm is developed for solving the proposed optimization model
and convergence analysis is provided. An adaptive parameter choice strategy for the developed algorithm is
also proposed for fast convergence. The experimental results confirm the superiority of the proposed model

compared to the previous ℓ2/TV model besides the robustness and effectiveness of the derived algorithm.

Key words. High-resolution image reconstruction, envℓ1/TV model, proximity operator, fixed-point algo-
rithm.

1. Introduction

High-resolution (HR) image reconstruction arises from many applications, such as remote
sensing, surveillance, and medical imaging. HR image provides high pixel density and rich
image details which are desired in many image-related areas. For example, HR tomography
images can help doctors to diagnose nidus at an early stage, and HR remote sensing images
contain rich spectrum and spatial information, such as texture and shapes. However, due
to the limitation of solid-state sensors such as charge-coupled devices (CCD) and comple-
mentary metal oxide semiconductors (CMOS), the way of improving hardware resolution
is expensive, and sometimes hardly meets the need of better image details and greater im-
age clarity. HR image reconstruction is an approach that reconstructs one HR image from
multiple shifted, degraded low-resolution (LR) images. It can break through the resolution
limit of sensor manufacturing techniques and reduce the cost of high precision optics and
imaging sensors based on existing imaging equipments.

The image degradation procedure involves blurring, downsampling, displacement-error
and noise. The observation model can be written as [25]

(1) c = Au+ η,

where c is an observed LR image, η is the noise, u denotes the desired HR image, and A
is the degradation system matrix. The observation model (1) can be specified with the
estimated registration parameters and the given boundary condition. In this paper we
focus on a specific HR image reconstruction problem based on a mathematical model for a
prefabricated multi-sensors image acquisition system proposed in [9], which will be explained
in section 2. This model is feasible to acquire subpixel image information by placing sensors
in coupled shifted subpixel positions.
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The HR image reconstruction is an ill-posed problem due to the compactness of the
degradation operators [45]. Regularization methods are an effective way to obtain a stable
approximate solution. Regularization methods for HR reconstruction can be roughly divided
into stochastic and deterministic approaches. Stochastic HR approach is based on statistical
modeling of noise and image degradation process [51, 52, 53, 54]. Previous studies showed
that the stochastic approach has major advantage in robustness. The deterministic approach
exploits the prior assumption of images and reconstructs HR images via an optimization
framework [1, 3, 42]. However, if there is no or lack of prior information, it is difficult to
develop a suitable optimization model.

In considering the image degradation factors, the noise is sometimes modeled as Gaussian
white noise. Previously, the ℓ2/TV model was applied to reconstruct HR images with the
ℓ2-norm as fidelity term describing the model error [43]. Meanwhile, in real applications,
the imaging acquisition systems may suffer from impulse noise which is usually caused by
malfunctioning arrays in camera sensors, faulty memory locations in hardware, or trans-
mission in a noise channel [11, 60]. In this case, the ℓ2/TV model may perform poorly
because the ℓ2-norm has less ability to reduce the effect of outliers compared to the ℓ1-norm
[10, 12, 42, 47, 57]. Moreover, the estimated displacement-errors should be specifically
considered during the reconstruction via a regularization method.

The first contribution of this paper is to propose a robust optimization model arising from
a statistical assumption for mixed Gaussian and impulse noise, denoted as the envℓ1/TV
model, by replacing the fidelity term in the ℓ2/TV model with the Moreau envelop of the
ℓ1-norm. It is based on the observation that the Moreau envelop of the ℓ1-norm balances
the advantages of the ℓ1-norm and the ℓ2-norm. Some researchers tried to combine the
ℓ1-norm and the ℓ2-norm for the fidelity term [50, 58, 59]. However, the choice strategy
of the tradeoff parameter between these two norms is not clear and implementing a choice
strategy is time consuming [59]. In this study, we consider the joint distribution of Gaussian
white noise and impulse noise. Using segmental maximum a posteriori (MAP) criteria, we
derive the Moreau envelop of the ℓ1-norm to define the fidelity term. The Moreau envelop
of the ℓ1-norm has some desired properties. First, the Moreau envelop of the ℓ1-norm is
differentiable and its derivative has a closed form. Second, the parameter appearing in
the Moreau envelop has statistical meaning, and is related to the Gaussian noise level and
incident probability of impulse noise, which can be estimated from images iteratively. In
our experiment we propose a choice strategy of τ adaptively according to the number of
iterations. The numerical result shows that the performance of the proposed model is stable
for mixed Gaussian and impulse noise.

The second contribution of this paper is to propose a fixed-point proximity algorithm to
solve the model that avoids finding the inverse of ATA. In this paper, we focus on solving the
models regularized by the TV-norm. It is difficult to minimize by conventional methods due
to the non-smoothness of the TV regularization term. A number of numerical methods have
been proposed to address this issue, such as the primal-dual method [13, 20, 24, 35, 61], the
alternating direction method of multipliers [23], interior point algorithms [30] and fixed-point
methods [19, 33, 36]. These algorithms have been broadly used in solving image deblurring
problem and were reported with great performance. Most of the algorithms mentioned
above require computing the inverse of ATA. When facing the HR image reconstruction
with the displacement-error problem, the fact that the size of matrix A is large and there
is no fast algorithm (like FFT and DCT) to efficiently compute the inverse of ATA would
increase the computational cost. In this paper, we propose a new fixed-point algorithm that
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avoids computing the inverse of ATA, which will substantially reduce the computational
cost.

We conduct the convergence analysis of the proposed algorithm in a generalized setting
first and then apply it to the HR reconstruction problem.

This paper is organized as follows: In section 2, we review the Bose-Boo mathematical
formulation for HR resolution. Based on the analysis of the statistical model of mixed
Gaussian and impulse noise, the envℓ1/TV optimization model for HR reconstruction is
derived via segmental MAP criteria in section 3. In section 4, we prove that the envℓ1/TV
optimization model is equivalent to solving a fixed-point operator equation, and an iterative
splitting algorithm for solving the fixed-point equation is developed. Section 5 is devoted
to the convergence analysis of the proposed algorithm. In sections 6 and 7, we present a
discussion of the parameter estimates, algorithm modification, along with the experiments
for HR image reconstruction under various noise levels and displacement-error levels, while
discussion is given in the meantime. In section 8 we draw a conclusion for this study.

2. The Bose-Boo Mathematical Formulation

In this paper we study HR image reconstruction based on the Bose-Boo mathematical
model, an observation model for the prefabricated multi-sensor image acquisition system
proposed in [9].

The Bose-Boo model considers an image-formation system composed of a set of identical
CCD sensor arrays to obtain multiple observed images. It splits the incoming light from
the “taking lens” and then passes through the relay lenses before projecting onto the set of
CCD sensor arrays. We locate the CCD sensor arrays in preset positions to obtain multiple
down-sampled images, from which we reconstruct a desired high resolution image. The
advantage of this model is that, by sampling a scene at shifted sub-pixel positions with
multiple LR sensors, we can obtain sub-pixel image information to reconstruct a HR image
without increasing the cost of devices.

We now describe in details the Bose-Boo model. We consider an image acquisition system
with an l1 × l2 sensor array in which each sensor has N1 × N2 sensing units and the size
of each sensing unit is T1 × T2. For simplicity, without loss of generality, in the following
discussion we work on the case when l1 = l2 := L and L is an even number. Our aim is to
reconstruct an image with resolution O1 ×O2 where O1 := L×N1 and O2 := L×N2. Let
u be the original continuous scene and C be the digital data acquired by the LR sensors.
For the [p, q]th sensor in the sensor array, the average intensity detected by the [n1, n2]-th
unit is modeled by

(2) Cp,q[n1, n2] :=
1

T1T2

∫ T1(n1+
1
2 )+dx

p,q

T1(n1− 1
2 )+dx

p,q

∫ T2(n2+
1
2 )+dy

p,q

T2(n2− 1
2 )+dy

p,q

u(x, y) dy dx+ ηp,q[n1, n2],

where n1 = 1, 2, . . . , N1, n2 = 1, 2, . . . , N2, p, q = 1, 2, . . . , L, the ηp,q[n1, n2] is noise and dxp,q
and dyp,q are displacement distances of the [p, q]-th sensor in the x and y directions, respec-

tively, which are defined as follows. The sensors are shifted from each other by (T1

L , T2

L ).
With respect to the [0, 0]-th reference sensor, the [p, q]-th sensor has vertical and horizontal
displacement-errors εxp,q and εyp,q. We assume that∣∣εxp,q∣∣ < 1

2
and

∣∣εyp,q∣∣< 1

2

to avoid overlapping during the image capture process. Then the total displacement of
the [p, q]-th sensor with respect to the [0, 0]-th reference sensor in vertical and horizontal
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directions are, respectively,

dxp,q :=
(
p+ εxp,q

)T1

L
and dyp,q :=

(
q + εyp,q

)T2

L
.

We combine all the LR images together to form an O1 ×O2 image C by assigning

C [Ln1 + p, Ln2 + q] := Cp,q [n1, n2] .

