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AN L*° BOUND FOR THE CAHN-HILLIARD EQUATION WITH
RELAXED NON-SMOOTH FREE ENERGY

CHRISTIAN KAHLE

Abstract. Phase field models are widely used to describe multiphase systems. Here a smooth
indicator function, called phase field, is used to describe the spatial distribution of the phases
under investigation. Material properties like density or viscosity are introduced as given functions
of the phase field. These parameters typically have physical bounds to fulfil, e.g. positivity of the
density. To guarantee these properties, uniform bounds on the phase field are of interest. In this
work we derive a uniform bound on the solution of the Cahn—Hilliard system, where we use the
double-obstacle free energy, that is relaxed by Moreau—Yosida relaxation.
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1. Introduction

Phase field models are a common approach to describe fluid systems of two or
more components and to deal with the complex topology changes that might appear
in such systems. One of the basic models is the Cahn-Hilliard system [7] that models
spinodal decomposition of a binary metal alloy with components having essentially
the same density. Particles are only transported by diffusion. Based on this model
several extensions to transport by convection (model 'H’ [19]) and additionally to
fluids with different densities are proposed throughout the literature, see [1,6,9,22].
In those models typically the density and viscosity of the two fluid components are
introduced as given functions of a phase field that is introduced to describe their
spatial distribution and that is the solution of a Cahn—Hilliard type equation. In
general for the Cahn—Hilliard equation with smooth free energies, which allow non-
physical values of the phase field, no L>(€2) bounds are available. As a consequence,
in general situations one can not guarantee that the density and the viscosity of
the fluids stay positive, i.e. one might run into non-physical data.

On the other hand, having convergence rates and given a desired dependence
between phase field and density, e.g. a linear dependence, one might calculate a
maximum violation of the bounds on the phase field such that the density stays
positive. Based on this and the desired estimates for the L°°(£2) violation of the
bounds on the phase field, one has a guideline for choosing an appropriate value for
the Moreau—Yosida parameter. From the view of approximating the non-smooth
double-obstacle free energy by a relaxed free energy, this rate also might be used
to derive update rules for the relaxation parameter in a path following method.

In this work we summarize, combine and extend results on the analytical treat-
ment of the Cahn—Hilliard equation with double-obstacle free energy, which is re-
laxed using Moreau—Yosida relaxation. The aim of this work is, to help later work
on Cahn—Hilliard type models by providing L>°(2) bounds on the violation of the
physical meaningful values of the phase field.

Using Moreau—Yosida relaxation for the treatment of the Cahn—Hilliard equation
with double-obstacle free energy is first analytically investigated in [14]. Therein
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especially the convergence of the solutions of the relaxed system to the solution
of the double-obstacle system is shown. One main ingredient is the interpretation
of the Cahn—Hilliard equation as the first order optimality conditions of a suitable
optimal control problem with box constraints in H'(2) on the control.

On the other hand, in [18], a typical optimal control problem with box constraints
in C(Q) on the state is investigated. Here the constraints are treated using Moreau—
Yosida relaxation. The authors provide decay rates for the L>°(€2) norm of the
violation of the box constraints in terms of the relaxation parameter. The proof
relies on higher regularity of the state, i.e. Holder regularity is used.

The results in [18] apply for the case of Dirichlet boundary data on the state,
while in [15] these results are used for the Cahn-Hilliard equation with Neumann
boundary data, to prove convergence of solutions for a relaxed equation to the
solutions of a Cahn—Hilliard system with double-obstacle free energy. However,
in [15] no convergence rate is provided.

Here we combine the aforementioned results to obtain an L>°(2) bound on the
violation of the physically meaningful values of the solution of the Cahn—Hilliard
equation that can later be used in more sophisticated models where bounds on
parameters, like the density, that depend on the solution of the Cahn—Hilliard
equation, are required.

The paper is organized as follows. In Section 2 we introduce the time discrete
Cahn-Hilliard system with double-obstacle free energy and its relaxation using
Moreau—Yosida relaxation. We further summarize results from [14]. In Section 3
we apply proofs from [18] to obtain an L!(2) bound and based on this an L°°(£2)
bound on the constraint violation. A numerical validation is carried out in Section
4, where in fact we observe higher rates than proven before. For this better rate
we give an argumentation in Section 5.

