
INTERNATIONAL JOURNAL OF c© 2017 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 14, Number 2, Pages 175–200

AN IMMERSED-FINITE-ELEMENT PARTICLE-IN-CELL

SIMULATION TOOL FOR PLASMA SURFACE INTERACTION

YUCHUAN CHU, DAORU HAN, YONG CAO, XIAOMING HE, AND JOSEPH WANG

Abstract. A novel Immersed-Finite-Element Particle-in-Cell (IFE-PIC) simulation tool is pre-
sented in this paper for plasma surface interaction where charged plasma particles are represented
by a number of simulation particles. The Particle-in-Cell (PIC) method is one of the major parti-
cle models for plasma simulation, which utilizes a huge number of simulation particles and hence

provides a first-principle-based kinetic description of particle trajectories and field quantities. The
immersed finite element method provides an accurate approach with convenient implementations
to solve interface problems based on structured interface-independent meshes on which the PIC
method works most efficiently. In the presented IFE-PIC simulation tool, different geometries can
be treated automatically for both PIC and IFE through the geometric information specified in
an input file. The set of parameters for plasma properties is also assembled into a single input
file which can be easily modified for a variety of plasma environments in different applications.
Collisions between particles are also incorporated in this tool and can be switched on/off with
one parameter in the input file. Efficient modules are adopted to integrate PIC and IFE together
into the final simulation tool. Hence our IFE-PIC simulation package offers a convenient and ef-
ficient tool to study the microcosmic plasma features for a wide range of applications. Numerical
experiments are provided to demonstrate the capability of this tool.

Key words. Particle-In-Cell, immersed finite elements, plasma surface interaction, electric
propulsion.

1. Introduction

The problem of plasma interactions with a complex surface is typically very
complicated to solve. Numerical simulations play an essential role in the study of
plasma characteristics and have become an efficient tool to provide accurate per-
formance predictions of the plasma devices. The standard tool to solve the interac-
tions of a rarefied plasma with a complex surface is Particle-in-Cell (PIC) method,
which has been widely used in many engineering and applied physics problems in-
volving plasma-surface interaction, such as electric propulsion systems [41, 57, 73]
and fusion reactors [20, 62]. Furthermore, the PIC method with Monte Carlo Col-
lisions (MCC) [7, 36, 60, 64] and Direct Simulation Monte Carlo (DSMC) meth-
ods [3–5, 9, 33, 34, 58, 59] can simulate the interactions between different plasma
species.

In the PIC method, a “gather” step is used to interpolate the electric field,
which is solved by a numerical method, from mesh nodes to particle positions to
push the particles. A “scatter” step is used to deposit particle charge to mesh
nodes for the numerical method to solve for the electric field. In a typical PIC
simulation, there are millions of simulation particles in the computation domain.
Hence these two main steps cost a significant portion of computing time. Therefore,
it is necessary to find an efficient way to perform these two steps for each particle.
Since the particle locations can be easily identified via indexing in a Cartesian
mesh, it is preferable to use a Cartesian mesh on which the PIC method works
most efficiently. However, most PIC simulations in practical applications have

Received by the editors February 25, 2016 and, in revised form, October 8, 2016.
2010 Mathematics Subject Classification: 68N19, 65N30.

175

176 Y. CHU, D. HAN, Y. CAO, X. HE, AND J. WANG

objects immersed in the plasma, which makes the problem an interface problem.
For such problems, traditional numerical methods need to use body-fitting meshes,
which are unstructured for non-trivial object geometry hence not very efficient
for locating particles in the PIC method. Therefore, it is critical to develop a new
numerical method to accurately solve the interface problem with complex interfaces
on Cartesian meshes for PIC method.

The immersed finite element (IFE) method which adapts the finite element
method for interface problems so that a structured mesh independent of the inter-
face can be used to accurately solve interface problems [1,8,11–13,16,18,22,27,28,
31,32,35,43,44,46–50,52,53,56,63]. Based on the IFE method, the Immersed-Finite-
Element Particle-In-Cell (IFE-PIC) method [37, 39, 40, 54, 55] has been developed
to provide a promising approach for plasma simulations and applied to different
applications [10,15,17,36,66,67,69,70]. The algebraic system arising from the IFE
method is symmetric positive definite, which is a critical property for employing
many fast solvers. While minimizing the extra efforts to modify the traditional
finite element packages, IFE methods can also easily deal with complex interface
with an optimal order of accuracy. These features make the IFE methods competi-
tive for accurately solving the interface problems on structured meshes independent
of the interface and providing the electric field to the PIC method.

In this paper we will present a featured simulation tool of the IFE-PIC method.
The IFE and PIC methods will be briefly reviewed and the dynamic interactions
between IFE and PIC modules are illustrated in details. Several critical features of
the simulation tool will be discussed, such as the automatic treatment of the differ-
ent geometries, the convenient input for different types of plasma, efficient modules
for interactions between IFE and PIC methods, and optional modules for particle
collisions. In order to illustrate the features of this simulation tool, two numerical
experiments are carried out for the electric propulsion. Based on the automatic
treatment of object surfaces and high-efficient particle simulation of our tool, var-
ious spacecraft/satellite parts of different geometries and high density plasma in
electric propulsion can be modeled with our IFE-PIC package. Meanwhile, the
physical mechanism of discharging process in electric propulsion and the erosion of
key components, such as the grid erosion caused by charge-exchange ions, can be
analyzed in detail with the particle collision module.