This is the observed image. At the same time, The ideal HR image is modeled by

Up,q[n1, n2] :=
L2

T1T2

∫ T1
L (n1+

1
2 )

T1
L (n1− 1

2 )

∫ T2
L (n2+

1
2 )

T2
L (n2− 1

2 )

u(x, y) dy dx.

The purpose of the HR reconstruction is to restore the ideal HR image U from the observed
image C.

The blurring matrix corresponding to the [p, q]-th sensor modeled in (2) is given by

AL

(
εxp,q, ε

y
p,q

)
:= AL

(
εyp,q

)T ⊗AL

(
εxp,q

)
,

where⊗ denotes the Kronecker tensor product defined byB⊗D := [bm,nD] withB := [bm,n].
AL

(
εxp,q, ε

y
p,q

)
is explored to denote the blurring matrix of Bose-Boo model corresponding

to the [p, q]-th sensor. When L = 2, the sensor’s place with and without displacement error
can be found in Figure 1 [16]. And the system matrices AL

(
εyp,q

)
and AL

(
εxp,q

)
vary under

different boundary conditions. In this paper we consider the Neumann boundary condition.
The sampling matrix is given as

Dp,q := Jq ⊗ Jp

where Jp := IN1 ⊗ (epe
T
p ), Jq := IN2 ⊗ (eqe

T
q ), and ep and eq are the p-th and q-th columns

of the L × L identity matrix, respectively. In conclusion, the blurring matrix of Bose-Boo
model considering all the sensors can be defined as

AL

(
εx, εy

)
:=

1

L× L

L∑
p,q=1

Dp,qAL

(
εxp,q, ε

y
p,q

)
.

For the computational purpose, we reformulate the matrix as a column-wise vector. Let
m := O1O2, u ∈ Rm be the column-wise vector form of U and c ∈ Rm be the column-wise
vector form of C. Then the discrete model of the HR reconstruction is

(3) c = AL

(
εx, εy

)
u+ η,

where η is the noise. We remark that the system matrix AL

(
εx, εy

)
is ill-conditioned and

solving linear equation (3) is a typical ill-posed problem.

3. An Optimization Model for Mixed Noise

Traditional HR image reconstruction employs statistical models via some prior knowledge
on noises. The ℓ2/TV model is usually applied to treat the Gaussian white noise. However,
impulse noise and outliers are common in practical applications, which are typically caused
by malfunctioning arrays in camera sensors, faulty memory locations in hardware, or trans-
mission in a noisy channel [11, 60]. Meanwhile, the Bose-Boo mathematical model contains
the modeling error caused by small perturbation around the ideal subpixel locations of the
sensor units. The perturbation built in the imaging system tends to be random, uncorre-
lated and is difficult to be calibrated by the system itself. Thus, the Bose-Boo model is
sensitive to noise and large outliers [16]. This drives us to find a robust optimization model
to overcome this shortcoming.
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In this section, we propose a new optimization model for HR image reconstruction with
the mixed Gaussian and impulse noises based on the assumption that these two types of
noise are independent and each pixel has independent identical distribution. We explore the
segmental MAP criterion [2, 29, 32] which maximizes the joint posterior probability density
function (PDF).

We assume that the blurred image is contaminated by Gaussian noise first and then by
impulse noise. Let M1, M2 and M3 be random variables representing the original image,
underlying blurred image with Gaussian noise and the observed image with both Gaussian
noise and impulse noise, respectively. It can be naturally captured in the Hidden Markov
Model (HMM) with two states. We recall that u is the column-wise vector form of the HR
image under consideration and c is the column-wise vector form of the compact LR images.
We denote by ξ the underlying medium state that the blurred image Au is contaminated by
Gaussian noise. Let f1,2|3(u, ξ|c) be the joint conditional PDF of random variables M1 and
M2 giving that M3 = c. Then the segmental MAP criteria proposes to find a maximizer u∗

such that

(4) u∗ = argmax
u

max
ξ

{f1,2|3(u, ξ|c)}.

By the Bayesian theorem, the model (4) is equivalent to

(5) u∗ = argmax
u

{
max

ξ

{
ln f3,2|1(c, ξ|u)

}
+ ln f1(u)

}
,

where f3,2|1(c, ξ|u) is the joint conditional PDF of random variables M3 and M2 giving the
random variable M1 = u and f1(u) is the marginal PDF of random variable M1 = u. The
PDF f1(u) embodies the prior information of the HR image and constrains the solution
in a small space. By the assumption, Gaussian noise and impulse noise contamination
processes are independent. Therefore, random variables X1 := M1, X2 := M2 − AM1 and
X3 := M3 −M2 are independent. By the random variable transformation, we have that the
Jacobian determinant

J =

∣∣∣∣∣∣∣
∂X1

∂M1

∂X1

∂M2

∂X1

∂M3
∂X2

∂M1

∂X2

∂M2

∂X2

∂M3
∂X3

∂M1

∂X3

∂M2

∂X3

∂M3

∣∣∣∣∣∣∣ ,
with |J | = 1. Let f1,2,3(u, ξ, c) be the joint PDF of M1,M2 and M3. Then fX1,X2,X3(u, ξ −
Au, c− ξ) is the joint PDF of X1, X2 and X3. At the same time, fX1(u), fX2(ξ − Au) and
fX3(c− ξ) are the marginal PDF of X1, X2 and X3, respectively. We have that

(6) f3,2|1(c, ξ|u) =
f1,2,3(u, ξ, c)

f1(u)
=

fX1,X2,X3(u, ξ −Au, c− ξ)|J |
fX1(u)

= fX2(ξ−Au)fX3(c−ξ).

We suppose that Gaussian noise distribution is of zero mean and variance σ2 (σ is the
standard deviation). Then there exists a constant k related to σ2 such that

(7) fX2(x) = k exp

[
− 1

2σ2
∥x∥22

]
.

For impulse noise modeled by the binomial distribution, there exists an incident probability
r ∈ [0, 1] such that for x ∈ Rd,

(8) fX3(x) =
(r
2

)∥x∥0

(1− r)d−∥x∥0 .
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Substituting (7) and (8) into (6) yields that

f3,2|1(c, ξ|u) = k exp

[
− 1

2σ2
∥Au− ξ∥22

](
r

2

)∥c−ξ∥0

(1− r)d−∥c−ξ∥0 .

A simple computation shows that max
ξ

{
ln f3,2|1(c, ξ|u)

}
is equivalent to

(9) min
ξ

{
1

2τ
∥Au− ξ∥22 + ∥c− ξ∥0

}
,

where τ is a constant related to σ2 and r. Because of the non-convexity of the ℓ0-norm, we
relax the ℓ0-norm to ℓ1-norm according to [12]. Therefore, problem (9) is twisted to the
following optimization problem

(10) min
ξ

{
1

2τ
∥Au− ξ∥22 + ∥c− ξ∥1

}
.

We recall the definition of the Moreau envelop of function φ [4]. Let Γ0 be defined
as the class of all lower semicontinuous convex functions f : Rd → (−∞,+∞] such that
domf := {x ∈ Rd : f(x) < +∞} ̸= ∅. Suppose that φ ∈ Γ0(Rd), φ : Rd → (−∞,+∞] and ν
is a positive number. The Moreau envelop of φ with respect to parameter ν is defined by

envνφ(x) := min
y∈Rd

{
1

2ν
∥x− y∥22 + φ(y)

}
, x ∈ Rd.

The effect of the φ and the ℓ2-norm is balanced and adjusted by parameter ν. From the
definition of the Moreau envelop, the cost function in (10) is −envτ∥·∥1

(·). Meanwhile, we
assume that images to be studied are piecewise continuous and contain sharp features.
Hence, the marginal PDF of u can be described by the total variation norm, that is,

f1(u) := k2 exp[−µ∥u∥TV],

where k2 is a constant, µ is a regularization parameter and ∥u∥TV is the total variation norm
[49]. Let y := ξ − c. By using the notion of envνφ, the optimization model (5) is rewritten
as

(11) u∗ = arg min
u∈Rd

{
envτ∥·∥1

(Au− c) + µ∥u∥TV

}
.

We recall some properties of the Moreau envelop of the ℓ1-norm. In one dimension, the
Moreau envelop of the ℓ1-norm reduces to

envτ |·|(x) =

{
|x| − τ

2 , |x| > τ,
1
2τ x

2, |x| ≤ τ,
x ∈ R.

We plot the figure of the ℓ1-norm, the ℓ2-norm and envτ |·|(·) with different choices of τ in

Figure 1. From Figure 1, it is easy to see that envτ |·|(·) behaves like the ℓ1-norm for large
x and behaves like a quadratic function for small x. In addition, the Moreau envelop of
function φ ∈ Γ0 is continuously differentiable, and its gradient is formulated by

∇envτφ(x) =
1

τ

(
I − proxτφ(x)

)
, x ∈ Rd.