2. The Cahn—Hilliard system with double-obstacle free energy

In the following, let @ C R™, n € {2,3} denote an open bounded domain, that
fulfils the cone condition, see [2]. Its outer normal we denote by vq.

We further use usual notation for Sobolev spaces defined on , see [2], i.e.
WkP(€)) denotes the space of functions that admit weak derivatives up to order k
that are Lebesgue-integrable to the power p. For p = 2 we write H*(Q) := W*2(Q)
and for k = 0 we write LP(Q) := W9P(Q). For v € W*P?(Q) its norm is denoted by
HUHWW(Q)-

Moreover we introduce

K={veH H(Q)|] <lae},
Vo ={ve H'(Q)]|(v,1) = 0}.

For a fixed time t we consider an alloy consisting of two components A and B
and we are interested in the evolution of this alloy over time. For the description
of the distribution of the two components we introduce a phase field ¢ that serves
as a binary indicator function in the sense, that ¢(z) = 1 indicates pure fluid of
component A at point = € ), while ¢(z) = —1 indicates pure fluid of component
B. We further assume, that the transition zone I'¢ between A and B is of positive
thickness, proportional to €, and that both components are mixed therein. The
phase field admits values from the interval (—1,1) in this region.

We introduce the Ginzburg—Landau energy of the system by

€ 1
GL() = [ SIV6l + TW(e) do
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Here W () is the so called free energy density and is of double well type, i.e. it
admits exactly two minima at +1 and is positive everywhere else. We denote the
first variation of GL by

pi=—eAp + e TW ()

and introduce a mass conserving gradient flow with a mobility or diffusivity b(¢p)
depending on the phase field as

(1) Do = div(b(p) Vi),

(2) —eAp + e W () = p.

We supplement (1)—(2) with appropriate initial data ¢q € K and boundary data
vo - Ve = vg-Vu = 0 on 9. This system is introduced in [7] and is called
Cahn-Hilliard system.

Specific choices of b(y) and W (p) give different analytical difficulties. Here we
restrict to the case of non degenerate mobility b(¢) > 6, for some 6 > 0, and for
simplicity to constant mobility b(p) = 1.

For the free energy we choose the double-obstacle free energy introduced in [23]
and analytically investigated in [5]. It has the form

W) = {2< ) if lol
+00 else.

Since this W is not smooth, (2) here has the form of a variational inequality, see
Definition 1, where we state the precise formulation of the Cahn—Hilliard system
with constant mobility and double-obstacle free energy.

Definition 1. Let Q C R™, n € {2,3}, denote a given bounded domain I = (0,T],
T > 0 denote a given time interval. pg € K is a given initial phase field.
Then the Cahn—Hilliard system with constant mobility and double-obstacle free
energy consists in finding a phase field @ and a chemical potential p such that
o€ HY0,T,(H (Q))*)NL>(0,T, H(R)),
pt)e K Vte(0,T),
(¢1,v) + (Vi, Vo) =0 Yo € HY(Q),
e(Vp, Vo= Vo) = Hp,v—9) > (0 —p) VoeK,
vo-Vo=0 on 09,
v -Vu=0 on 09,
©(0) = go.
This system is first investigated in [5]. We state the existence and regularity
results here.
Theorem 2 ( [5]). There exists a unique solution p, u to (3) fulfilling
o € L*0,T; H*(Q)), Ouye = 0 on 9Q for a.e. t. It further holds ¥t > 0
min(v#, 1)[l¢(t)] z2@) < C(po), and min(v, 1)]|u(t)|[ o) < C(o).
In this work we deal with the time discrete variant of (3). For this let 0 =t <

t1 < ... <tp-1 <trp <...<ty =T denote a decomposition of I = (0,7 with
time step size ™F = ¢, — tp_1.
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Then the time discrete variant of (3) in weak form consist of finding (p*, u*) €
HY(Q) x HY(Q) fulfilling

4) (%, 0) + 78V, Vo) = (9", v) Vo € H'(9),
(5) (V" Vo—Vg*) —e (" o—p") > (uv—¢) Wwek.
We further introduce a parameter s > 0 and the penalising function

Ap) = As () + A= (p) := max(0, ¢ — 1) + min(0, ¢ + 1),

and define the outer approximation, [13], of (4)—(5) as follows:
Find (¢*, u®) € HY(Q) x H(Q) fulfilling

(6) (¢*,0) + 78 (Vp®, Vo) = (¢" 1 o) Yo e HY(Q),
(1) e(Ve®, Vo) + e H(sA(9%),0) — e H (" 0) = (1", v) Vo € H' ().
Then the following result holds.