The rest of the paper is organized as follows. In Section 2 we will review the IFE
method and discuss about the modules for obtaining the IFE solution. In Section 3
we will review the PIC method and introduce the modules and parameters for PIC.
In Section 4 we will integrate PIC and IFE together under a dynamic framework
with efficient modules for the interactions between PIC and IFE. In Section 5
numerical examples will be provided to illustrate the features of the simulation
tool. Finally brief conclusions are given in Section 6.

2. Modules for immersed finite element method

In this section, we will introduce the modules of the immersed finite element
method in the plasma environment simulation tool. First, we will briefly review
the basic idea of IFE and the definition of the 3D linear IFE method. Then we will
introduce the input file and the modules for dealing with the geometries which are
needed to form the IFE basis functions and compute the integrals by Gauss quadra-
tures. Moreover, we will introduce the modules to form the linear system arising
from the immersed finite element method based on the charge density provided by

IME-PIC SIMULATION TOOL FOR PLASMA SURFACE INTERACTION 177

PIC and the modules to solve the linear system for the electrostatic potential field
which is needed by PIC.

2.1. Review for immersed finite element. The immersed finite element (IFE)
method is an extended finite element method that can use a structured mesh to
solve a partial differential equation (PDE) with discontinuities in the coefficients.
The structured mesh is independent of the interface and allows complex inter-
faces to cut through the interior of the elements. Therefore, the mesh in an IFE
method consists of interface elements whose interiors are cut through by the in-
terface and the rest that are called non-interface elements. For all non-interface
elements, standard finite element functions are used, while for interface elements,
special piecewise polynomials satisfying interface jump conditions are employed.
Therefore, the only difference between IFE and traditional finite elements is the
choice of different basis functions on the interface elements. This leads to a con-
venient implementation of the IFE method based on the traditional finite element
method. Furthermore, the IFE method has the optimal convergence rates expected
from the utilized polynomials and provides a symmetric positive definite matrix for
fast solvers [2, 14, 19, 26, 30, 42, 45, 51, 74]. In the following we will briefly recall the
3D linear IFE method [37, 38].

Consider the following 3D interface elliptic PDE for solving the electrostatic
potential:

−∇ ·
(

ε∇φ(X)
)

= ρ(X), X = (x, y, z) ∈ Ω,(1)

together with the jump conditions across the interface Γ:

[φ(X)]|Γ = 0,(2)
[

ε
∂φ(X)

∂nΓ

]∣

∣

∣

∣

Γ

= 0,(3)

and the boundary conditions:

φ(X)|ΓD
= g(X),(4)

∂φ(X)

∂nΓN

|ΓN
= p(X).(5)

Here, without loss of generality, we assume that Ω ⊂ R3 is a box domain, the
interface Γ is a curved surface separating Ω into two sub-domains Ω−, Ω+ such
that Ω = Ω−∪Ω+∪Γ, ΓD and ΓN are the Dirichlet and Neumann boundaries such
that ∂Ω = ΓD ∪ ΓN , nΓN

is the unit outer normal vector of ΓN , nΓ is the unit
normal vector of Γ pointing from Ω− to Ω+, and the material-dependent coefficient
ε(x, y) is a piecewise constant function defined by

ε(X) =

{

ε−, X ∈ Ω−,
ε+, X ∈ Ω+.

In the mesh generation module, we first partition the simulation domain into
uniform cubes whose edges are parallel to the coordinate axes, and then further
partition each cube into five tetrahedra in the way such that the vertices of the
tetrahedra are also those of the cubes, as illustrated in Figure 1.

All the parameters for the mesh generation are provided in a single input file
mesh.inp. After these parameters are read into the code from the input file, the
module Basic Tetra Partition, which calls the module Cubic Partition for the par-
tition of the domain into uniform cubes, is called to obtain the basic information
array for all tetrahedron elements.

178 Y. CHU, D. HAN, Y. CAO, X. HE, AND J. WANG

Figure 1. The five tetrahedra partitioned from a cubic cell [37].

In a typical interface tetrahedron T with vertices Ai, (i = 1, 2, 3, 4), we use
a three-point cut △P1P2P3 to approximate the interface Γ in this element where
Pj (j = 1, 2, 3) are three intersection points between the element edges and the
interface Γ. Then the three-point cut △P1P2P3 divides T into two sub-elements
T+ and T−. Then four piecewise 3D linear immersed finite element basis functions
can be introduced [37, 38]:

ψi(x, y) =

{

ψ+
i = a1x+ a2y + a3z + a4, (x, y) ∈ T

+

ψ−
i = a5x+ a6y + a7z + a8, (x, y) ∈ T

− (i = 1, 2, 3, 4),

which satisfy the following constraints:

(1) Nodal value specifications:

ψi(Aj) =

{

1, i = j
0, i 6= j

(i, j = 1, 2, 3, 4);

(2) The continuity across the three-point cut △P1P2P3:

ψ+
i (Pj) = ψ−

i (Pj), i = 1, 2, 3, 4 and j = 1, 2, 3;

(3) The flux continuity across three point cut △P1P2P3:

(β+ ∂ψ
+
i

∂n
− β− ∂ψ

−
i

∂n
) = 0, i = 1, 2, 3, 4

where n is the normal of Γ̃T .