We remark that to increase the robustness in dealing with large errors, some other maximum
likelihood-type estimators (M-estimators) [7, 27] have been explored in multi-frame super-
resolution image reconstruction [21, 28, 31, 37, 38]. However, these M-estimators are difficult
to be formulated as convex optimization problems. Besides, the Huber loss function [26]
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was used in [46] as the fidelity term to obtain stable solutions and reject outliers [8]. Let
τ > 0. The Huber function Hτ : R → R is defined as:

Hτ (x) : =

{
τ
(
|x| − τ

2

)
, |x| > τ,

1
2x

2, |x| ≤ τ.

Comparing it with the definition of envτ |·|, we have that Hτ (x) = τ · envτ |·|(x). If τ > 1
which is the case in most image processing problems, the slope of Hτ (·) is τ for large x.
This implies that Hτ (·) is of no use in reducing the outliers. In Figure 1, we plot the figures
of the Huber loss function and envτ |·| with τ = 1.5 for comparison.

We constrain u in Ω := {x : x ∈ Rd, 0 ≤ xi ≤ 255, i ∈ Nd} which is related to the box
constrain for visual presentation and 8-bit unsign integer storage in digital media [5, 17] and
get a constrained convex optimization model

(12) u∗ = argmin
u∈Ω

{
envτ∥·∥1

(Au− c) + µ∥u∥TV

}
.

The new model is called by the envℓ1/TV model. When assuming that the image is contam-
inated by impulse noise first and then by Gaussian noise, we obtain the same model because
the Moreau envelop is a special infimal convolution [4]. To convert the constrained opti-
mization problem (12) into a non-constrained optimization problem, we exploit the indicator
function. The indicator function on the closed convex set Ω is defined as

ιΩ(x) :=

{
0, if x ∈ Ω,

+∞, otherwise.

By introducing function ιΩ(·), the optimization model (12) is equivalent to

(13) u∗ = argmin

{
envτ∥·∥1

(Au− c) + µ∥u∥TV + ιΩ(u)

}
.
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Figure 1. The plots of the ℓ1-norm, the ℓ2-nom, the Huber loss function
and envτ∥·∥1

(·) in one dimension.
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4. Fixed-point Proximity Algorithm

In this section we propose a fixed-point proximity algorithm for a general convex opti-
mization problem which takes problem (13) as a special case. The proposed algorithm is
based on a system of fixed-point equations derived from the property of the solution of the
above optimization problem via the proximity operator.

We now describe the optimization problem studied in this section. Suppose that A ∈
Rd1×d and B ∈ Rd2×d. Suppose that pj ∈ Γ0(Rdj ), for j = 1, 2, and p3 = ιw where w is a
closed convex set in Rd. For a vector u ∈ Rd, the general optimization model that we study
in this section is to find a minimizer u∗ ∈ Rd that satisfies

(14) u∗ = argmin
{
p1(Au) + p2(Bu) + p3(u)

}
,

where p1(A·) is differentiable with a β-Lipschitz continuous gradient. When p2(B·) is the
TV-norm, p3 := ιw and p1 := 1

2∥ · −c∥22, it reduces to the conventional ℓ2/TV deblurring
model. Likewise, when p2(B·) is the TV-norm, p3 := ιw and p1 := envτ∥·∥1

(· − c), it is the
proposed envℓ1/TV model.

Based on Fermat’s rule, to solve the optimization model, we need to find the gradient of
the objective function P(u) := p1(Au) + p2(Bu) + p3(u) at point u

∗. However, function p2
is non-differentiable, the sub-differential operator is applied to overcome this difficulty. Let
f : Rd → (−∞,+∞] be proper. The sub-differential of f at given x ∈ Rd is a set defined by

∂f(x) :=
{
y : y ∈ Rd, f(z) ≥ f(x) + ⟨y, z − x⟩, for all z ∈ Rd

}
.

For a differentiable function f, the sub-differential of f at point x is a singleton set [4], that
is, ∂f(x) = {∇f(x)}, where ∇ denotes the gradient operator.

We further introduce the proximity operator. For a symmetric positive definite matrix
H ∈ Rd×d, we define the weighted inner product as

⟨x, y⟩H := ⟨x,Hy⟩ x, y ∈ Rd,

and the induced weighted norm is accordingly defined by ∥x∥2H := ⟨x, x⟩H . For a given point
x ∈ Rd, the proximity operator of f with respect to H is defined as

proxf,H(x) := argmin

{
f(u) +

1

2
∥u− x∥2H , u ∈ Rd

}
.

Clearly, proxf,H is a mapping on Rd. In particular, whenH is an identity matrix, we simplify
proxf,H as proxf . The proximity operator plays a pivotal role in convex analysis [6, 44, 48].
Meanwhile, the sub-differential and the proximity operator can be mutually converted [35].
That is, for any d × d symmetric positive definite matrix H, x ∈ domf (the domain of f)
and y ∈ Rd,

(15) Hy ∈ ∂f(x) if and only if x = proxf,H(x+ y).

Meanwhile, we define a set Sd+ := {S : S is a d × d diagonal matrix with positive diagonal
entries}.

With above preliminaries, the following theorem derives an important property of the
solution of model (14).

Theorem 4.1. Let p1 ∈ Γ0(Rd1), p2 ∈ Γ0(Rd2), A ∈ Rd1×d, B ∈ Rd2×d. If u is a solution
of model (14) and function p1 is differentiable, then for any λ > 0 and S ∈ Sd+, there

exists v ∈ Rd2 such that the pair (v, u) ∈ Rd2 ×Rd satisfies the following coupled fixed-point
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equations:

v = (I − proxλp2) (v +Bu)(16)

u = proxp3,S−1

(
u− S(∇p1(Au) +

1

λ
BT v)

)
.(17)

Conversely, if u ∈ Rd satisfies equations (16)-(17) for some v ∈ Rd, λ > 0 and S ∈ Sd+,
then it is a solution of model (14).

Proof. Let u ∈ Rd be a solution of model (1). According to Fermat’s rule, Corollary 16.38
in [4] and the chain rule that ∂(f ◦ B) = BT ◦ ∂f ◦ B, the solution u ∈ Rd of model (14)
needs to satisfy that

(18) 0 ∈ BT ◦ ∂p2 ◦ (Bu) + ∂(p1 ◦A)(u) + ∂p3(u).

Suppose that for any λ > 0, there exists a v ∈ Rd2 such that

(19) v ∈ λ∂p2 ◦ (Bu).

Then relation (18) can be rewritten as

(20) 0 ∈ 1

λ
BT v + ∂(p1 ◦A)(u) + ∂p3(u).

Based on the assumption on the differentiablity of p1, we have that ∂(p1◦A)(u) = {∇p1(Au)}.
Multiplying both sides of relation (20) by S ∈ Sd+ yields that

−S
(
∇p1(Au) +

1

λ
BT v

)
∈ S∂p3(u).

By employing property (15), we may rewrite relation (4.1) as

u = proxp3,S−1

(
u− S(∇p1(Au) +

1

λ
BT v)

)
.

Applying property (15) to (19), we obtain that

v = (I − proxλp2
)(Bu+ v).

We have proved that (v, u) satisfies the fixed-point equations (16)-(17).
Conversely, suppose that there exist u ∈ Rd and v ∈ Rd2 , λ is a positive number and S

is a symmetric positive definite square matrix. The necessary condition requires to prove
that u is the solution of optimization problem (14) when equations (16)-(17) hold. To this
end, we notice that equations (16), (19) are equivalent based on relation (15). Then by
substituting relation (19) into (17) and employing property (15) again, we obtain that

0 ∈ BT ◦ ∂ ◦ p2(Bu) +∇p1(Au) + ∂p3(u).

This ensures that u is a solution of model (14). �

Theorem 4.1 demonstrates that the solution of the minimization problem (14) can be
obtained by solving two coupled fixed-point equations. The existence of a fixed-point (v, u)
of the coupled equations (16)-(17) is a direct consequence of Theorem 4.1.

To develop a convergent iteration scheme, we first reformulate the system of fixed-point
equations (16)-(17) into a compact form. Recall that for a proper function f : Rd → R ∪
{+∞}, the conjugate function f∗ : Rd → R ∪ {+∞} is defined for u ∈ Rd by

f∗(u) := sup
x∈Rd

{
⟨x, u⟩ − f(x)

}
.
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For a function f ∈ Γ0(Rd) and a positive number λ, the proximity operators of f and its
conjugate function f∗ satisfy the following relationship (Theorem 14.3 (ii), [4]):

I = proxλf + λprox 1
λ f∗

(
1

λ
I

)
.

Let w := v
λ . Then equation (16) can be rewritten as

(21) w = proxp∗
2 ,λI

( 1
λ
Bu+ w

)
based on the definition of proxf,H . Combining equation (17) with (21), we get a system of
fixed-point equations for vector (w, u):

(22)

{
w = proxp∗

2 ,λI
( 1λBu+ w),

u = proxp3,S−1

(
u− S(∇p1(Au) +BTw)

)
.

Then we integrate two equations together by introducing a new function. Let P := λI,Q :=

S−1, R := diag(P,Q), V :=

[
w
u

]
∈ Rd2+d. We define convex function Φ(X) := p∗2(x

1) +

p3(x
2) : Rd2+d → R for a vector X :=

[
x1

x2

]
∈ Rd2+d. By definition, a simple computation

shows that the proximity operator of function Φ with respect to matrix R at vector V has
the property that

proxΦ,R(V ) =

[
proxp∗

2 ,P
(w)

proxp3,Q(u)

]
.