Theorem 3 ( [14, Thm. 3.2, Thm. 4.1,Thm. 4.2, Lem. 4.3, Thm. 4.4]). There
exist unique solutions ¢*, u* to (4)—(5) and ¢*,u® to (6)—(7). Moreover
(%, 1%) = (%, ) in H'(Q),
and there exists a constant C > 0 independent of s such that
lesllzr @) + slA(es)llL2@) + [lnslar @) < C.

Remark 4. We introduce a free energy density W*(p) = 2(1 — ¢%) + £A(p)2.
Then (7) can also be obtained as time discretization of (1)—(2) with this free energy.
However, we note that W*° is not a valid free energy in the sense that its minima

s—1
have non negative values and scaling its argument by 0, this W*° might be regarded
as a new type of free energy.
From the point of treating variational inequalities, (7) is an outer approrimation
[13] of (5), while the logarithmic free energy proposed in [7] can be regarded as an
mner approxrimation.

are located at 0 = + (1 + = ) and attain negative values. After shifting W* to

3. An L*° bound on the constraint violation

In this section we follow the approach in [18, Sec. 2]. Using the uniform bound-
edness of ¢* and ;® from Theorem 3 we first derive L' () bounds for the constraints
violation A(¢®) that we later use to derive a first bound on [|A(¢®)| L ()

Note that from regularity theory for the Laplace operator with Neumann bound-
ary data, see e.g. [24], we have p* € H?(Q) and from (7) and Theorem 3 it follows
that ||¢®[|g2(q) is uniformly bounded in s. From Sobolev embedding theory we
further have H2(Q) — C%#(Q) for 8 < 2 — 2, and thus indeed A(¢*) € L>(Q).
From Theorem 3 we further have A\(¢®) — 0 for s — oo, compare also the discussion
in [12, Rem. 6].

Theorem 5. There exists C > 0 independent of s, such that for s — oo it holds
@)1y < Cs™
Proof. We test (6) with v = p?, (7) with v = ¢° and add the two equations yielding

€ s(A(9%), ¢°) = —FIIVE|P + ("7 %) — e VerlP + e (e %)
<C

with a C' > 0 independent of s by the uniform boundedness of ¢* and u* in H!(1).



AN L°° BOUND FOR THE CAHN-HILLIARD EQUATION 247

By noting ¢°* > 1< A1 (¢°) >0 and ¢° < —1 < A_(¢°) < 0, we further have

[ doz [ el [ ae)edez [ (@) do
Q Q Q Q
and thus
e LslIA(@*) i) < € Ts(Mg®),¢°) < C
which completes the proof. O

We next derive a bound on |[A(¢*)| L~ in terms of || A(¢®)[|11(q). Here we follow
[15, Thm. 3.7], where [18, Thm. 2.4] is adapted.

Theorem 6. It holds
B
M) Lo (0) < C(Q,n, BN i (o

Proof. From ¢* € H?(2) we have the Hélder continuity of ¢° € C%8(Q) for 3 <
2 — 5, and thus there exists Cs > 0 independent of s with [|¢*[|co.s() < Cp.
For fixed s we set Gt = {z € Q|¢*(z) > 1} and define zyax € G to satisfy
@ (Tmax) — 1 = [l¢* — 1||L°C(G+)~
We set G~ = {z € Q| p°(z) < —1} and define zmin € G~ to satisfy
_(Sps(xmin) + 1) = ||()06 + 1||LOO(G*)-

Now either ¢* (Zmax) =1 = [[A(©°) [ Lo () OF —(¢©*(Zmin) +1) = | A(¢®)| Lo (q) holds.
W.Lo.g. we assume ¢*(Zmax) — 1 = [|A(¢®)||L= (o) and in the following work in G.
From the definition of Holder continuity we have

P°(2) =12 9*(@max) = 1 = [l co.s ()| wmax — 217

. 1/p
Thus, for [Tmax — 7| < (‘P(%a;)—l)
1

(ps(x) -1 Z i(ws(xmax) - 1) >0

holds.
The domain (2 satisfies the cone condition. Thus there exists a cone K, (Zmax) :=
K(2max) N B(Xmax, r) of radius r and with vertex xmax such that K, (2max) C Q.

s 1/B
Hence the cone Kg(Zmax) with R := min (r, (W) ) is contained in
G+.