For more details about the computation of the coefficients in the basis functions
and the formulation of the immersed finite element method, we refer the readers
to [37, 38].

IME-PIC SIMULATION TOOL FOR PLASMA SURFACE INTERACTION 179

2.2. Object data structure. In the IFE-PIC simulation tool, two general data
structures are utilized in the object input file object.inp to define different types
of objects. One general data structure is to use up to 9 parameters to describe the
properties of an object. The other one is to define an algebraic equation z = z(x, y)
for describing the surface of an object.

The first data structure defines 9 parameters to provide a general way to describe
different types of objects [37]. The first parameter, objects(i)%Shape, is an positive
integer to identify the type of an object. For example, 1 indicates a cylinder, 2
indicates a sphere or spherical cap, 3 indicates a box, and so on. The second
parameter objects(i)%Axis is an integer to specify the orientation axis of an object.
In particular, 0 indicates that there is no need to specify axis; 1, 2, and 3 indicate
that the axis is parallel to the coordinate axes x, y, or z, respectively; 4, 5, and
6 indicate that the axis is perpendicular to the axes x, y, or z, respectively. The
parameter set objects(i)%Dimensions defines the size of an object. For example,
this parameter set contains the length, width and height for a box. The parameter
set objects(i)%Locations is used to determine the location of a reference point of an
object. For example, it is the center point for a sphere. Up to three reference points
can be specified for one object. The parameter set objects(i)%Region provides
the index numbers of the regions in and outside of an object. The parameter
objects(i)%Phi represents the reference potential of an object if applicable. The
parameter objects(i)%Eps provides the dielectric coefficient of an object.

Based on the designed object data structure, we have established a shape li-
brary for most frequently used objects such as boxes, circular cylinders, circular
truncated cones, spheres, spherical caps, thin plates, circular plates, and so on.
Meanwhile, according to the variable objects(i)%Axis, a series of objects, which
have the same shape but are parallel or perpendicular to the coordinate axes x, y,or
z, can be specified separately. In addition, a number of complex geometries can be
constructed by applying Boolean operations to the objects which are defined in the
shape library. In the following we will provide the information of several typical
examples but not all types of the objects in order to shorten the presentation of
the paper.

Data 1 presents the object data information for a 22 × 22 × 22 box with the
low and high corners located at point (46,−11, 30) and (68, 11, 52), respectively.
The mesh nodes located in this cubic box are marked to be -2 and other mesh
nodes outside of the cubic box are marked to be -1 to represent vacuum region.
The potential and dielectric coefficient for this box are set to be -2 and 1 × 106,
respectively. In addition, all the input parameters for our tool are normalized by
reference variables which can be found in [37].

Data 1. Object information for a cubic box

3 ! objects(i)%Shape : Cube Box
0 ! objects(i)%Axis : NA
22., 22., 22. ! objects(i)%Dimensions(1:3) : Length, Width, Height
46., -11., 30. ! objects(i)%Locations(1,:) : Lower Corner
68., 11., 52. ! objects(i)%Locations(2,:) : Upper Corner
0., 0., 0. ! objects(i)%Locations(3,:) : Dummy, Dummy, Dummy
-2, -1 ! objects(i)%Regions(1:2) : Inside the Cube Box, Outside the Cube

Box:Vacuum
-2. ! objects(i)%Phi : Potential of the Cube Box
1.E6 ! objects(i)%Eps : Dielectric Coefficient of the Cube Box

180 Y. CHU, D. HAN, Y. CAO, X. HE, AND J. WANG

The object data information in Data 2 is designed to model a circular-truncated
cone into the simulation domain. The axis of the circular-truncated cone is parallel
to the x-axis and the radius for the bottom and top circle surfaces of the circular-
truncated cone are set to be 3.54 and 5.26, respectively. The coordinates of the
center of the two circle surfaces are (32, 0, 45) and (40, 0, 45).

Data 2. Object information for a circular-truncated cone with axis parallel to x axis

4 ! objects(i)%Shape : Circular-Truncated Cone
1 ! objects(i)%Axis : Axis Parallel to x Axis
3.54, 5.26, 0. ! objects(i)%Dimensions(1:3) : Radius, Radius, Dummy
32., 0., 45. ! objects(i)%Locations(1,:) : Circle Center for Bottom Surface
40., 0., 45. ! objects(i)%Locations(2,:) : Circle Center for Top Surface
0., 0., 0. ! objects(i)%Locations(3,:) : Dummy, Dummy, Dummy
-5, -1 ! objects(i)%Regions(1:2) : Inside and Outside the Circular

-Truncated Cone
-2. ! objects(i)%Phi : Potential of the Circular Truncated Cone
1.E6 ! objects(i)%Eps : Dielectric Coefficient of the Circular Truncated

Cone

Similarly, we can define a spherical cap in Data 3.