For the d2 × d matrix B in model (14), we define matrix

E :=

[
I 1

λB
−SBT I

]
,

and for d1 × d matrix A, we define

G(X) :=

[
0

∇p1(Ax2)

]
.

We remark that G(X) is an operator on vector X and ∇p1 may be nonlinear operator. For

example, when p1 := envτ∥·∥1
(·), ∇p1 =

(I−proxτ∥·∥1 )(·)
τ is a nonlinear function. We also

introduce (d2 + d)× (d2 + d) matrix

R :=

[
λI 0
0 S−1

]
.

With the help of the above definitions, equations (22) can be formed in a compact form

(23) V = proxΦ,R

(
EV −R−1G(V )

)
.

It is easy to see that finding a solution of model (14) is equivalent to computing a solution
V of fixed-point equation (23). The existence and uniqueness of the solution of fixed-point
equation (23) are guaranteed by Theorem 4.1. The next step is developing a convergent
iteration scheme. Note that operator Q := E · −R−1G(·) may be expanding. Motivated by
our previous work [33], we split matrix E into two matrices. This yields that

V = proxΦ,R

(
(E −R−1M)V +R−1MV −R−1G(V )

)
,
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where

(24) M :=

[
λI B
BT S−1

]
,

and E,R,G are given as above. Accordingly, an algorithm can be formulated as

(25) Vk+1 = proxΦ,R

(
(E −R−1M)Vk+1 +R−1MVk −R−1G(Vk)

)
.

We unfold equation (25) to get a system of iteration equations{
vk+1 = (I − proxλp2

)(Buk + vk),

uk+1 = proxp3,S−1

(
uk − S(∇p1(Auk) +

1
λB

T (2vk+1 − vk)
)
.

This leads to a fixed-point algorithm based on the proximity operators and the pre-condition
matrices described in Algorithm 1.

Algorithm 1 (Fixed-point algorithm based on the proximity and pre-condition operators.)
Initialization: v0 = 0, u0 = 0, λ > 0.
repeat

Step 1: vk+1 = (I − proxλp2)(Buk + vk),

Step 2: uk+1 = proxp3,S−1

(
uk − S

(
∇p1(Auk) +

1
λB

T (2vk+1 − vk)
))

.

until ‘convergence’

This algorithm has advantages over most of the existing algorithms because it does not
require computing the inverse of ATA. As pointed out by a referee, a similar technique has
been used in a different context [18, 56]. In addition, it explores pre-conditionor matrix S
to further use the prior knowledge about A to accelerate the algorithm.

We remark that, for the non-constrained problem, p3 := ιRd , x ∈ Rd

proxιRd ,S−1(x) = arg min
u∈Rd

{
1

2
∥u− x∥2S−1

}
= S−1x

and the algorithm for solving this problem can be derived in the same way.

5. Convergence Analysis

In this section we analyze convergence of iteration (25).
We first introduce an operator related to the proximity operator. For each X ∈ Rd2+d,

we let Y ∈ Rd2+d satisfy that

(26) Y = proxΦ,R

(
(E −R−1M)Y +R−1MX −R−1G(X)

)
.

Noting that equation (26) defines a mapping from X to Y, we denote this mapping by NLM.
Thus, Y in equation (26) is well defined for a given X, with the solvability being guaranteed
automatically. With the help of this new operator, we rewrite (25) as

Vk+1 = NLM(Vk).

For the convergence analysis of sequence V := {Vk : k ∈ N0}, we shall establish a general
theorem. We first present a lemma about the fixed-point of continuous operators.

Lemma 5.1. Suppose that F : Rd → Rd is a continuous operator and H is an d × d sym-
metric positive definite matrix. Let v := {vk : vk ∈ Rd, k ∈ N} be the sequence generated by
iterative scheme vk+1 = F (vk) for any v0 ∈ Rd. If lim

k→+∞
∥vk+1 − vk∥H = 0 and sequence v

has a cluster point ṽ, then the cluster point is a fixed-point of operator F.
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Proof. Based on the assumption that v has a cluster point ṽ, there exist a subsequence
{vkn : n ∈ N} that converges to the cluster point ṽ ∈ Rd. This together with the hypothesis
that lim

k→+∞
∥vk+1 − vk∥H = 0 ensures

(27) lim
n→+∞

F (vkn) = lim
n→+∞

vkn+1 = ṽ.

Meanwhile, since F is continuous, we observe that

(28) lim
n→+∞

F (vkn) = F (ṽ).

Comparing (27) and (28), we obtain that F (ṽ) = ṽ. This proves the desired result. �

We are now ready to prove the general theory about sequence convergence.

Theorem 5.2. Suppose that F : Rd → Rd is a continuous operator and H is an d × d
symmetric positive definite matrix. Let v := {vk : vk ∈ Rd, k ∈ N} be the sequence generated
by iterative scheme vk+1 = F (vk) for any v0 ∈ Rd and C be the set of fixed-points of F . If
the following conditions hold:
(1) F is a continuous operator,
(2) for any v ∈ C, ∥vk+1 − v∥H ≤ ∥vk − v∥H ,
(3) ∥vk+1 − vk∥H → 0 as k → +∞,
then the sequence v converges to a fixed-point of F .

Proof. With hypothesis (2), for any fixed-point v, we have that

∥vk∥H ≤ ∥vk − v∥H + ∥v∥H ≤ ∥v0 − v∥H + ∥v∥H .

Therefore, sequence v is bounded. Hense, there exists a subsequence {vkn} that converges
to a cluster point ṽ ∈ Rm, that is,

(29) lim
n→+∞

∥vkn − ṽ∥H = 0.

By Lemma 5.1, ṽ is a fixed-point of F.
On the other hand, from hypothesis (2) we also have that for any fixed-point v, ∥vk − v∥H

is a bounded monotone decreasing sequence. Consequently,

(30) lim
k→+∞

∥vk − ṽ∥H = a

for some a ≥ 0. Comparing equation (29) with (30), we conclude that a = 0, which proves
the desired result. �

In the following, we prove convergence of sequence V by verifying the hypotheses of
Theorem 5.2. We first prove the continuity of operator NLM, which is hypothesis (1) in
Theorem 5.2.

We recall that the graph of function p : Rd → Rd is the set

gra(p) :=
{
(x, y) : (x, y) ∈ Rd × Rd, y = p(x)

}
.

A mapping J : Rd → Rd is said to be firmly non-expansive, with respect to a symmetric
positive definite matrix H. If for all x, y ∈ Rd, it satisfies

∥Jx− Jy∥2H ≤ ⟨Jx− Jy, x− y⟩H .

Lemma 5.3. Operator NLM is continuous.
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Proof. Based on the closed graph theorem [39], we have that NLM is continuous if and
only if the graph of NLM is a closed set. To this end, we will prove that for any sequence
(Xk, Yk) ∈ gra(NLM) converging to (X,Y ) ∈ Rd2+d×Rd2+d, (X,Y ) is in the graph of NLM.

Let

(31) Ỹ := proxΦ,R

(
(E −R−1M)Y +R−1MX −R−1G(X)

)
.

Because proxΦ,R is firmly non-expansive with respect to R, we have that
(32)∥∥∥∥Yk − Ỹ

∥∥∥∥2
R

≤
⟨
Yk − Ỹ ,

(
E−R−1M)(Yk −Y )+R−1M(Xk −X)−R−1(G(Xk)−G(X)

)⟩
R

.

Note that

G(Xk)−G(X) =

[
0

∇p1(Ax
2
k)

]
−
[

0
∇p1(Ax

2)

]
=

[
0

∇p1(Ax2
k −Ax2)

]
.

Since ∇p1 is continuous and A is linear, if Xk → X as k → ∞, we have that lim
k→∞

G(Xk) =

G(X). Taking the limit on both sides of equation (32), we have that lim
k→+∞

∥Yk − Ỹ ∥2R = 0.

Then, combining this with the assumption that lim
k→+∞

(Xk, Yk) = (X,Y ), we have that

Y = Ỹ . Substituting this equation into (31), we observe that

Y = proxΦ,R

(
(E −R−1M)Y +R−1MX −R−1G(X)

)
.

This completes the proof. �

Next, we verify that sequence V satisfies hypotheses (2) and (3) of Theorem 5.2. To this

end, for the matrices M defined by (24) and M̃ := M −L, where L :=

[
0 0
0 2βI

]
, we prove

that they are symmetric positive definite.

Lemma 5.4. If λ > 0, S ∈ Sd+, ∥S∥2 < λ
∥B∥2

2+2λβ
, then matrices M and M̃ are symmetric

positive definite matrices.

