
INTERNATIONAL JOURNAL OF c© 2017 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 14, Number 2, Pages 201–217

AN EFFICIENT APPROXIMATION FOR OPTIMAL DAMPING

IN MECHANICAL SYSTEMS

NINOSLAV TRUHAR, ZORAN TOMLJANOVIĆ, AND MATEA PUVAČA

Abstract. This paper is concerned with an efficient algorithm for damping optimization in
mechanical systems with a prescribed structure. Our approach is based on the minimization of the
total energy of the system which is equivalent to the minimization of the trace of the corresponding
Lyapunov equation. Thus, the prescribed structure in our case means that a mechanical system
is close to a modally damped system. Although our approach is very efficient (as expected) for
mechanical systems close to modally damped system, our experiments show that for some cases
when systems are not modally damped, the proposed approach provides efficient approximation
of optimal damping.

Key words. Linear vibration system, damped vibration, multi-variable optimization of dampers’
viscosities, passive damping, Lyapunov equation, relative residual bound, linear residual bounds,
quadratic residual bounds.

1. Nomenclature

We will use the following notation. Matrices written in the simple Roman fonts,
M , D or K, for example, will have O(n2) entries. Matrices written in mathematical
bold fonts, A, B will have O(m2) entries, where m = 2n. The symbol ‖ · ‖ stands
for the standard 2-norm.

2. Introduction

We consider a damped linear vibration system described by the differential equation

Mẍ+Dẋ +Kx = 0,

x(0) = x0, ẋ(0) = ẋ0,

where M,D,K (called mass, damping and stiffness matrix, respectively) are real, sym-
metric matrices of order n with M,K positive definite and D = Cu + C, where Cu is
positive definite and presents internal damping, while C represents external damping and
it is positive semidefinite. The matrix Cu is usually taken as a small multiple of critical
damping or proportional damping. In this paper, we assume that internal damping is a
small multiple of mass matrix, that is, Cu = αM .

The problem of deriving optimal damping in some sense is an old and widely investi-
gated problem which has been considered by many authors.

For example, in [1] the question of placement of damping elements was investigated,
while in [2] the problem of periodic optimal control, which maximizes energy dissipation,
was considered.

On the other hand, the optimization problem, which considers only viscosity optimiza-
tion, was considered in the following papers [3], [4], [5], [6], [7] and [8].

In papers [9], [10] and [11], the authors have recemtly considered approximations based
on modal eigenvectors which provide an efficient calculation of objective functions. The
case of mechanical systems with a given force was considered in papers [12] and [13],
where the authors derived explicit formulas for objective functions for particular types
of mechanical systems, while in [14] it was shown how to compute eigenfrequencies of
structures composed of a series of inclined cables.
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The purpose of this paper is to present new results of approximation algorithms for
deriving optimal damping. As we will show, in some cases determination of optimal damp-
ing can be given by an explicit formula, while in some other cases we present a numerical
approach to determination of optimal damping which can be efficiently implemented.

We are going to use optimization criterion considered in many papers, like [15],[3], [6],
[5], [7]. This optimization criterion is given by the minimization requirement of the total
energy of the system, that is,

(1)

∞∫

0

E(t) dt → min .

Since criterion (1) depends on the initial condition, the simplest way to correct this is to
take the average of (1) over all initial states of the unit total energy and a given frequency
range. It can be shown that this average corresponds to the trace of the solution of the
corresponding Lyapunov equation.

Since up to date an efficient general algorithm for the optimization of damping does not
exist, that is, available algorithms optimize only viscosities of dampers, not their positions,
we propose a simple and efficient approach to the overall damping optimization. With
this new approach, one can find optimal positions and corresponding damper viscosities
efficiently with satisfactory accuracy.

Our approach is based on the fact that for a modally damped mechanical system all
three matrices M , D and K can be simultaneously diagonalized. Thus, the main as-
sumption here will be that we have the case where M , D and K are simultaneously
diagonalizable or that they are close to the case when all three matrices can be simulta-
neously diagonalized. Although this approach has been widely used by different scientific
communities, especially in engineering, in this paper we propose a slightly different per-
spective, which will allow us to determine optimal damping very efficiently for a certain
structure of mechanical systems, as will be demonstrated later.

Moreover, since only the damping matrix D(v) depends on parameters, usual ap-
proaches to viscosity optimization (v) assume preprocessing based on diagonalization of
the mass and stiffness matrices, M and K. On the other hand, in this paper we propose
a new approach, which is based on diagonalization of the damping matrix D(v), and then
calculation of optimal viscosities. As we will show in this paper, this approach can be very
efficient for structured systems which allow us to determine optimal viscosities, explicitly
or numerically considerably faster.

For estimation of optimal viscosity for given damper positions we propose a new al-
gorithm based on the simple “reduction” (truncation) of the corresponding Lyapunov
equation, which usually speeds up the procedure by at least 40 times, while for the opti-
mization of damper positions we propose a new heuristic. Both algorithms are based on
a certain heuristic and unfortunately we do not have bounds for their accuracy, but as
exemplified in the last section by the Lyapunov equation of modest dimensions (n ≤ 100),
they perform very well, thus we assume that the obtained results will be even better for
bigger dimensions.