From this we conclude

A lzrey > / o — lda

R(Tmax)

1, .
Z / 5(()06 (xmax) - 1) dI
KR(Tmax)

_ |KR(xmax)|
2

> o)

A (@) o= (22)

Gl )

n/B
I Y TS

n+p
= C(n, B)IM*)I 2 (-
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Corollary 7. From Theorem 6 we have the following L* bounds for the violation
of the constraint |p| < 1.

s CS_I/3+’Y an = 2)

where 0 < v < 1.
Proof. 1t holds

. o __B8_
N < CINE Ty, < Cs™ 7.
For n = 2 we have § < 1 and thus the first claim.
For n = 3 we have g < % and thus the second claim. O

Remark 8. In (7) we use the violation A(¢®) as penalisation for the outer approx-
imation of the variational inequality (5). The function X is Lipschitz continuous,
i.e. A € COL(R). We introduce smoother penalisations by using higher powers of
A, i.e. for k> 2 we define

Ak(9%) = A") M (@) 72,

Note that \2(¢®) = Mp*) and that it holds N\, € C*~21(R).

Let us arque this reqularity. First it is clear that M\, is infinitely often continuously
differentiable away from +1. Let us concentrate on the case +1. The regularity at
—1 only involves additional minus signs. Then for © € Bi(+1) we have \g(x) =
max(0,z — 1)*=1. This is continuously differentiable for x > +1 and for x < +1
and limg_, 1 N, (z) = 0. The derwative can be written as X\, (xz) = (k—1) max(0, x—
1)5=2. This can be iterated until \*=2) (z) = (k—1)(k —2)---2max(0, 2 — 1) which
then still is Lipschitz continuous.

Further we have at least ° € HY(2) < LY(Q) for ¢ <6 if n =3 and ¢ < o< for
n=2. Thus for k <7 ifn =3 and k < 0o if n = 2 we have \;(p*) € L*(Q) and
by iterating Sobolev embeddings and LP-regularity theory for the Laplace operator
( [20]) we obtain the required Holder continuity of ¢°.

Using A\ instead of X in (7) leads to the same results, but with A substituted by
M. Especially we obtain

B

(8) A () Lo () = IM@*) I Loy < Cs™ i
and thus

M) L0y < Cs~ TFmE=T

Such penalisations with smoother functions might be of interest for optimal control
problems, [15,16], where sufficient differentiability properties are required, or in the
context of model order reduction using proper orthogonal decomposition, [25].

3.1. The fully discrete case. We assume, that €2 is polygonally bounded and
thus can be represented exactly by a finite number of triangles if n = 2, resp.
tetrahedrons if n = 3. We introduce a subdivision T of Q using triangles, resp.
tetrahedrons, and define the space of piecewise linear and globally continuous finite
elements as

Vi ={veCQ)|vlr € P(T)VT € T} =span{e;|i =1,...,N},

where P1(T) denotes the space of all polynomials defined on T up to order 1. Note
that functions from V}, are Holder continuous with exponent 5 < 1.
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The discrete counterparts o3, 17, of ©*, u° then fulfil the equations
(9) (5, 0) + T8(Vs, Vo) = ("1 v) Yo € V,
(10) e(V(g5, Vo) + e A5, v) — e (L v) = (i35, v) Yo € V,