Proof. It is easy to see that M̃ is a symmetric matrix. Now we prove that M̃ is positive
definite. Based on the assumption that ∥S∥2 < λ

∥B∥2
2+2λβ

< 1
2β , we have that S−1 − 2βI ∈

Sd+. We define

Φ :=

[√
λI 0

0 (S−1 − 2βI)
1
2

]
and Ψ :=

[
I 1√

λ
B(S−1 − 2βI)−

1
2

1√
λ
(S−1 − 2βI)−

1
2BT I

]
.

Then, we factor matrix M̃ as M̃ = ΦΨΦT . Therefore, we need only to prove that matrix Ψ
is positive definite. It suffices to prove that

(33)

∥∥∥∥ 1√
λ
(S−1 − 2βI)−

1
2BT

∥∥∥∥
2

< 1.

We denote by eig(S) the set of the eigenvalues of matrix S, that is, eig(S) = {λ1, . . . , λd}.
Suppose that λ1 ≤ · · · ≤ λd. Then we have λd ≤ λ

∥B∥2
2+2λβ

, which means ( 1
λd

−2β)−1 < λ
∥B∥2

2
.

It implies that

(
1

λ1
− 2β)−1 ≤ · · · ≤ (

1

λd1

− 2β)−1 <
λ

∥B∥22
.
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Since

eig((S−1 − 2βI)−1) =
{
(
1

λ1
− 2β)−1, . . . , (

1

λd
− 2β)−1

}
,

we have that ∥(S−1 − 2βI)−1∥2 < λ
∥B∥2

2
. Then we obtain that∥∥(S−1 − 2βI)−

1
2 (BT )

∥∥2
2
≤

∥∥(S−1 − 2βI)−1
∥∥
2

∥∥BT
∥∥2
2
< λ,

which yields (33). Based on equation (33), we have that M̃ is a symmetric positive definite
matrix. Likewise, we can prove that M is symmetric positive definite. �

We recall that a real-valued function p is Lipschitz continuous with Lipschitz constant K
provided that

|p(x)− p(y)| ≤ K∥x− y∥, for all x, y ∈ Rd.

Lemma 5.5. Suppose that function h1 := p1 ◦ A has Lipschitz continuous gradient with
Lipschitz constant β, sequence V is generated by iterative scheme (25) and V is a fixed-
point of NLM. If λ > 0, S ∈ Sd+, ∥S∥2 < λ

∥B∥2
2+2λβ

, then lim
k→+∞

∥Vk+1 − Vk∥M = 0 and

∥Vk+1 − V ∥M ≤ ∥Vk − V ∥M for any initial vector V0 ∈ Rd2+d.

Proof. Notice that operator proxΦ,R that appears in the definition of operator NLM is firmly
non-expansive. By choosing (V, V ), (Vk, Vk+1) ∈ gra(NLM), it follows that
(34)∥∥∥∥Vk+1−V

∥∥∥∥2
R

≤
⟨
Vk+1−V,

(
(E−R−1M)(Vk+1−V )+R−1M(Vk−V )−R−1(G(Vk)−G(V )

)⟩
R

.

Because [
wT uT

] [λI 0
0 S−1

] [
w
u

]
=

[
wT uT

] [ λI B
−BT S−1

] [
w
u

]
,

for any V ∈ Rd2+d, we have that ∥V ∥2R = ⟨V,EV ⟩R. Thus, we have that

(35) ∥Vk+1 − V ∥2R =
⟨
Vk+1 − V,E(Vk+1 − V )

⟩
R
.

Substituting (35) into (34), we obtain that

(36)
⟨
Vk+1 − V,M(Vk+1 − V )

⟩
≤

⟨
Vk+1 − V,M(Vk − V )

⟩
+
⟨
Vk+1 − V,G(V )−G(Vk)

⟩
.

We first consider reshaping the term Pk :=
⟨
Vk+1 − V,G(V ) − G(Vk)

⟩
by exploring the

property of convex functions. Because

Pk =
⟨
uk+1 − u,∇h1(u)−∇h1(uk)

⟩
,

we find that

Pk =
⟨
uk − uk+1,∇h1(uk)−∇h1(uk+1)

⟩
+
⟨
uk − uk+1,∇h1(uk+1)

⟩
+
⟨
uk+1 − u,∇h1(u)

⟩
+
⟨
u− uk,∇h1(uk)

⟩
.

(37)

Noting that h1 is a Lipschitz continuous gradient with Lipschitz constant β, we have that

(38)
⟨
uk − uk+1,∇h1(uk)−∇h1(uk+1)

⟩
≤ β∥uk − uk+1∥22.

Then using the convexity of h1, we obtain that⟨
uk − uk+1,∇h1(uk+1)

⟩
≤ h1(uk)− h1(uk+1),(39) ⟨

uk+1 − u,∇h1(u)
⟩

≤ h1(uk+1)− h1(u),(40) ⟨
u− uk,∇h1(uk)

⟩
≤ h1(u)− h1(uk).(41)
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Substituting inequalities (38), (39), (40), and (41) back into (37), we obtain that

(42) 2Pk ≤ 2β⟨uk − uk+1, uk − uk+1⟩ =
⟨
Vk − Vk+1, L(Vk − Vk+1)

⟩
where L =

[
0 0
0 2βI

]
. From (42) and (36), we have that

2
⟨
Vk+1 − V,M(Vk+1 − V )

⟩
≤ 2

⟨
Vk+1 − V,M(Vk − V )

⟩
+
⟨
Vk − Vk+1, L(Vk − Vk+1)

⟩
.

Base on the proof that M is a symmetric positive definite matrix, we have that⟨
Vk+1 − V,M(Vk+1 − V )

⟩
≤ −

⟨
Vk+1 − V,M(Vk+1 − V )

⟩
+ 2

⟨
Vk+1 − V,M(Vk − V )

⟩
+
⟨
Vk − Vk+1, L(Vk − Vk+1)

⟩
= −

⟨
Vk − Vk+1,M(Vk − Vk+1)

⟩
+

⟨
Vk − V,M(Vk − V )

⟩
+
⟨
Vk − Vk+1, L(Vk − Vk+1)

⟩
.

Meanwhile, M̃ is also a symmetric positive definite matrix. Thus, we observe that

∥Vk+1 − V ∥2M ≤ ∥Vk − V ∥2M − ∥Vk+1 − Vk∥2M̃ .

Summing the above inequality over k from 0 to n, we obtain that

∥Vn+1 − V ∥2M +

n∑
k=0

∥∥Vk+1 − Vk

∥∥2
M̃

≤ ∥V0 − V ∥2M .

From above inequality, we conclude that ∥Vk+1 − V ∥M ≤ ∥Vk − V ∥M , for k = 0, 1, . . . , and
lim

k→+∞
∥Vk+1 − Vk∥M̃ = 0. �

In conclusion, we have the following theorem:

Theorem 5.6. If function h1 = p1 ◦ A has a Lipschitz continuous gradient with Lipschitz
constant β, λ > 0, S ∈ Sd+, ∥S∥2 < λ

∥B∥2
2+2λβ

, then for any initial V0 ∈ Rd2+d, sequence V
generated from iterative scheme (25) converges to the fixed-point of NLM.

Proof. This theorem is a direct consequence of Theorem 5.2, Lemmas 5.3, 5.4 and 5.5. �

6. High Resolution Image Reconstruction

In this section we apply the developed fixed-point algorithm based on the proximity and
pre-condition operators (Algorithm 1) to the high-resolution image reconstruction model
described in (13).

We first present the formulation of the TV-norm that we consider in this paper. Let
DM denote the M × M difference matrix, whose specific form depends on the boundary
condition used. Let IM denote the M ×M identity matrix. The anisotropic total variation
∥u∥TV is defined by

∥u∥TV = ∥Bu∥1,
where

(43) B : =

[
IM2 ⊗DM1

DM2 ⊗ IM1

]
.

Previous studies show that the Neumann boundary condition (assuming that the scene
immediately outside is a reflection of the original scene at the boundary) gives better re-
construction results in the HR image reconstruction than the zero boundary condition and
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the periodic boundary condition [14, 15, 41]. Under the Neumann boundary condition
hypothesis, DN in (43) is defined by

DN :=


0
−1 1

. . .
. . .

−1 1

 .

Next, we analyze the Lipschitz constant β of the gradient of envτ∥·∥1
(AL(ε

x, εy) · −c).
For simplicity, when ε = 0, we write AL(ε

x, εy) as AL.

Proposition 6.1. If h1 := envτ∥·∥1

(
AL(ε

x, εy) ·−c
)
, then ∇h1 is Lipschitz continuous with

Lipschitz constant β :=
(∥AL∥2+

4
L ε∗)2

τ .

Proof. For any x, y ∈ Rd, we have that∥∥∇h1(x)−∇h1(y)
∥∥
2

=
1

τ

∥∥AL

(
εx, εy)T

[
(I − proxτ∥·∥1

)(AL(ε
x, εy)x− c)− (I − proxτ∥·∥1

)(AL(ε
x, εy)y − c)

]∥∥
2
.

(44)

Recall that I − proxτ∥·∥1
is a firmly non-expansive operator [22]. Thus, for all x, y ∈ Rd, we

have that
(45)∥∥(I−proxτ∥·∥1

)(AL(ε
x, εy)x−c)−(I−proxτ∥·∥1

)(AL(ε
x, εy)y−c)

∥∥
2
≤

∥∥AL(ε
x, εy)(x−y)

∥∥
2
.