Currently, two types of algorithms are in use for the estimation of optimal viscosity
(for given damper positions). The first type are the Newton-type algorithms for one-
dimensional problems, which use some Lyapunov solvers, and the second type are the
algorithms which explicitly calculate the trace of the solution of the corresponding Lya-
punov equation.

Algorithms of the second type are presented in [15], [6] or [7], and they consider the
case with one or more dampers with the same viscosity.

On the other hand, the Newton-type algorithm for the case with r ≥ 1 different dampers
was proposed in [16]. As shown in [7], the algorithm proposed in [16] can produce a poor
result due to the problems with determination of the starting point.

The paper is organized as follows. In Section 2, we precisely define problem setting,
while in Section 3, we present an approximation for our objective function. The problem of
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damping optimization with particular emphasis the structured case was studied in Section
4. The efficiency and performance of the proposed approach are illustrated in Section 5.

3. Problem definition

As mentioned in the introduction, the minimization of the total energy (1) is equivalent
to the minimization of the trace of the solution of the corresponding Lyapunov equation
(more details can be found in [17], [6], [4], [3], [5]).

Thus, let

(2) Mẍ+Dẋ+Kx = 0

be the differential equation describing a damped linear vibration system, where M,D,K
are the mass, damping and stiffness matrices, respectively.

The eigenvalue problem

(3) (λ2M + λD +K)x = 0

corresponds to (2).
Just for the purpose of recapitulation of some basic properties of the eigenvalue problem

(3), we will use the eigenvalue decomposition

(4) ΦTKΦ = Ω2, ΦTMΦ = I,

where

(5) Ω = diag(ω1, . . . , ωn), ω1 ≤ . . . ≤ ωn.

By setting

(6) y1 = ΩΦTx, y2 = ΦT ẋ,

(2) can be written as

(7) ẏ = Ay,

(8) y =

[
y1
y2

]
, A =




0 Ω

−Ω −ΦTDΦ


 ,

(we are now in the 2n-dimensional phase space), with the solution

y = eAt
y0, where y0 is the initial data.(9)

It can be shown that the criterion of the minimization of the total energy (1) is equiv-
alent to

(10) tr(ZXΦ) → min,

where XΦ is the solution of the following Lyapunov equation

A
T
XΦ +XΦA = −I,

and Z is a symmetric positive semidefinite matrix which may be normalized to have a
unit trace. If for the measure σ we take the measure generated by the Lebesgue measure
on R

2n, we obtain Z = 1
2n

I. Without loss of generality, hereinafter we omit the factor 1
2n

from the definition of the matrix Z.
While we have internal damping which is not trivial, it can be shown that all eigenvalues

of (3) lie in the left complex plane. This means that the matrix A from (8) is asymptotically
stable.

Further, it is easy to show that

tr(ZXΦ) = tr(Y),

where Y is a solution of the so-called ”dual Lyapunov equation”

(11) AY +YA
T = −Z.

The structure of the matrix Z has been studied in detail in [17] and some of these
results are presented in [6].
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Throughout this paper we will assume that the matrix Z has the following form

(12) Z =




0t1 0 0 0 0 0
0 Is 0 0 0 0
0 0 0t2 0 0 0
0 0 0 0t1 0 0
0 0 0 0 Is 0
0 0 0 0 0 0t2



,

where Is is the s-dimensional identity matrix, and 0ti is the ti-dimensional (i = 1, 2) zero
matrix, with t1 and s defined such that the eigenfrequencies from (5) smaller than ωt1

and greater than ωt1+s are not dangerous (observe that t2 = n− t1 − s).
Note that the solution of Lyapunov equation (11) is a function of several variables,

damper positions and corresponding viscosities. Thus, simultaneous optimization of damper
positions and viscosity can be computationally very demanding . In what follows, we will
propose a new approach to dampers optimization.

First, in the next section we will present a new algorithm which approximates the
solution (as well as its trace) of the corresponding Lyapunov equation, and after that in
Section 5 we propose a new algorithm for finding optimal damper positions.

4. Approximation of the solution of the Lyapunov equation

It is well known that linearization from (8) is not unique. Thus for our purpose we will
rewrite (2) using the following linearization:

(13) ẏ = A∗y,

(14) y =

[
y1
y2

]
, A∗ =




0 K
1

2 M−
1

2

−M−
1

2 K
1

2 −M−
1

2 DM−
1

2


 .

Following the exposure from the previous section it follows that we are interested in
minimizing the trace

tr(ZY),

where Y is a solution of the Lyapunov equation

(15) A∗

T
Y +YA∗ = −I,

and Z is defined in (12).
Up to this point we have not introduced any new approaches or new ideas described

in the introduction. Thus, next we proceed with the presentation of the new approach
to approximation of the solution of Lyapunov equation (15), which is different from the
standard ones (mostly used by engineers), that are based on modal approximation of
mechanical systems. Our approach will combine two aspects, one is a modal approximation
approach and the other is an approach based on the improved error estimates, see e.g. [9],
[10] and [11].