Data 3. Object information for a spherical cap

2 ! objects(i)%Shape : Spherical Cap
1 ! objects(i)%Axis : Sphere Cut by the Plane Perpendicular to x Axis
16.64, 0., 0. ! objects(i)%Dimensions(1:3) : Radius, Dummy, Dummy
28., 0., 33.08 ! objects(i)%Locations(1,:) : Center for Sphere
39., 0., 0. ! objects(i)%Locations(2,:) : x Coordinate of Cutting-Plane, Dummy,

Dummy
0., 0., 0. ! objects(i)%Locations(3,:) : Dummy, Dummy, Dummy
-4, -1 ! objects(i)%Regions(1:2) : Inside Spherical Cap, Outside Spherical

Cap: Vacuum
-2. ! objects(i)%Phi : Potential of Spherical Cap
1.E6 ! objects(i)%Eps : Dielectric Coefficient of Spherical Cap

On the other hand, a curved surface with arbitrary geometry (referred to as “z-
surface” in the following of this paper) is also defined in the object shape library.
The shape index of the new object is 2013. This object index will lead to the
module GetLocalHeight zSurface which specifies the geometry of the surface via a
given math equation described as z = z(x, y). Then all the geometric operations
will be based on this equation, such as clarifying the location of mesh nodes and
computing the intersection points between the object surface and the mesh lines.
The regions, potential, and dielectric coefficient parameters can be passed into the
IFE modules in the same way as other objects.

The object shape library, which utilizes both of the above two general data
structures and the Boolean operations, contains both a series of basic shapes and
the options to define customized geometries. Hence this simulation tool is capable
of modeling most shapes appeared in the applications of plasma dynamics to as-
tronautical and space studies. For instance, a complex-shaped spacecraft may be

IME-PIC SIMULATION TOOL FOR PLASMA SURFACE INTERACTION 181

assembled from the basic shapes that represent each key component of the space-
craft. On the other hand, a curved surface can be specifically and flexibly modeled
by the object of “z-surface” to represent the rugged/irregular surface topography.
Furthermore, complicated geometries such as the ion optics grids of an ion thruster
can be constructed by boxes and cylinders with appropriate Boolean operations.

2.3. Modules for object geometry and IFE basis functions. As reviewed
in Section 2.1, all the mesh elements need to be classified to be either interface
elements or non-interface elements in order to define appropriate basis functions on
each element. Therefore, the mesh nodes are first classified to be either in a specific
object or out of all objects. Then this classification of the mesh nodes is used to
classify the elements and locate the intersection points between the Cartesian mesh
lines and the object surfaces, which provides the critical interface information to
define the IFE basis functions as discussed above.

The classification of mesh nodes is done via the module Locate Nodes which calls
the module Locate Point. For each mesh node, the module Locate Point determines
in which element this point is located. In Locate Nodes, all the mesh nodes are
classified by Locate Point one by one and then assigned a flag indicating which
object/region it belongs to.

For an object defined by the algebraic equation z = z(x, y), a point is inside the
object (“z-surface”) if

(6) zp < z(xp, yp)

where xp, yp, and zp are the coordinates of the given point while z(x, y) is the
function specifying the z-surface topography.

For an object defined by the general data structure using up to 9 parameters,
the algorithm in the module Locate Point adopts the fundamental vector geometry
operations, such as the dot product and cross product of vectors, to decide whether
a mesh point locates in the object.

After the mesh nodes are classified as above, each element will be classified as
either an “interface element” or a “non-interface element” in the module Clas-

sify Elements. To do this, one would need the location information of all four
vertices of the tetrahedron element. The algorithm of classifying elements and
calculating the intersection information is summarized as follows:

• Step 1: If all four vertices of the element belongs to the same object or they
do not belong to any object, then this element is a non-interface element,
done; otherwise, this element is an interface element, then go to Step 2;
• Step 2: For each edge of an element, calculate the possible intersection
with the objects by performing the “line-object intersection calculation”.
This will determine if any edge of the element has any intersection with
any object and then compute the coordinates of the intersection point if
there is one. Summarizing such information of all six edges of an element
will determine the intersection type of the element: either a three-edge-cut
interface element or a four-edge-cut interface element (see Figure 2) [37,38].

The intersection points are searched in an efficient way such that each object is
only checked against all the tetrahedron elements that lie in its vicinity, which is
pre-specified such that all elements in the vicinity are enclosed by a virtual box.
Basically, for every object in the simulation, a minimum box region is defined to
contain this object. Then each element will be checked for whether it lies in the
minimum box. If yes, the module El Object Intersection will be called to obtain
the possible intersection points of this element with the object, inside which the

182 Y. CHU, D. HAN, Y. CAO, X. HE, AND J. WANG

a) b)

Figure 2. Intersection topologies of tetrahedral elements: a)
Three-edge-cut b)Four-edge-cut [37].

module Line Object Intersection is called to obtain the intersection point for each
edge of the element.