From previous study
(
Lemma 1, [40]

)
, for any given integer L,

∥AL(ε
x, εy)−AL∥2 ≤ 4

L
ε∗.

From this estimation, we obtain that

(46)
∥∥AL(ε

x, εy)
∥∥
2
≤

∥∥AL

∥∥
2
+

4

L
ε∗.

By combining (44), (45) and (46), we obtain that∥∥∇h1(x)−∇h1(y)
∥∥
2
≤ β

∥∥x− y
∥∥
2
,

where

(47) β :=
(∥AL∥2 + 4

Lε
∗)2

τ
.

This completes the proof. �

We consider exploring Algorithm 1 to solve the optimization problem (13) with all the
data being generated from the Bose-Boo model. The Neumann boundary condition is under
consideration.

Theorem 6.2. Let {uk, uk ∈ Rm, k ∈ N} be the sequence generated from Algorithm 1 in the
context described above. If λ > 0, S ∈ Sm+ , ∥S∥2 < λτ

8τ+2λ(1+ 4
L )2

, then for any initial value

u0 ∈ Rm, sequence {uk} converges to the ideal HR image u.
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Proof. We recall that for the Bose-Boo model, ∥AL∥2 < 1 (Lemma 2, [34] ). Mean-
while, for the Neumann boundary condition, we have that ∥B∥22 < 8, [36]. We combine
Theorem 5.6 and Proposition 6.1 to obtain this theorem based on the assumption that
ε∗ = max

0≤p,q≤L−1

{
|εxp,q|, |εyp,q|

}
< 1. �

In the high resolution image reconstruction application, we choose the precondition ma-
trix S = sI for simplicity. Therefore, based on Theorem 5.6, we have s < λ

∥B∥2
2+2λβ

. We

appropriately amplify the range and obtain that 0 < s < 1
2β . By the estimate of (47), we

choose δ : = 1
2(∥AL∥2+

4
L ε∗)2

. Then s and τ are required to satisfy

(48) 0 <
s

τ
< δ.

Based on the above discussion, we propose an accelerated algorithm by proposing an adap-
tive parameter choice strategy for Algorithm 1. In Algorithm 2, we set three parameters
called s t, Adaptive Frequency and Layer Number. We propose to select relatively large
s and τ at the first several steps to quickly decline in the descent direction. So, the initial
values of s and τ are chosen to be 128. Then s and τ are reduced by half. The reduction
frequency is controlled by Adaptive Frequency and it is given by experiences. After search-
ing for several steps, τ is fixed to search in small scale. The fixed τ is for the purpose of the
convergence condition (48). Meanwhile, a lower boundary of τ is defined by s t, which is
related to the Gaussian noise variance, to make sure that the ℓ1-norm is used to deal with
the salt-pepper noise and outliers and the ℓ2-norm is used to deal with most Gaussian noise.
When there is no Gaussian noise, s t is set to be zero. When i > Layer Number, s and τ
are fixed to be a constant.

Algorithm 2: (Fixed-point algorithm based on the proximity operator accelerated by
updating parameters)
Initialization: v0 = 0, u0 = 0, λ > 0, Adaptive Frequency, Layer number, i = 0, τ = 128,
σ is the standard deviation of the Gaussian noise, s t = 3σ.
repeat

z = k mod Adaptive Frequency;
if z == 0 and i < Layer Number
i = i+ 1;
else
end

s = 128/2i;
if τ > s t

τ = 128/2i;
else

τ = s t;
end

vk+1 = (I − proxλp2
)(Buk + vk)

uk+1 = proxp3,s−1

(
uk − s(∇pτ1(Auk) +

1
λB

T
(
2vk+1 − vk)

))
until ‘convergence’
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(a) (b)

Figure 2. The orignail figures : (a) Lena and (b) Cameraman.

Table 1. PSNR(dB) results of 2× 2 times reconstructed images with dif-
ferent displacement-errors and different noise levels.

Lena Cam
Noise σ2 + r ℓ2/TV envℓ1/TV ℓ2/TV envℓ1/TV

disp = 0 0 + 0.1 26.6768 35.8171 25.5093 33.0426
0.001 + 0 33.3435 33.0933 31.6235 31.0419

0.001 + 0.05 26.8779 32.1452 25.6236 30.5133
disp = 0.5 0 + 0.1 26.2636 35.2317 25.3206 32.4254

0.001 + 0 32.5381 33.0786 31.5269 30.9662
0.001 + 0.05 26.5678 32.0478 25.6972 30.4003

7. Numerical Result

In this section, we compare numerical performance of the ℓ2/TV model and the envℓ1/TV
model. The optimal parameters are selected by using the grid search method at the high-
performance computer cluster equiped with MATLAB R2013a and the experiments are
repeated for testing robustness. After the best combination of parameters are selected, the
experiments with optimal parameters are implemented on the OS X system of version 10.9.5
with 2.4 GHz dual-core Intel Core i5. The compiler is MATLAB R2015a.

We discuss computation of AL(ε
x
p,q) only and that of AL(ε

y
p,q) may be likewise discussed.

For example, when L = 2, we have

A2 =
1

4


3
2

1
2 0 0

1
2 1 1

2 0
0 1

2 1 1
2

0 0 1
2

3
2

 , A2(ε
x
p,q

)
=

1

4


3
2 − εxp,q

1
2 + εxp,q 0 0

1
2 − εxp,q 1 1

2 + εxp,q 0
0 1

2 − εxp,q 1 1
2 + εxp,q

0 0 1
2 − εxp,q

3
2 + εxp,q


and

A2(ε
y
p,q

)
=

1

4


3
2 − εyp,q

1
2 − εyp,q 0 0

1
2 + εyp,q 1 1

2 − εyp,q 0
0 1

2 + εyp,q 1 1
2 − εyp,q

0 0 1
2 + εyp,q

3
2 + εyp,q
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under Neumann boundary condition. In addition, no matter which boundary condition is
imposed on the model, the interior row of AL(ε

x
p,q) is given by

1

L

0, . . . , 0, 1
2
+ εxp,q, 1, . . . , 1︸ ︷︷ ︸

L−1

,
1

2
− εxp,q, 0 . . . , 0


which can be considered as a low-pass filter acting on the image U. This low-pass filter is a
tensor product of the univariate low-pass filter

m0,L,ε :=
1

L

1

2
+ ε, 1, . . . , 1︸ ︷︷ ︸

L−1

,
1

2
− ε

 ,

where the parameter ε may vary for each sensor. Let

m0,L,0 :=
1

L

1

2
, 1, . . . , 1︸ ︷︷ ︸

L−1

,
1

2

 and m1,L,0 :=
1

L

1, 0, . . . , 0︸ ︷︷ ︸
L−1

,−1

 .

Then we split the low-pass filter as

m0,L,ε = m0,L,0 + ε m1,L,0.

Based on this splitting, we getm0,L,0 which is not related to ε. It is computed first and stored
for later use. This method can reduce the computational cost tremendously. We realize the
filters by exploring the MATLAB command imfilter(AL,m0,L,ε,

′ replicate′,′ same′,′ conv′).

Table 2. PSNR(dB) results of 4× 4 times reconstructed images with dif-
ferent displacement-errors and different noise levels.

Lena Cam
Noise σ2 + r ℓ2/TV envℓ1/TV ℓ2/TV envℓ1/TV

disp = 0 0 + 0.1 26.4766 32.5910 25.1103 29.3599
0.001 + 0 30.9348 30.7920 28.7026 28.1657

0.001 + 0.05 26.7846 30.4191 26.0110 28.0595
disp = 0.5 0 + 0.1 26.4028 32.5549 25.1892 29.383

0.001 + 0 30.9956 30.7814 28.7246 28.1951
0.001 + 0.05 26.5804 30.429 25.024 28.0847

Table 3. SSIM results of 2× 2 times reconstructed images with different
displacement-errors and different noise levels.

Lena Cam
Noise σ2 + r ℓ2/TV envℓ1/TV ℓ2/TV envℓ1/TV

disp = 0 0 + 0.1 0.4082 0.8791 0.2331 0.7622
0.001 + 0 0.6903 0.6698 0.4531 0.4484

0.001 + 0.05 0.4561 0.6577 0.2849 0.4375
disp = 0.5 0 + 0.1 0.4060 0.8718 0.2300 0.7501

0.001 + 0 0.6423 0.6658 0.4537 0.4492
0.001 + 0.05 0.4314 0.6464 0.2809 0.4363
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We use the MATLAB command imnoise(Image,′ gaussian′, 0, σ2) to add Gaussian noise,
in which the mean value is given by 0 and the variance is σ2 when the image is scaled between
[0, 1]. We remark that salt-pepper noise is a kind of special impulse noise and all numerical
experiments are implemented using salt-pepper noise. For a salt-pepper noise generator,
we explore the command imnoise(Image,′ salt & pepper′, r), where r is the noise density,
which indicates the percentage of corrupted pixels. In our simulation, the displacement-error
matrices εx and εy for the L×L sensor array are simulated by the following three MATLAB
commands: rand(’seed’,100), εx = z ∗ (rand(L)− 0.5) and εy = z ∗ (rand(L)− 0.5), where
z is chosen in (0, 1).