For that purpose let

(16) M−
1

2DM−
1

2 = U0∆UT
0 , ∆ = diag(δ1, . . . , δn),

be the eigenvalue decomposition of the “damping matrix” M−
1

2DM−
1

2 .
Let

(17) T =

[
I 0
0 U0

]

be the orthogonal matrix, where U0 is defined in (16). If one multiplies Lyapunov equation
(15) from the left and from right by TT and T, respectively, then one gets

(18) A
T
X+XA = −I,
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where

(19) A = T
T
A∗T =

[
0 BT

−B −∆

]
,

where B = UT
0 M−

1

2K
1

2 and

(20) X =

[
X11 X12

XT
12 X22

]
.

Now equation (18) can be written as

(21)

[
0 −BT

B −∆

] [
X11 X12

XT
12 X22

]
+

[
X11 X12

XT
12 X22

] [
0 BT

−B −∆

]
= −

[
I 0
0 I

]
,

where

(22) Y = T

[
X11 X12

XT
12 X22

]
T

T .

It obviously holds tr(ZY) = tr(ZUX), where

(23) ZU = T
T
ZT.

Now, from (21) one gets

BTXT
12 +X12B = I,(24)

−BTX22 +X11B
T −X12∆ = 0,(25)

BX11 −X22B −∆XT
12 = 0,(26)

BX12 +XT
12B

T −∆X22 −X22∆ = −I.(27)

From (24) it follows

X12 =
1

2
B−1 + SB−1, where S = −ST .(28)

Thus, if one knows the skew-symmetric matrix S from (28), then the solution X is known.
A new approach: As described in the introduction, our approach is based on some

interesting properties of a modally damped system. As is well known (see e.g. [18,
Theorem 2.3]), the modally damped system satisfies the so-called commuting condition

DK−1M = MK−1D.

It can also be shown, provided that inverses exist, that the above equality is equivalent to

KD−1M = MD−1K and also to DM−1K = KM−1D.(29)

All this means that the mechanical system can be modally damped, that is, that all
three matrices M , D and K can be simultaneously diagonalized, even if some of them are
singular.

Next we will show that this assumption is equivalent to the assumption on commuting
X12 and B, that is, we will show that if

X12B = BX12,(30)

then (29) holds, and the mechanical system is modally damped.
If X12 and B commute, that is, if (30) holds, then (27) and (26) imply that

∆X22 +X22∆ = 2I,(31)

X11 = B−1X22B +B−1∆XT
12.(32)

Here we have used the fact that if (30) holds, then BX12 +XT
12B

T = I .
On the other hand, the assumption that (30) holds implies that S from (28) is a zero

matrix.
The main idea: Now we do not assume that (30) holds, that is, our mechanical

system is no longer modally damped.
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But if it is still “good in some sense”, or “close” to a modally damped system, we can
use the above conclusions to approximate solution X of Lyapunov equation (18).

For that purpose, first we will approximate X12 from (28) with

X̃12 =
1

2
B−1.(33)

Further, from (31) follows that

X̃22 = ∆−1.(34)

Once we have derived X̃22, it is easy to derive the last unknown approximation X̃11.
Indeed, from (32) it follows

X̃11 = B−1X̃22B +
1

2
B−1∆B−T .(35)

In the next theorem, we will present the residual error

Rer = ‖AT
X̃+ X̃A+ I‖(36)

made by the approximation

X̃ =

[
X̃11 X̃12

X̃T
12 X̃22

]
,(37)

which is equivalent as if we inserted approximations X̃11, X̃22 and X̃12 into (25).
The following theoretical results will be used for error estimation made by the above

approximation of the solution of the Lyapunov equation. It will also be used for the
a priori estimation, whether the considered mechanical system is approximated with a
modally damped one.

Theorem 4.1. Let X̃ be the approximation of solution (20) of Lyapunov equation (21)
obtained by (33), (34) and (35). Then the residual error Rer is given by

Rer = ‖BT∆−1 −B−1∆−1BBT ‖.(38)

Proof. The proof simply follows by inserting X̃ into (21). Indeed, from (37) and (21) one
gets

[
0 −BT

B −∆

] [
X̃11 X̃12

X̃T
12 X̃22

]
+

[
X̃11 X̃12

X̃T
12 X̃22

] [
0 BT

−B −∆

]
= −

[
I Err
0 I

]
,(39)

where

−Err = −BT X̃22 +B−1X̃22BBT +
1

2

(
−B−1∆+B−1∆

)
.

Now, since
Rer = ‖Err‖,

(38) holds, which completes the proof. �

Lemma 4.1. Let B = UT
0 M−

1

2 K
1

2 and ∆ = UT
0 M−

1

2DM−
1

2U0. Then BBT∆−1 =
∆−1BBT if and only if the mechanical system from (2) is modally damped, that is, equality
(29) holds.