where we investigate three choices for the numerical treatment of the penalisation
term Ay (pj,v). Using linear elements the term A(pj,v) = Ag(¢},v) == (sA(¢}),v)
can be evaluated exactly. Another possibility is to use the Lagrangian interpola-
tion I for A(¢j), i.e. A(g,v) = Ar(g},v) == (sI(A(¢})),v). As last variant we
investigate an evaluation using lumping, i.e. A(p5,v) = AL(p5,v) == (sA(p3),v)",
where (v, w)" is defined as
N
(v, w)h = Z(la di)v(@i)w(z;),
i=1
and z; stands for the vertices of T .
Note that |T(A(2})| > [Mo})] and [Tl =) = A5 1= (o) due to the
linear finite elements that we use.
Using the different variants of A the results from Section 3 stay valid for the
fully discrete case, with small changes that we comment on next.
For Ag no changes are required. For A; and A; we obtain from Theorem 5

e sl < €SIl < C.
The according L>°(£2) bounds for A(y}) in Theorem 6 then follow immediately.
4. Numerical validation

In this section we perform numerical tests to validate the bounds that we found
in Theorem 6.

We perform simulations in two and three space dimensions, using Q = (0,1)",
i.e. the unit square for n = 2, and the unit cube for n = 3.

We perform one time step of (6)—(7) and measure the violation ||A(¢®)| e (q).-
The parameter are given as ¢ = 0.01 and 7 = 0.01 if n = 2 and ¢ = 0.04 and
7 =0.01 if n = 3. The initial phase field yq is defined as

1 if 2> 7,
po(z) = ¢ —1 if < —
sin(z)  else,

where z = e !(||lx — m|| — r), and m = (0.5,0.5) for n = 2 and m = (0.5,0.5,0.5)
if n = 3. This defines a sphere with radius » = 0.25. Note that the sine is the
principle shape of the phase field across the interface for the double-obstacle free
energy [11].

We adapt the mesh for the phase field and the chemical potential by using the
reliable and efficient residual based error estimator proposed in [14]. Here we only
use the norm of the jumps of the normal derivatives of o7 and pj across edges for
n = 2, resp. faces for n = 3, which contains the main part of the indicator [§].
For the marking of cells we follow [14], i.e. we use the procedure proposed by
Dérfer [10].

We perform the usual “solve—estimate—mark—refine” cycle three times for each
value of s and reuse the final mesh as initial mesh for the next larger value of s. In
Figure 1 we show a typically mesh obtained by this adaptive solving procedure.

The non linear system (9)—(10) is solved using Newton’s method and the linear
systems are solved directly. We solve the system up to a residuum of 10~% and



250 C. KAHLE

10
---exact
* lumping
| —Interpolation
g 10 -0(s ™}
=
E —4|
T 10
—5 °
10 2 4 6

10
homotopy parameter ’s’

FIGURE 2. The violation of the bound |p| < 1 for penalisation with
A2, and the different numerical treatments, i.e. exact evaluation,
lumping and interpolation. Note that Newton’s method failed in
calculating the solution for larger values of s if interpolation is
used.

allow at most 100 Newton steps. The implementation is done in C++ using the
finite element toolbox FEniCS [21] with the PETSc [4] linear algebra back end and
the MUMPS [3] direct solver.

Experiments in two space dimensions. In two space dimensions we investigate
the three cases of numerical treatment of the penalisation A(¢®) as proposed in
Section 3.1, namely the exact integration, the interpolation case and the lumping
case.

In Figure 2 we present numerical results. We show the violation [|A(¢®)| ()
for the different numerical treatments of terms involving .

In the case of exact evaluation and lumping evaluation, Newton’s method is able
to find a solution with the desired tolerance 10~% in much less than the allowed
100 Newton steps, typically 5-10 steps, for all tested values of s, and we observe
that the theoretical bound from Theorem 6, i.e. [A(¢®)||L=() < Cs™1/3, holds.
However, we observe a significant higher rate, i.e. [[A(¢*)||=(0) < Cs™!, than
expected from the results of Theorem 6. This can not be explained by the theory
so far. In Section 5 we give a hint how these rates might be argued.
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—Interpolation . —Interpolation
r,O(S—llz) ‘. r,o(s—lls) )
10" 10
10° 10° 10" 10° 10% 10%°
homotopy parameter 's’ homotopy parameter ’s’

FIGURE 3. The violation of the bound || < 1 for penalisation with
Ak, k= 3,4 (left to right) and the different numerical treatments,
i.e. lumping and interpolation. Note that in both cases, Newton’s
method fails in calculating the solution for larger values of s if
interpolation is used.