Table 4. SSIM results of 4× 4 times reconstructed images with different
displacement-errors and different noise levels.

Lena Cam
Noise σ2 + r ℓ2/TV envℓ1/TV ℓ2/TV envℓ1/TV

disp = 0 0 + 0.1 0.3865 0.7710 0.1962 0.5940
0.001 + 0 0.6149 0.6040 0.3760 0.3582

0.001 + 0.05 0.4029 0.5925 0.2444 0.3537
disp = 0.5 0 + 0.1 0.3974 0.7693 0.2011 0.5935

0.001 + 0 0.6073 0.6017 0.3847 0.3659
0.001 + 0.05 0.3903 0.5877 0.2237 0.3535

In the numerical result to be reported, we compare the performance of the ℓ2/TV model
and the envℓ1/TV model. For this reason, we use the most suitable algorithm to solve each
of the models. Specifically, we use Algorithm 1 to solve the ℓ2/TV model and Algorithm
2 to solve the envℓ1/TV model. Iterations will terminate when the following condition is
satisfied

∥xn − xn+1∥2
∥xn+1∥2

≤ TOL.

For the fixed stopping criteria TOL = 1.0×10−4, the envℓ1/TV model stop at 60 ∼ 80 steps
in most cases while the ℓ2/TV model stop at 170 ∼ 190 steps.

We show the reconstructed images in Figures 3 and 4 for the situation that the displacement-
error is of 1

2 pixel size and the noise is the mixed Gaussian noise σ2 = 0.001 and salt-pepper
noise with r = 5%. We remark here that the Adaptive Frequency and Layer Number
are expirically selected to obtain highest peak signal to noise ratio (PSNR) result. It can
be clearly seen from Figures 5 and 6 that the envℓ1/TV model is more effective than the
ℓ2/TV model. We also explore both the highest peak signal-to-noise ratio (PSNR) and the
structural similarity index (SSIM) [55] to measure the quality of the reconstructed images.
Tables 1 and 2 give the PSNR value when the resolution is enhanced by 2×2 times and 4×4
times under different displacement-error levels, respectively, while Tables 3 and 4 show the
SSIM value correspondently. The results are stable with the change of displacement-errors.
We conclude that the envℓ1/TV model is better than the ℓ2/TV model in the existence of
impulse noise, while for Gaussian noise the results of the two models are comparable. Mean-
while, the envℓ1/TV model performs well and is stable for the HR image reconstruction with
displacement-errors.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. HR image reconstruction results for the corrupted ‘Lena’ with
1
2 pixel size displacement-error. Noise level: 1. 10% salt-pepper noise, 2.

σ2 = 0.001 Gaussian noise, 3. 0.05% salt-pepper noise and σ2 = 0.001
Gaussian noise. (a) (d) (g) are spliced LR images by 16 small LR images
with noise levels 1-3 respectively, (b) (e) (h) are reconstructed results of
the ℓ2/TV deblurring model and (c) (f) (i) are reconstructed results of the
envℓ1/TV deblurring model.

8. Conclusion

We propose an envℓ1/TV model for HR image reconstruction with displacement-errors
to get higher image reconstruction quality. A fixed-point proximity scheme is developed for
solving the model and convergence of the proposed algorithm is proved. A new iterative
fixed-point proximity algorithm is developed to accelerate the convergence with an adaptive
parameter choice strategy. Numerical experiment results show that the proposed model is
stable and effective for the mixed Gaussian noise, impulse noise and displacement error. The
envℓ1/TV model outpeforms the ℓ2/TV model for the mixed Gaussian and impulse noise.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. HR image reconstruction results for the corrupted ‘Cameraman’
with 1

2 pixel size displacement-error. Noise level: 1. 10% salt-pepper noise,

2. σ2 = 0.001 Gaussian noise, 3. 0.05% salt-pepper noise and σ2 = 0.001
Gaussian noise. (a) (d) (g) are spliced LR images by 16 small LR images
with noise levels 1-3 respectively, (b) (e) (h) are reconstructed results of
the ℓ2/TV deblurring model and (c) (f) (i) are reconstructed results of the
envℓ1/TV deblurring model.
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Figure 5. PSNR and SSIM values for resolution improved 16 times for
the corrupted ‘Lena’ with 1

2 pixel size displacement-error. Noise level: 1.

10% salt-pepper noise, 2. σ2 = 0.001 Gaussian noise, 3. 0.05% salt-pepper
noise and σ2 = 0.001 Gaussian noise. (a),(c) and (e) are figures of PSNR
values while (b),(d) and (f) are figures of SSIM values.
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Figure 6. PSNR and SSIM values for resolution improved 16 times for the
corrupted ‘Cameraman’ with 1

2 pixel size displacement-error. Noise level:

1. 10% salt-pepper noise, 2. σ2 = 0.001 Gaussian noise, 3. 0.05% salt-
pepper noise and σ2 = 0.001 Gaussian noise. (a),(c) and (e) are figures of
PSNR values while (b),(d) and (f) are figures of SSIM values.
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Appendix A. The Closed Form of Proximity Operators

The closed form of the proximity operator of the ℓ1-norm can be found in [36].
Next, we present the exact form of the sub-differential and the proximity operator of

ιΩ(·), where Ω is defined in (12). By computation, for given x = (xi, i ∈ Nd)T ∈ Ω, the
sub-differential of ιΩ at x is

∂ιΩ(x) = P (x)Rd
+,

where P (x) := diag(ζ(xi), i ∈ Nd) and ζ : [0, 255] → {−1, 0, 1},

ζ(xi) :=


−1 xi = 0

0 xi ∈ (0, 255)

1 xi = 255.

We define a set Sd+ := {S : S is a d× d diagonal matrix with positive diagonal entries}. We

also let the set K for H ∈ Rd×d be defined as

HK := {Hk : k ∈ K}.
Then, for any x ∈ Ω, S ∈ Sd+, we have the property

S∂ιΩ(x) = SP (x)Rd
+ = P (x)SRd

+ = P (x)Rd
+ = ∂ιΩ(x)

based on the fact that SRd
+ = Rd

+. For a given convex set w, the projection operator is
denoted by Prw. Thus, we have the conclusion S∂ιΩ = ∂ιΩ, which implies

proxιΩ,S−1 = proxιΩ = PrιΩ .

References

[1] S. Alliney. A property of the minimum vectors of a regularizing functional defined by means of the

absolute norm. IEEE Transactions on Signal Processing, 45(4):913–917, 1997.
[2] R. Andersson, C. Bruder, A. Piotrowski, U. Menzel, H. Nord, J. Sandgren, T. Hvidsten, T. de St̊ahl,

J. Dumanski, and J. Komorowski. A segmental maximum a posteriori approach to genome-wide copy
number profiling. Bioinformatics, 24(6):751–758, 2008.

[3] H. C. Andrews and B. R. Hunt. Digital image restoration. Prentice-Hall Signal Processing Series, 1,
1977.

[4] H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in Hilbert
spaces. Springer, New York, 2011.

[5] A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation image denois-
ing and deblurring problems. IEEE Transactions on Image Processing, 18(11):2419–2434, 2009.

[6] D. P. Bertsekas. Convex Optimization Algorithms. Athena Scientific, Massachusetts, 2015.
[7] M. J. Black. Robust incremental optical flow. PhD thesis, Yale University, 1992.

[8] M. J. Black, G. Sapiro, D. H. Marimont, and D. Heeger. Robust anisotropic diffusion. IEEE Trans-
actions on Image Processing, 7(3):421–432, 1998.



280 W. LONG, Y. LU, L. SHEN, AND Y. XU

[9] N. K. Bose and K. J. Boo. High-resolution image reconstruction with multisensors. International

Journal of Imaging Systems and Technology, 9(4):294–304, 1998.
[10] A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse solutions of systems of equations to sparse

modeling of signals and images. SIAM review, 51(1):34–81, 2009.
[11] J. Cai, R. Chan, and M. Nikolova. Fast two-phase image deblurring under impulse noise. Journal of

Mathematical Imaging and Vision, 36(1):46–53, 2010.
[12] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from

highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2):489–509,
2006.

[13] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications
to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.

[14] R. Chan, T. Chan, M. Ng, W. Tang, and C. Wong. Preconditioned iterative methods for high-resolution
image reconstruction with multisensors. SPIE proceedings series, 3461:348–357, 1998.

[15] R. Chan, T. Chan, L. Shen, and Z. Shen. Wavelet algorithms for high-resolution image reconstruction.
SIAM Journal on Scientific Computing, 24(4):1408–1432, 2003.

[16] R. Chan, S. D. Riemenschneider, L. Shen, and Z. Shen. Tight frame: an efficient way for high-resolution
image reconstruction. Applied and Computational Harmonic Analysis, 17(1):91–115, 2004.