Proof. Since B = UT
0 M−

1

2K
1

2 and ∆ = UT
0 M−

1

2DM−
1

2U0, it follows that

BBT = UT
0 M−

1

2KM−
1

2 U0 and ∆−1 = UT
0 M

1

2D−1M
1

2U0.

Now, simple multiplication gives

BBT∆−1 = UT
0 M−

1

2 KD−1M
1

2 U0,

∆−1BBT = UT
0 M

1

2 D−1KM−
1

2 U0,

which together implies that if BBT∆−1 = ∆−1BBT , then

KD−1M = MD−1K.
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�

As a consequence of the above theorem, we have the following corollary.

Corollary 4.1. Let the assumptions of Theorem 4.1 hold, that is,

BBT∆−1 = ∆−1BBT ,

holds if and only (29) holds. Then X̃ is a solution of Lyapunov equation (21).

Proof. If BBT∆−1 = ∆−1BBT , then from (38) it follows that Rer = 0, which implies

that X̃ = X. �

5. Damping optimization

Using the approximation from the previous section, here we will present a new approach
to damping optimization. Thus, we assume that the considered mechanical system is close
to the perturbed modally damped system, that is, further on we assume that the residual
error Rer from (38) is small enough, which means that KD−1M ≈ MD−1K in some
sense.

For that purpose, let

M = UMΛMUT
M , UM =

[
u1 . . . un

]
, ΛM =

[
µ1 . . . µn

]
,

be the eigenvalue decomposition of the mass matrix M .
We will distinguish two different cases. In the first case, we assume that the damping

matrix D has the same eigenvector structure as the mass matrix M , that is, we will assume
that

DI = ν1u1u
T
1 + ν2u2u

T
2 + . . .+ νnunu

T
n ,(40)

where νi = vi + α, i = 1, . . . , n.
For the damping matrix close to DI , and in the case when the number of dampers is

equal to the dimension, that is, when r = n, we will be able to derive the explicit formula
for optimal damping viscosities vi, i = 1, . . . , n. On the other hand, for the case when the
number of dampers is less than the dimension or some viscosities are the same, we will
present a formula that covers these cases in a more general setting.

Thus, back to the first case, we will assume that the damping matrix D is close to DI

from (40), that is,

D ≈ (v1 + α)u1u
T
1 + (v2 + α)u2u

T
2 + . . .+ (vn + α)unu

T
n .(41)

Below we will derive a simple formula for calculation of optimal viscosities v1, . . . , vn, for

which the trace of the approximation X̃ from (37) is minimal.
If we are interested in damping the s undamped frequencies, then using the matrix Z

from (12) we obtain that for the matrix ZU from (23) it can be written as

ZU

.
=

[
Z1 0
0 Z2

]
,

where

Z1 = diag(0t1 , Is, 0t2) ,(42)

Z2 = UT
0 diag(0t1 , Is, 0t2)U0.(43)

Since our penalty function is a trace of the solution of the corresponding Lyapunov
equation, note that for the approximation of the trace holds

tr(ZUX) ≈ tr(ZUX̃) = tr(Z1X̃11) + tr(Z2X̃22)

= tr(Z1X̃22) + tr(Z2X̃22) +
1

2
tr(B−1Z1∆B−T ),

that is,

tr(ZUX) ≈ tr(ZUX̃) = tr(Z1∆
−1) + tr(Z2∆

−1) +
1

2
tr(Z1∆B−TB−1).(44)
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Approximation (44) will be our starting point, which will allow us to derive an approx-
imation for optimal v∗1 , . . . , v

∗

n.
Note that from (41) and (16) it follows that

M−
1

2DM−
1

2 = U0∆UT
0 , where ∆ = diag(v1 + α, v2 + α, . . . , vn + α).(45)

Now from (44) and (45) one gets

tr(ZUX̃(v1, . . . , vn)) =

n∑

i=1

(Z1)ii + (Z2)ii
vi + α

+
1

2

n∑

i=1

(vi + α)(Z1)iibi,(46)

where bi = ‖T (:, i)‖2, T = B−1 for i = 1, . . . , n.
Using the fact that all quantities in (46) are nonnegative, simply by using partial

derivatives

δ

δvi
tr(ZUX̃(v1, . . . , vn)) = −

(Z1)ii + (Z2)ii
(vi + α)2

+
1

2
(Z1)iibi, i = 1, . . . , n,(47)

and equalizing to zeros, one gets that

v∗i =

√
2(Z1)ii + 2(Z2)ii

(Z1)iibi
− α, i = 1, . . . , n.

are minimum for the trace, that is

(v∗1 , . . . , v
∗

n) = argmin tr(ZUX̃(v1, . . . , vn)).

The setting given by (40) was just a motivation for a more general case that will be
considered in the next section.

5.1. Damping optimization for the structured case. Troughout this section we

assume that the eigenvalue decomposition of the matrix M−
1

2 DM−
1

2 is given by

(48) M−
1

2DM−
1

2 = U0∆UT
0 , ∆ = v1D1 ⊕ v2D2 ⊕ · · · ⊕ vdDd,

where each matrix Di, i = 1, . . . , d is a diagonal matrix and it has a dimension di, i =

1, . . . , d, respectively, with

d∑

i=1

di = n.