Once an element is classified (a non-interface element or an interface element)
and the intersection points are obtained, the corresponding basis functions will be
defined in the module IFE Assembler based on the definition in Section 2.1. For
example, for an interface element where vertex A1 is in T+ and vertices A2, A3,
and A4 are in T−, the definition of the 3D linear IFE basis functions in Section 2.1
leads to the following eight linear equations for ψ1:

a1x1 + a2y1 + a3z1 + a4 = 1(7)

a5x2 + a6y2 + a7z2 + a8 = 0(8)

a5x3 + a6y3 + a7z3 + a8 = 0(9)

a5x4 + a6y4 + a7z4 + a8 = 0(10)

a1xp1 + a2yp1 + a3zp1 + a4 = a5xp1 + a6yp1 + a7zp1 + a8(11)

a1xp2 + a2yp2 + a3zp2 + a4 = a5xp2 + a6yp2 + a7zp2 + a8(12)

a1xp3 + a2yp3 + a3zp3 + a4 = a5xp3 + a6yp3 + a7zp3 + a8(13)

β+(n1a1 + n2a2 + n3a3) = β−(n1a5 + n2a6 + n3a7)(14)

where (xi, yi, zi) (i = 1, 2, 3, 4) are coordinates of vertices Ai (i = 1, 2, 3, 4),
(xpj , ypj, zpj) (j = 1, 2, 3) are coordinates of intersection points Pj (j = 1, 2, 3), and
(n1, n2, n3) is the normal vector n.

Inside the module IFE Assembler, for an interface element, the module Lin-

ear IFE Basis Coeff inputs and solves these linear equations for all IFE basis func-
tions in a general way to obtain the coefficients of the IFE basis functions. Then
the module Linear IFE Basis Eval use these coefficients to evaluate the IFE basis
functions at the given points, which will be the Gauss points in the module to as-
semble the stiffness matrix and right hand side vector. Similarly, for a non-interface
element, a module Linear FE Basis Coeff is called to form the standard finite ele-
ment basis functions, which are used in the module Linear FE Basis Eval for the
evaluations of the basis functions at give points.

2.4. Modules for immersed finite element solution. In this section, we will
discuss the modules to form the linear system arising from the immersed finite
element method based on the charge density provided by PIC and the module to
solve the linear system for the electrostatic potential field which is needed by PIC.
We mainly follow the regular local assembly procedure of the regular finite element

IME-PIC SIMULATION TOOL FOR PLASMA SURFACE INTERACTION 183

methods to form the stiffness matrix and the right hand side vector in the linear
system. The only major difference is that we use the 3D linear IFE basis functions
on the interface elements while we still use the traditional 3D linear finite elements
on the non-interface elements, which makes it convenient to implement the IFE
method. We apply the preconditioned conjugate gradient (PCG) method to solve
the linear system since the stiffness matrix is symmetric and positive-definite.

In order to reduce the computational overhead when forming the global stiffness
matrix A in the linear system arising from the finite element discretization, the
computation of the integrals of the local stiffness matrix and local load vector on
the non-interface elements are hardwired since the standard finite element basis
functions are used. Basically the integrals are computed by Gauss quadratures
only once on one non-interface element and then re-scaled to other non-interface
elements. When the mesh is fine enough, most of the elements are in fact non-
interface elements. Therefore, when forming the global stiffness matrix A in the
module Global Stiff, most of the computations are the same as those of the tradi-
tional finite element method.

For the local stiffness matrix on the interface elements, the corresponding inte-
grals are computed one by one based on the Gauss quadrature and the definition
of the IFE basis functions. Each interface element is divided into two sub-elements
in the piecewise definition of the IFE basis functions. Due to the regularity re-
quirement of the Gauss quadrature, an integral needs to be computed on the two
sub-domains separately and then summed up over the whole interface element.
Since the shapes of some sub-elements are not very regular, an interface element
is further partitioned into a number of sub-tetrahedra for the convenience of the
implementation of the Gauss quadrature. For a three-edge-cut interface element
and a four-edge-cut interface element, the element is partitioned into four and six
sub-tetrahedra respectively, shown in Figure 3. Based on the Gauss quadrature
on a tetrahedron provided by the module Gauss Nodes and the coefficients of the
basis function provided by the module Linear IFE Basis Coeff, the integrals will
be numerically computed on each sub-tetrahedron and then summed up over the
whole interface element. The module IFE Stiff is called by module Global Stiff to
compute the integrals in this way by using the module Linear IFE Basis Eval and
then form the local stiffness matrix for each element.

a) b)

Figure 3. Partition a typical interface tetrahedron into sub-
tetrahedra: a) Three-edge-cut b)Four-edge-cut [37].

Furthermore, based on the charge density provided by PIC, the right hand side
vector of the linear system is formed through a similar procedure in the module
Global RHS. Then, the Dirichlet and Neumann boundary conditions are applied

184 Y. CHU, D. HAN, Y. CAO, X. HE, AND J. WANG

in the modules Global RHS EBC and Global RHS NBC respectively. By using the
preconditioned conjugate gradient method, the module PCG solver is called to solve
the sparse symmetric positive definite linear system for obtaining the electrostatic
potential distribution in the domain, which will be used to push the plasma particles
in the PIC simulation. All the parameters and boundary conditions which are
related to form and solve the linear system of the IFE method are incorporated
into a single input file ife.inp. Since these modules are relatively standard, we
omit the related details to shorten the presentation of this paper.