Comparing the three ways of evaluating the penalisation, in the case of exact
integration we have a slightly higher violation of the constraints, and the rate is
only attained for large values of s.

When interpolation is used for the evaluation, we observe that, for larger values
of s, Newton’s method is not able to find a solution with the desired tolerance
within the maximum allowed number of iterations. While e.g. for s = 16384 after
the first step the residuum is reduced from 1.4 to 6e-4, the subsequent Newton steps
only converge linearly with a linear rate of 0.95, resulting in a residuum of 5e-6 after
100 steps. In general Newton’s method requires more steps when interpolation is
applied than when the other variants are used. The reason for this behaviour stays
unclear. Especially we note, that the condition number of the linear systems is
nearly independent of the way of evaluating the non-linearity and that all integrals
are evaluated exactly.

As next test we investigate [|A(¢%)[|L(q) when Ag for k> 2 is used for penali-
sation as proposed in Remark 8. Here we do not perform exact integration.

Also in the case of higher powers of A the theoretical bounds are attained. Again
we observe that Newton’s method fails in finding the solution for large values of s
if interpolation is used, while with lumped evaluation the solution is always found.
Note that to obtain comparable violations for A\; we need larger values of s.

Experiments in three space dimensions. In three dimensions we only investi-
gate lumping and interpolation as treatment of the term with A and again we use
A for k= 2,3,4.

In Figure 4 we show the numerical results. Again we obtain the expected bounds
from Theorem 6 and as in the 2D case even a higher rate. Also using interpolation
Newton’s method fails in finding the unique solution for larger values of s.

5. An argumentation for the higher rate

In Section 4 we have seen that the theoretical bounds, as shown in Theorem 6,
are valid in a numerical example. In this example we found, that even a higher
rate, i.e. [|A(¢%)| Lo < Cs™', is obtained for n = 2,3. This is not covered by
the developed theory. In [18, Ass. 2.13] a structural assumption on the active set
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«lumping «lumping «lumping
I~Interpolation| I—Interpolation| I—Interpolation|
s Co6s™) s Cos™?) s Fos™)
B 10 B 10 B 10
@ @ @
£ ) £ ) £ )
— 10 10 — 10
5| 5| : 5| )
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2 4 106 5 1 10 1 10 15
homotopy parameter 's’ homotopy parameter 's’ homotopy parameter 's’

FIGURE 4. Numerical results for three space dimensions and with
Ak, k= 2,3,4 (left to right). The proposed convergence rate is ob-
tained and again in the case of interpolation of A Newton’s method
fails in finding the solution for large values of s.

of the regularized problem is used to argue higher rates and we next follow their
argumentation.

It is reasonable to assume that the integral over {2 with respect to the measure A\*,
which is the Lagrange multiplier associated with the inequality constraint |¢*| < 1
in (4)—(5), is of the same order as the volume of Q. This is a reasonable assumption
as A* is concentrated on the active set for the inequality constraint |¢| < 1, which
in our setting describes the pure phases. This assumption means that for z € Q and
the ball Br(z) with radius R > 0 there exists a constant 0 < K < oo independent
of R and z such that

(11) / d\* < KR"
Br(z)

holds.
We further have the weak convergence A(¢®) — A*, [17], and thus especially

[axe = [ e [ ax

It is thus reasonable to assume, that a similar behaviour as (11) holds for A(¢*)
and we state the following assumption.

For x € Q2 we assume that there exists 0 < K < oo, independent of z, R, and s
such that

(12) [ e <k
Br(x)

holds.
However, from this assumption we can now directly obtain the desired rate by
dividing by R™ and taking the limit R — 0 and obtain the observed rate

A L) < Ks™ 1

Note that this bound is significantly better than the one shown in Theorem 6
and especially is independent of the dimension n of the domain €2, as observed in
Section 4, and of the Hélder exponent 3 of ¢®. We further stress, that a rigorous
proof is left as an open question.

In the case of smoother penalisations we obtain

M (@) Lo (0) = ||)‘k71(90s)||L°°(Q) < Ks™!
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and thus

A M Lo () < Ks™ "1
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