The above assumption means that the matrix ∆ is a direct sum of smaller matrices that
correspond to the same viscosities and it arises from the fact that very often the damping
matrix D can have blocks of dampers which have the same viscosities. Moreover, in the
assumed setting, damping blocks with different viscosities do not interlace with each other.

Note that the setting included in (40) is also covered by (48) since we can also use
this approach in the case when di = 1, ∀i = 1, . . . , n considering that all viscosities are
different. On the other hand, we would like to emphasize that damping of the form (48)
generalizes dampings studied in the previous section. Moreover, it also includes more
general cases in which the damping matrix D is permutation similar to the block diagonal
matrix where each block corresponds to damping parts with its own viscosity parameter.

Similarly to the above, if we are interested in damping the first s most important
eigenfrequencies, then the matrix ZU from (23) can be written as

ZU =

[
Z1 0
0 Z2

]
,

where Z1 and Z2 are given by (42-43).
Also, for the approximation of the trace it holds

tr(ZUX) ≈ tr(ZUX̃) = tr(Z1X̃22) + tr(Z2X̃22) +
1

2
tr(B−1Z1∆B−T ),

that is,

tr(ZUX) ≈ tr(ZUX̃) = tr(Z1∆
−1) + tr(Z2∆

−1) +
1

2
tr(Z1∆B−TB−1).(49)
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Now using approximation (49) together with (48) we can derive approximate optimal
parameters v∗1 , . . . , v

∗

d .
In particular, from (48) and (49) one gets

tr(ZUX̃(v1, . . . , vd)) =
d∑

i=1

d1+···+di∑

j=d1+···+di−1+1

(Z1)jj + (Z2)jj
vi(Di)kjkj

+ α

+
1

2

d∑

i=1

d1+···+di∑

j=d1+···+di−1+1

(Z1)jjbj(vi(Di)kjkj
+ α),(50)

where kj determines the index that depends on j and it holds that kj = j−(d1+· · ·+dj−1)
. Moreover, bi is the 2-norm of the column of the matrix T = B−1, that is, bi = ‖T (:, i)‖2.

In general, for this function we are not able to derive an explicit formula for opti-
mal viscosities. But since in this case, where the matrix which diagonalizes the matrix

M−
1

2DM−
1

2 is the same for all viscosities, we can determine optimal viscosities efficiently
by a numerical optimization procedure which will be described in the next section.

Additionally, we are also able to derive an explicit formula for a global minimum if
d∑

i=1

rank(Di) = n and α = 0. In that case, our objective function has the following form:

tr(ZUX̃(v1, . . . , vd)) =
d∑

i=1

1

vi

d1+···+di∑

j=d1+···+di−1+1

(Z1)jj + (Z2)jj
(Di)kjkj

+
1

2

d∑

i=1

vi

d1+···+di∑

j=d1+···+di−1+1

(Z1)jjbj(Di)kjkj
.(51)

Using the fact that all quantities in (50) are nonnegative, one easily obtains partial
derivatives

δ

δvi
tr(ZUX̃(v1, . . . , vd)) =−

∑d1+···+di
j=d1+···+di−1+1

(Z1)jj+(Z2)jj
(Di)kjkj

v2i

+
1

2

d1+···+di∑

j=d1+···+di−1

(Z1)jjbj(Di)kjkj
,(52)

for i = 1, . . . , d. Now, by equalizing the above derivations with zero, one gets that

v∗i =

√√√√√
2
∑d1+···+di

j=d1+···+di−1+1

(Z1)jj+(Z2)jj
(Di)kjkj∑d1+···+di

j=d1+···+di−1
(Z1)jjbj(Di)kjkj

, i = 1, . . . , d,(53)

are optimal viscosities, that is,

(v∗1 , . . . , v
∗

d) = argmin tr(ZUX̃(v1, . . . , vd)).

Remark 1 The objective function given by (50) for the parameter α 6= 0 can be
efficiently optimized using a numerical optimization procedure. In particular, in this case
we deal with the minimization of d functions where the ith function fi is given by

fi(vi) =

d1+···+di∑

j=d1+···+di−1+1

(Z1)jj + (Z2)jj
vi(Di)kjkj

+ α

+ 1/2

d1+···+di∑

j=d1+···+di−1+1

(Z1)jjbj(vi(Di)kjkj
+ α),(54)

for i = 1, . . . , d. Here the function fi is a strictly convex function with global minima v∗i ,
for i = 1, . . . , d respectively, where minima v∗i , for i = 1, . . . , d can be efficiently determined
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using iterative solvers. By this approach we are able to determine optimal parameters v∗i ,

for i = 1, . . . , d that minimize tr(ZUX̃(v1, . . . , vd)).

5.2. Damping optimization for the general case. In this section, we consider a
more general case, than the two cases from previous sections, but still we assume that our
system corresponds to the configuration where (38) is small enough, or that approximation
KD−1M ≈ MD−1K holds in a certain sense.