3. Modules for Particle-In-Cell method

In this section, we will briefly review the basic ideas of the PIC method and
then introduce the main PIC modules in the simulation tool, including the plasma
parameter input, particle pushing, particle collision, particle injection, and particle
collection. The PIC parameter input file with a general and complete data structure
for specifying the plasma parameters and PIC control options, together with the
automatic treatment of the plasma properties based on these parameters, allow
users to conveniently change the type of the simulated plasma only in the input
file. The efficient modules for the different operations on particles are one of the
key factors for the high efficiency of this simulation tool.

3.1. Review for Particle-In-Cell method. The Particle-In-Cell method, which
uses simulation particles (also referred as “macro-particles”) to represent real plasma
particles, is one of the most popular simulation method in the plasma simulation
community because of its noise-reduction capability and moderate computational
expense. This method works most efficiently on structured Cartesian meshes in-
dependent of complex interfaces. Important components of this method include:
1) deposition of the charge density from the particles to the mesh nodes, which
provides the right hand side (RHS) vector of the interface Poisson’s equation of the
electric field; 2) solution of the interface Poisson equation for the electric field; 3)
interpolation of the electric field at particle locations; 4) solving the equation of
motion for moving particles over a short time period, and other related operations
on the particles, such as collision, injection, and collection.

The PIC simulation for plasma environment is often a large-scale simulation
since millions of simulation particles and thousands of PIC iteration steps are of-
ten needed for realistic applications. For each particle, the 3D coordinates of its
location, the 3D velocity vector, and the species flag of the particle are saved in the
computer memory. After the initial loading of particles in the simulation domain,
a typical PIC iteration step consists of the following main stages:

(1) Deposit the charge density (see section 4.2):

The main task of this stage of PIC is to provide the electric charge den-
sity ρ on the right hand side of the equation (1), which will be solved by
the IFE method in the next stage. For each particle, the mesh element, in
which the particle locates, needs to be first identified through a fast search-
ing algorithm since there are usually millions of particles in the simulation.
Then the charge of the particle is deposited onto the mesh nodes through
the linear or higher order interpolation/weighting based on the coordinates
of the particle location. This is the main reason why PIC method works
most efficiently on Cartesian meshes since it is trivial to locate the particle

IME-PIC SIMULATION TOOL FOR PLASMA SURFACE INTERACTION 185

and do the interpolation onto the Cartesian mesh.

(2) Solve the electric field (see section 2):

Once the electric charge density ρ is provided in the previous stage, the
electrostatic potential φ, can be solved self-consistently from the interface
Poisson’s equation (1)-(5) for the electric field which is needed in the next
stage. As reviewed in Section 2, through a convenient implementation of
the IFE method based on the traditional finite element method, the IFE
method can accurately solve this equation with optimal convergence rates
on a structured mesh independent of the interface, which is much favorable
for the efficiency of the PIC method.

(3) Interpolate electric field at particle locations (see section 4.3):

In this stage, the IFE solution of the interface Poisson’s equation (1)-(5)
is utilized to compute the electric field which needs to be evaluated at the
locations of all particles in PIC for the next stage of pushing particles. The
electric field E can be easily obtained from the electrostatic potential φ. It
is strongly recommended to use the same interpolation/weighting as in the
first stage, which can significantly reduce the associated numerical noise [6].

(4) Push particles (see section 3.5):

For a short time interval which is specified as the time step size in the
PIC parameter input file, all the particles are pushed based on the electric
field provided from the previous stage, which provides the particle locations
for the next PIC iteration step. The trajectories of an individual charged
particle is governed by the Newton-Lorentz equation. The equation of mo-
tion needs to be solved many times for pushing millions of particles at
thousands of PIC iteration steps, which requires an efficient scheme with
acceptable accuracy order and less memory requirement. Therefore, we
adopted one commonly used scheme, leap-frog, in our IFE-PIC simulation
tool.

(5) Implement particle collision (see section 3.3):

For certain types of applications, such as the discharge process in elec-
tric propulsion problems and interactions between plasma and materials,
particle collision may need to be addressed in the simulation to accurately
resolve the complex plasma environments. And different physical problems
may lead to different collisions between different types of particles. Based on
Monte Carlo Collision (MCC) method and Direct Simulation Monte Carlo
(DSMC) method, most types of particle collisions, such as electron-neutral
collision, ion-neutral collision, neutral-neutral collision, electron-electron
collision, electron-ion collision, etc., can be simulated.

(6) Inject particles (see section 3.5):

186 Y. CHU, D. HAN, Y. CAO, X. HE, AND J. WANG

In order to correctly simulate the effect of the external plasma source,
photoelectrons, secondary electrons, etc., new plasma particles need to be
appropriately injected into the simulation domain based on the velocity
distribution specified in the PIC parameter input file, which is very critical
to the accuracy of the simulation results.