[17] R. Chan, M. Tao, and X. Yuan. Constrained total variation deblurring models and fast algorithms
based on alternating direction method of multipliers. SIAM Journal on imaging Sciences, 6(1):680–
697, 2013.

[18] R Chan, H Yang, and T Zeng. A two-stage image segmentation method for blurry images with poisson
or multiplicative gamma noise. Siam Journal on Imaging Sciences, 7(1):98–127, 2014.

[19] F. Chen, L. Shen, Y. Xu, and X. Zeng. The moreau envelope approach for the l1/tv image denoising
model. Inverse Problems and Imaging, 8(1):53–77, 2014.

[20] P. Chen, J. Huang, and X. Zhang. A primal–dual fixed point algorithm for convex separable mini-
mization with applications to image restoration. Inverse Problems, 29(2):025011, 2013.

[21] Q. Chen, C. A. Micchelli, S. Peng, and Y. Xu. Multivariate filter banks having matrix factorizations.
SIAM Journal on Matrix Analysis and Applications, 25(2):517–531, 2003.

[22] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. Multiscale
Modeling & Simulation, 4(4):1168–1200, 2005.

[23] J. Eckstein and W. Yao. Augmented lagrangian and alternating direction methods for convex opti-
mization: A tutorial and some illustrative computational results. RUTCOR Research Reports, 32,

2012.
[24] E. Esser, X. Zhang, and T. Chan. A general framework for a class of first order primal-dual algorithms

for convex optimization in imaging science. SIAM Journal on Imaging Sciences, 3(4):1015–1046, 2010.

[25] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. Fast and robust multiframe super resolution.
IEEE Transactions on Image processing, 13(10):1327–1344, 2004.

[26] P. J. Huber. Robust estimation of a location parameter. The Annals of Mathematical Statistics,
35(1):73–101, 1964.

[27] P. J. Huber. Robust statistics. Springer, Berlin, 2011.
[28] M. Irani and S. Peleg. Improving resolution by image registration. CVGIP: Graphical models and

image processing, 53(3):231–239, 1991.
[29] B. H. Juang and L. R. Rabiner. The segmental k-means algorithm for estimating parameters of hidden

markov models. IEEE Transactions on Acoustics, Speech and Signal Processing, 38(9):1639–1641,
1990.

[30] S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point method for large-scale l
1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing, 1(4):606–617, 2007.

[31] S. P. Kim, N. K. Bose, and H. M. Valenzuela. Recursive reconstruction of high resolution image from
noisy undersampled multiframes. IEEE Transactions on Acoustics, Speech and Signal Processing,
38(6):1013–1027, 1990.

[32] C. H. Lee and J. L. Gauvain. Speaker adaptation based on map estimation of hmm parameters. In

1993 IEEE International Conference on Acoustics, Speech, and Signal Processing., volume 2, pages
558–561. IEEE, 1993.

[33] Q. Li, L. Shen, Y. Xu, and N. Zhang. Multi-step fixed-point proximity algorithms for solving a class

of optimization problems arising from image processing. Advances in Computational Mathematics,
41(2):387–422, 2015.



AN envℓ1/TV MODEL AND A FIXED-POINT PROXIMITY ALGORITHM 281

[34] Y. Lu, L. Shen, and Y. Xu. Multi-parameter regularization methods for high-resolution image recon-

struction with displacement errors. IEEE Transactions on Circuits and Systems I: Regular Papers,
54(8):1788–1799, 2007.

[35] C. A. Micchelli, L. Shen, and Y. Xu. Proximity algorithms for image models: denoising. Inverse
Problems, 27(4):045009, 2011.

[36] C. A. Micchelli, L. Shen, Y. Xu, and X. Zeng. Proximity algorithms for the l1/tv image denoising
model. Advances in Computational Mathematics, 38(2):401–426, 2013.

[37] C. A. Micchelli and Y. Xu. Using the matrix refinement equation for the construction of wavelets on
invariant sets. Applied and Computational Harmonic Analysis, 1(4):391–401, 1994.

[38] C. A. Micchelli and Y. Xu. Reconstruction and decomposition algorithms for biorthogonal multi-
wavelets. Multidimensional Systems and Signal Processing, 8(1-2):31–69, 1997.

[39] J. Munkres. Topology. Prenctice Hall, Inc, 2000.
[40] M. Ng and N. K. Bose. Analysis of displacement errors in high-resolution image reconstruction with

multisensors. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
49(6):806–813, 2002.

[41] M. Ng and A. Yip. A fast map algorithm for high-resolution image reconstruction with multisensors.
Multidimensional Systems and Signal Processing, 12(2):143–164, 2001.

[42] M. Nikolova. A variational approach to remove outliers and impulse noise. Journal of Mathematical
Imaging and Vision, 20(1-2):99–120, 2004.

[43] A. Panagiotopoulou and V. Anastassopoulos. Super-resolution image reconstruction techniques:

Trade-offs between the data-fidelity and regularization terms. Information Fusion, 13(3):185–195,
2012.

[44] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):123–231,
2013.

[45] S. C. Park, M. K. Park, and M. G. Kang. Super-resolution image reconstruction: a technical overview.
Signal Processing Magazine, 20(3):21–36, 2003.

[46] V. Patanavijit and S. Jitapunkul. A robust iterative multiframe super-resolution reconstruction us-
ing a huber bayesian approach with huber-tikhonov regularization. In International Symposium on

Intelligent Signal Processing and Communications, pages 13–16. IEEE, 2006.
[47] V. Patanavijit and S. Jitapunkul. A lorentzian stochastic estimation for a robust iterative multiframe

super-resolution reconstruction with lorentzian-tikhonov regularization. EURASIP Journal on Ad-
vances in Signal Processing, 2007(2):21–21, 2007.

[48] N. Pustelnik, C. Chaux, and J. C. Pesquet. Parallel proximal algorithm for image restoration using
hybrid regularization. IEEE Transactions on Image Processing, 20(9):2450–2462, 2011.

[49] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica

D: Nonlinear Phenomena, 60(1):259–268, 1992.
[50] H. Song, L. Zhang, P. Wang, K. Zhang, and X. Li. An adaptive l1–l2 hybrid error model to super-

resolution. In IEEE International Conference on 17th Image Processing (ICIP), pages 2821–2824.
IEEE, 2010.

[51] J. Tian and K. Ma. Stochastic super-resolution image reconstruction. Journal of Visual Communica-
tion and Image Representation, 21(3):232–244, 2010.

[52] S. Villena, M. Vega, S. D. Babacan, R. Molina, and A. K. Katsaggelos. Bayesian combination of sparse
and non-sparse priors in image super resolution. Digital Signal Processing, 23(2):530–541, 2013.

[53] M. Vrigkas, C. Nikou, and L. P. Kondi. Accurate image registration for map image super-resolution.
Signal Processing: Image Communication, 28(5):494–508, 2013.

[54] C. Wang, J. Chen, and R. Liu. Development and evaluation of mri based bayesian image reconstruction
methods for pet. Computerized Medical Imaging and Graphics, 28(4):177–184, 2004.

[55] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004.

[56] Y Wen, R Chan, and T Zeng. Primal-dual algorithms for total variation based image restoration
under poisson noise dedicated to professor lin qun on the occasion of his 80th birthday. Science China

Mathematics, 59(1):141–160, 2016.
[57] G. Winkler. Random fields and markov chain monte carlo cmethods. Springer, Berlin, 2003.
[58] Y. Xiao, T. Zeng, J. Yu, and M. Ng. Restoration of images corrupted by mixed gaussian-impulse noise

via l1–l0 minimization. Pattern Recognition, 44(8):1708–1720, 2011.
[59] L. Yue, H. Shen, Q. Yuan, and L. Zhang. A locally adaptive l1- l2 norm for multi-frame super-resolution

of images with mixed noise and outliers. Signal Processing, 105:156–174, 2014.



282 W. LONG, Y. LU, L. SHEN, AND Y. XU

[60] M. E. Zervakis and A. N. Venetsanopoulos. Linear and nonlinear image restoration under the presence

of mixed noise. IEEE Transactions on Circuits and Systems, 38(3):258–272, 1991.
[61] M. Zhu and T. Chan. An efficient primal-dual hybrid gradient algorithm for total variation image

restoration. UCLA CAM Report, pages 08–34, 2008.

School of Data and Computer Science and Guangdong Province Key Lab of Computational Science, Sun
Yat-sen University, Guangzhou 510006, P. R. China

E-mail : longwenting@gmail.com

School of Data and Computer Science and Guangdong Province Key Lab of Computational Science, Sun
Yat-sen University, Guangzhou 510006, P. R. China

E-mail : luyao23@mail.sysu.edu.cn

Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA

E-mail : lshen03@syr.edu

School of Data and Computer Science and Guangdong Province Key Lab of Computational Science,

Sun Yat-sen University, Guangzhou 510006, P. R. China. This author is also an emeritus professor of
Mathematics Department, Syracuse University, Syracuse, NY 13244, USA. All correspondence should be
sent to this author.

E-mail : yxu06@syr.edu