Since M is a positive definite and D is a positive semidefinite matrix, there exists an
orthogonal matrix U such that

(55) M−
1

2DM−
1

2 = U∆UT , ∆ = diag(δ1, . . . , δn).

Apart from previous cases where we are able to derive an explicit formula for global
minima, in this section we will present a numerical approach to calculation of an ap-
proximation of optimal viscosities. The main problem within this general case is that

the matrix U , which diagonalizes the matrix M−
1

2 DM−
1

2 , depends on viscosities that
determine the damping matrix D, contrary to the cases from previous sections.

Thus, let us assume that d dampers with corresponding viscosities vi, i = 1, . . . , d are
given, which determine our external damping matrix C(v1, . . . , vd), that is, the damping
matrix is given by D(v1, . . . , vd) = Cu+C(v1, . . . , vd). Since in general the matrix U from
(55) depends on viscosities, let U0 be a unitary matrix which diagonalizes D(v01 , . . . , v

0
d)

for initial viscosities (v01 , . . . , v
0
d).

Now, similarly to the beginning of this section, we can calculate approximation of the
trace of the solution of the corresponding Lyapunov equation for the given viscosities
(v01 , . . . , v

0
d). That is, similarly to the above, we can show that

tr(ZUX̃(v01 , . . . , v
0
d)) =

n∑

i=1

(Z2)ii + (Z1)ii
δi

+
1

2

n∑

i=1

δi(Z1)iibi,(56)

where Z1 and Z2 are given by (42-43) and

M−
1

2 (D(v01 , . . . , v
0
d))M

−
1

2 = U0∆UT
0 , ∆ = diag(δ1, . . . , δn) ,(57)

bi = ‖T0(:, i)‖
2, T0 = B−1, i = 1, . . . , n.(58)

Now, we do not have an explicit formula for optimal viscosities, thus we propose the
following numerical approach to viscosity optimization.

During the optimization process, the next iteration (for viscosities) (v11 , . . . , v
1
d) can be

calculated using corresponding matrix U1, given as

M−
1

2 (D(v11 , . . . , v
1
d))M

−
1

2 = U1∆UT
1 , ∆ = diag(δ11 , . . . , δ

1
n),

which insures the corresponding trace approximation. It is important to notice here that
very often, during the optimization process, the same subspace U is also good for several
iteration steps (that is, for several viscosity updates). Thus, during the optimization
process, we first check if the same subspace is good enough, meaning that the residual
error

(59) erU = ‖MU − diag(MU
11,M

U
22, . . . ,M

U
nn)‖ < tolU ,

where MU = UT
0 M−

1

2 (Cu + C(v11 , . . . , v
1
d))M

−
1

2 U0 and tolU is some given tolerance.
This means that in the optimization process, if erU defined in (59) for viscosities

(v11 , . . . , v
1
d) is smaller than the tolerance tolU , we will use the unitary matrix U0 instead

of U1 for approximation of the trace tr(ZUX̃(v11 , . . . , v
1
d)).

The algorithm for the optimization of viscosities is summarized in Algorithm 1.
We would like to emphasize that the main cost in trace approximation (56) belongs to

the calculation of the matrix U ; thus in Algorithm 1, by using the residual tolerance tolU
we can avoid calculation of the matrix U for some viscosities (vi1, . . . , v

i
d) (for some i’s),

which significantly accelerates the optimization process. Moreover, as one could expect,
the matrix U does not need to be calculated (up to tolerance tolU ) in each step of iterations
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Algorithm 1 Computation of optimal viscosities

Require: System matrices; tolerance tolU for updating eigensubspace U ; starting viscosi-
ties (v01 , . . . , v

0
d).

Ensure: Approximation of optimal viscosities.
1: Calculate approximation of the trace given in (56) and U0 given in (57). Set U = U0.
2: Find optimal viscosities by using an appropriate optimization procedure (e.g. the

Nelder-Mead algorithm). Evaluate the function value using trace approximation at
the given viscosities (vi1, . . . , v

i
d) as in Steps 3 to 8:

3: Calculate the error for the subspace U from

erU = ‖MU − diag(MU
11,M

U
22, . . . ,M

U
nn)‖,

where MU = UTM−
1

2 (Cu + C(vi1, . . . , v
i
d))M

−
1

2U .
4: if errU < tolU , then

5: Compute the function value at viscosities (vi1, . . . , v
i
d) using

tr(ZUX̃(vi1, . . . , v
i
d)) =

n∑

i=1

(Z2)ii + (Z1)ii
δi

+
1

2

n∑

i=1

δi(Z1)iibi,

where Z1 and Z2 are given by (42-43) and

∆ = diag(δ1, . . . , δn), δi = (UTM−
1

2 (Cu + C(vi1, . . . , v
i
d))M

−
1

2U)ii , i = 1, . . . , n.

6: else

7: Compute new U and ∆, such that

M−
1

2DM
1

2 = U∆UT , ∆ = diag(δ1, . . . , δn).