(7) Handle particles hitting an object (see section 3.4):

At each PIC simulation step, some particles may be pushed to hit an ob-
ject. Then it is critical to decide how to handle these particles for plasma
surface interaction in order to keep a correct simulation particle set and
apply the effect of these particles to the electric field. The general data
structures of the object geometry, which is discussed in section 2.2, will
play a key role in the efficient procedure to decide if a particle hits an ob-
ject.

(8) Handle particles going out of the boundary (see section 3.5):

After the above operations on the particles, some particles may go out
of the simulation domain. Different particle boundary conditions, which
are specified in the PIC parameter input file, will provide different ways to
deal with these particles. After this stage, the simulation will go to stage 1
to continue the next PIC iteration step.

3.2. PIC parameter input file. The PIC control options and plasma parameters
are specified in an input file pic.inp as shown in Data 4. This input file is read by
a PIC module at the beginning of the simulation and then automatically handled
by the corresponding modules in the rest of the simulation. Therefore, by simply
changing the parameters in this input file, different plasma environments can be
automatically modeled in the IFE-PIC simulation tool. This feature provides a
very convenient way to apply this tool to a wide range of plasma environments for
different practical applications.

The following example shows the structure of the PIC parameter input file. The
first line is a dummy string for the problem description. The second line specifies
the total number of PIC iteration steps and the time step size for PIC iteration.
The inclusion of photoelectrons can be specified via a logical switch (“T” or “F”)
as listed in the third line. Then the auto-save option/frequency is specified by the
fourth line. The total number of species considered in the problem as ambient
plasma is given in the fifth line, which is followed by the index, density, number of
particles in each dimension, drifting velocity, and thermal velocity of each species.

Data 4. Plasma parameter information specified in input file pic.inp

! problem statement ! a dummy line for problem statement
nt, dt ! total steps and step size
.T. ! switch of photoelectron species
1000 ! output data every 1000 steps
2 ! number of ambient species
1 ! index for the first species: solar wind electrons
0.1359 ! density for the first species

IME-PIC SIMULATION TOOL FOR PLASMA SURFACE INTERACTION 187

480, 40, 120 ! number of particles in each dimension
0.751928, 0, -0.065785 ! drifting velocities in each dimension
2.3350, 2.3350, 2.3350 ! thermal velocities in each dimension
2 ! index for the first species: solar wind ions
0.1359 ! density for the first species
480, 40, 120 ! number of particles in each dimension
0.751928, 0, -0.065785 ! drifting velocities in each dimension
0.04976, 0.04976, 0.04976 ! thermal velocities in each dimension

3.3. Module for particle collision. Different types of particle-particle collisions
are taken into consideration and the collision in our simulation tool can be switched
on/off with a parameter in the input file. The dynamics of electron-neutral scatter-
ing collisions is simulated with Monte Carlo Collision (MCC) method [7,36,60,64]
in the module MCC Collision. Which type of electron-neutral excitation, electron-
neutral ionization, and electron-neutral elastic scattering occurs is determined by
the cross sections for these types of electron-neutral collisions. The ion-neutral
charge exchange collisions, described by

Xeslow +Xe+fast −→ Xe+slow +Xefast,(15)

are also simulated with the MCC method. On the other hand, Direct Simula-
tion Monte Carlo (DSMC) methodology [3–5, 9, 33, 34, 58, 59] in rarefied gas field
is adopted to simulate the dynamics of neutral-neutral collisions in the module
DSMC Collision. Based on the probability theory and statistical approach, the
DSMC method, shown in Figure 4, is capable of simulating the molecular motion
and the inter-molecular collisions which are uncoupled over the time interval [36].

Input data

Set up the initial state of

molecules and the

simulation conditions

Move the molecules and

then adjust the boundaries

Index the

molecules

Calculate the

collisions of

molecules per unit

Reach the

sampling time
Sampling

Start

Reach the

steady flow

Sampling and

output file
End

Yes

No No

Yes

Figure 4. Flow chart of DSMC method.

3.4. Module for handling the particles hitting an object. During the move-
ment of plasma particles in the simulation domain, particles may hit the surface of
an object. The module AdjustObjects uses Algorithm 1 to decide whether a particle
will collide with the surfaces of objects in the simulation domain based on the ob-
ject data and the particle location. If yes, then the particle is either removed from
the system by calling the module RemovePart or reflected by calling the module
DiffuseReflection or SpecularReflection according to the different particle conditions
on the object surface.

188 Y. CHU, D. HAN, Y. CAO, X. HE, AND J. WANG

Algorithm 1. Decide if a particle hits an object and deal with particle conditions on

the object surface.

DO i part = 1, N Particle
X p← part(i part, 1 : 3),X po← X p− part(i part, 4 : 6) ∗ dt
DO Iobj = 1, N Objects

IF (Line segment X p − X po intersects with the surface of object Iobj)
THEN

call corresponding modules to deal with different particle conditions on
the object surface

ENDIF

ENDDO

ENDDO

Here the parameter N Particle is the total number of the simulation particles and
N Objects is the total numbers of objects in the simulation domain. X p and X po
are the current and previous locations of the particle with index i part, respectively.
part(i part, 1 : 3) and part(i part, 4 : 6) store the coordinates of the location and the
velocity vector of the particle with index i part, respectively. dt is the time step
size of PIC iteration.