Compute the function value at viscosities (vi1, . . . , v
i
d) using formula

tr(ZUX̃(vi1, . . . , v
i
d)) =

n∑

i=1

(Z2)ii + (Z1)ii
δi

+
1

2

n∑

i=1

δi(Z1)iibi,

where bi = ‖T0(:, i)‖
2, T0 = B−1, i = 1, . . . , n and Z1, Z2 are given by

(42-43).
8: end if

(for various viscosities (vi1, . . . , v
i
d)) if a mechanical system has some special structure or if

the changes in viscosities are small (which often appears during the optimization process).
Remark 2 Note that by using Algorithm 1, we can also minimize objective functions

given by (50). In that case, the errU will be zero (up to machine tolerance) and we will be
able to calculate approximation of the objective function without calculating the matrix
U in each step. On the other hand, since in this case the objective function consists of d
independent functions, it is even more efficient to use an approach described in Remark
1.

6. Numerical experiments

In this section, we will illustrate the performance of the new approach on two examples
which consider the mechanical system, the so-called the n-mass oscillator. In all examples,
we will take ZU = I.

Example 1 In this example, we consider the system from (2) with dimension n = 20,
where the mass and stiffness matrices are defined as:

M = diag(m1,m2, . . . , mn),

mi =

{
200− 20(i− 1) , i = 1, . . . , 10
201 + 20(i− 11) , i = 11, . . . , 20
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K =




4 −1 −1
−1 4 −1 −1
−1 −1 4 −1 −1

. . .
. . .

. . .
. . .

. . .

−1 −1 4 −1 −1
−1 −1 4 −1

−1 −1 4




.

The structure of masses and stiffness is shown in Figure 1. Further, the damping matrix

Figure 1. n-mass oscillator.

has a block diagonal structure D = diag(D1, D2, . . . , D10), where each block has its own
viscosity vj for j = 1, . . . , 10. The block diagonal structure of the matrix D is shown in
Figure 2.

0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

nz = 40

Figure 2. Block diagonal structure of matrix D.

The blocks are defined as:

Di =




vi + vip −vip 0
−vip vi + 2vip −vip
0 −vip vi + vip



 , i = 1, 2, 3,

Di =

[
vi + vip −vip
−vip vi + vip

]
, i = 4, 5, 6, 7,

Di =
[
vi + vip

]
, i = 8, 9, 10,
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where p = 0.001.

We will calculate optimal viscosities for two different cases:
Case 1. In the first case, we assume that there is no internal damping, that is, α = 0.
For the purpose of comparison, we will present optimal viscosity and the corresponding

minimal trace, denoted by (v∗, tr(X̃(v∗))), obtained by direct calculations using formula
(53) and optimal viscosity and the corresponding minimal trace denoted by (v, tr(X(v))),
obtained by the minimization of the trace of the ”dual Lyapunov equation” of equation
(18) directly with MATLAB’s function fminsearch, where we have used MATLAB’s func-
tion lyap for solving Lyapunov equations.

For (v∗, tr(X̃(v∗))) and (v, tr(X(v))), we have obtained the following:

v∗ =




37.9626
23.3395
14.7396
19.4686
28.6084
32.6407
38.6879
45.7553
54.7100
64.6193




, tr(X̃(v∗)) = 487.4226, v =




38.1249
23.1773
14.5789
17.4601
28.4168
32.4962
38.5573
45.6625
55.0314
65.0329




, tr(X(v)) = 484.8125.

Thus, relative errors for the obtained approximations are:

errv =
||v − v∗||

||v||
= 0.0171,(1)

errtr =
|| tr(X̃(v∗))− tr(X(v))||

|| tr(X(v))||
= 0.0054.(2)

Here the residual error from (38) is Rer = 0.3534. This shows that even if the considered
mechanical system is not very close to the modally damped one (Rer is not significantly
smaller than 1), formula (53) still insures the satisfying result.

Case 2. Within the second case, we will assume the existence of internal damping;
thus let α = 0.01 be the coefficient of internal damping.

As emphasized in Remark 1 for the case α 6= 0, one can not use formula (53) directly.
Thus we will use Newton’s method for optimization of the trace approximation given by

formula (54). Again by (v∗, tr(X̃(v∗))) we denote the obtained approximation for optimal
viscosity and the corresponding minimal trace. Similarly, by (v, tr(X(v))) we denote
optimal viscosity and the corresponding function value obtained by the minimization of
the trace of the ”dual Lyapunov equation” of equation (18) directly with MATLAB’s
function fminsearch, where the Lyapunov equation was solved by MATLAB’s function
lyap.

Here are the obtained quantities:

v∗ =




36.3126
21.9638
13.9714
15.8175
26.1052
29.7869
35.4482
42.2551
51.4233
61.2265




, tr(X̃(v∗)) = 486.3990, v =




36.1512
22.1206
14.0986
17.6473
26.2969
29.9301
35.5781
42.3487
51.1036
60.8131




, tr(X(v)) = 483.9260.
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For relative errors defined in (1) and (2), here we have:

errv = 0.0169, errtr = 0.0051.

In this example, the residual error from (38) has the similar magnitude, that is, Rer =
0.3049.

In the second example, we will consider a more general structure.
Example 2 In this example, we will consider the system from (2) with a dimension

n = 500 and the matrices M and K defined as:

M = 103diag(m1, m2, . . . ,mn),

mi =

{
200− 20(i− 1) , i = 1, . . . , 250
201 + 20(i− 11) , i = 251, . . . , 500

K =




10 −1
−1 10 −1

−1 10 −1

. . .
. . .

. . .

−1 10 −1
−1 10




.

The damping matrix D has the block diagonal structure as follows

D =




0
D1

0
D2

0



+ Cu,(3)

where α = 0.01 and 0 represents a zero matrix of the corresponding dimension. The
matrix Di is defined as:

Di =




vi1 + vi1p −vi1p
−vi1p vi1 + 2vi1p −vi1p

−vi1p vi1 + (vi1 + vi2)p+ vi2 −vi2p
−vi2p vi2 + vi2p


 ,

where p = 0.01. Thus, each block has 2 different viscosities, which means that we have 4
different viscosity parameters to optimize.

Again, we will compare the approximation of optimal viscosities obtained by our new
approach proposed in Section 5.2 with optimal viscosity obtained by the minimization
of the trace of the ”dual Lyapunov equation” of equation (18) directly with MATLAB’s
function fminsearch, based on the MATLAB’s function lyap for solving Lyapunov equa-
tions.

This comparison has been performed for different positions of matrices D1 and D2,
that is, for in each new configuration we will change the position of matrices D1 and D2.
The following configurations are taken into consideration:

(i, j) ∈ {(2, 17), (2, 67), (2, 117), (2, 267), (2, 317), (52, 67), (52, 117), (52, 167),

(52, 267), (52, 317), (52, 367), (52, 417), (102, 117), (102, 217), (102, 367),

(152, 167), (152, 267), (152, 317), (202, 417), (252, 267), (252, 367), (252, 417),

(252, 467), (302, 367), (302, 417), (352, 417), (352, 467)},

where i represents the position of the matrix D1 and j represents the position of the
matrix D2. Figure 3 shows the relative error

errtr =
|| tr(X(v))− tr(X̃(v∗))||

|| tr(X(v))||
,

for each configuration.
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Figure 3. Relative errors errtr for different positions of matrices
D1 and D2.

During the optimization process, using Algorithm 1, we have calculated the percentage
of updates of the matrix U with the tolerance tolU = 10−5. The number of updates for
each configuration is shown in Figure 4.
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Figure 4. Percentage of updating matrix U for different positions
of matrices D1 and D2.

Moreover, in order to illustrate the quality of the new approach using the surface plot
in prescribed viscosities, we will set v1 = v3, v2 = v4, while v1 and v2 vary in segments
[40, 200], [200, 340], respectively. The block with viscosities v1 and v2 starts at position
242 and the block with v3 and v4 starts at 470.

For the first step in iterations we have used the matrix U defined by optimal viscosities
v1 = 101.4445 and v2 = 268.3622, while during the iteration process the matrix U has
been updated with the tolerance tolU = 10−5.

In Figure 5, we can see the relative error

errrel =
||flyap − faprox||

||flyap||
,

in which flyap represents the trace of the solution of the Lyapunov equation for certain
viscosities v1 and v2 and faprox represents the trace calculated by our algorithm. The
relative error is less than 10−7.
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Figure 5. Relative error of the function value.

7. Conclusions

Troughout this paper we have considered damping optimization for the mechanical
system Mẍ+D(v)ẋ+Kx = 0. Since only the damping matrix D(v) depends on parame-
ters, the typical (or often used, standard) approach for viscosity optimization (v) assumes
preprocessing based on the diagonalization of the mass and stiffness matrices, M and K.

Contrary to this approach, we propose the new approach, which is based on the diag-
onalization of the damping matrix D(v), and then calculation of optimal viscosities. This
is the main contribution of this paper, that is, we have shown that a slight change in the
paradigm of damping optimization, for a certain structure, can significantly improve the
performance of optimization methods.

Although, in general, the new approach can not be more efficient than the standard
one, we have shown that in the case when M , D and K are closed to the case when all
three can be simultaneously diagonalized (or when the mechanical system is closed to
modally damped one) we can derive optimal viscosities, explicitly or numerically, very
efficiently.

We have also provided the bounds which can be easily used to determine whether
the considered mechanical system is suitable for applying the new approach, i.e., if the
mechanical system under consideration is close to a modally damped one or not.

Our numerical examples show that with the proposed approach we can obtain sat-
isfactory approximation for optimal parameters. Moreover, we illustrate that with our
approach we can significantly accelerate the optimization process for the structured sys-
tems.
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Systems and Control Letters, 53(3-4), (2004) 187–194.

[6] N. Truhar, An efficient algorithm for damper optimization for linear vibrating systems using
Lyapunov equation, J. Comput. Appl. Math., 172 (1), (2004) 169–182.
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