Moreover, the charge of the removed particles can be also deposited on the inter-
face, which can provide the flux jump condition on the interface. The accumulated
surface charge density on the interface is critical to the interface problem with non-
homogeneous flux jump condition which can be solved by non-homogeneous IFE
methods [21, 23–25,29, 72].

3.5. Other important modules for PIC. In this section, we will briefly intro-
duce several other important modules for PIC, including pushing particles, injecting
particles, handling particles going out of the boundary, and loading particles.

After the electric field in the simulation domain is obtained, the particles will be
pushed in the simulation domain by numerically solving the following equations of
motion:

m
dv

dt
= F = q(E+ v ×B),(16)

dx

dt
= v.(17)

The above equations can be approximated by the well known leap-frog scheme:

m
vn+1/2 − vn−1/2

∆t
= Fn,(18)

xn+1 − xn

∆t
= vn+1/2.(19)

According to this algorithm, a module Vel ES is adopted to update the three di-
mensional velocity for each particle based on the electric filed which is obtained
from the IFE solution of the electric potential. Then the new position for each
particle can be easily calculated for one time step size of PIC iteration.

During the plasma simulation, particles emigrate through the simulation do-
main. Hence new particles need to be appropriately injected into the simulation
domain. The velocity distribution of injected particles follows a drifting Maxwellian
velocity distribution, which can be sampled according to the method discussed

IME-PIC SIMULATION TOOL FOR PLASMA SURFACE INTERACTION 189

in [5]. Furthermore, it is critical for certain types of applications to appropri-
ately inject photoelectrons and/or secondary electrons into the simulation. By
calling corresponding modules Inject Ambient, Inject Beam, Inject PhotoElectrons,
Inject SecondaryElectrons, etc. at each PIC iteration step, different types of plasma
particles are injected into the simulation domain to continue the simulation process
based on the plasma density, drifting velocities, and thermal velocities which are
provided in the PIC parameter input file.

The moving simulation plasma particles may go out of the boundary of the
simulation domain. These particles are normally absorbed and their associated
data is removed from the particle array part by calling the module RemovePart.
However, if a particle hits a periodic domain boundary, another particle is injected
back correspondingly into the simulation domain from the opposite boundary with
the same velocity. Therefore, the module AdjustOuter is performed to deal with
the particles going out of the boundary according to the boundary conditions of
the simulation domain which are provide in the PIC parameter input file.

The particle loading module is not very crucial for the solution accuracy if only
the steady-state solution is what we seek from the particle simulation. However it
may significantly reduce the computational cost if an appropriate set of particles
are loaded before the PIC iteration starts. Hence, we provide a convenient module
Load Particles in our simulation tool to pre-load particles in the simulation.

4. Integration of IFE and PIC in the simulation tool

In this section, we will introduce how to integrate the IFE and PIC methods
efficiently in our plasma simulation tool. The PIC method, which works most
efficiently on Cartesian meshes, provides the charge density to the IFE method
to form the right hand side vector of the linear system of IFE. The IFE method,
which can accurately solve the interface problems on Cartesian meshes, provides the
electrostatic potential field to PIC for pushing the plasma particles. Furthermore,
the object information, which is discussed in Section 2.2, is critical to both IFE and
PIC because the intersection points between the mesh lines and object surfaces are
the key to define the IFE basis functions (see section 2.1) and the particles hitting
an object need to be appropriately handled in PIC (see section 3.4). We will first
use the general coding framework to show how to integrate the modules discussed
in the previous two sections into a unified system. Then two efficient modules,
which mainly serve as the key connection between IFE and PIC, will be discussed
for the dynamic interactions between IFE and PIC.

4.1. Code structure of IFE-PIC simulation tool. The general framework of
the IFE-PIC method is shown in Figure 5, which dynamically integrates the IFE
method and PIC method together and clearly illustrates the roles of the modules
discussed in this paper.

4.2. Deposit the particle charge density to mesh nodes for IFE. In order
for the IFE method to solve the interface Poisson’s equation (1)-(5) for the electro-
static potential φ, the electric charge density ρ on the right hand side of Equation
(1) needs to be provided by the PIC method by accumulating the charge of all the
particles on the mesh nodes for IFE. Since millions of simulation particles need to
be located in the mesh for thousands of PIC iteration steps, it is necessary to utilize
a very efficient method to deposit the charge density of the particles. Again, this is
the main reason why PIC method works most efficiently on Cartesian meshes since
it is trivial to locate the particle and deposit the charge onto a Cartesian mesh.

190 Y. CHU, D. HAN, Y. CAO, X. HE, AND J. WANG

Use the deposited charge

density to assemble the right

hand vector b for IFE method

Use IFE solution to compute

and interpolate electric field at

particle locations

Push particles by solving the

equations of motion

Deal with particle collisions

Handle particles hitting an

object or going out of the

domain boundary

Inject new particles

Solve the linear system of IFE

method with PCG Solver

Treat electric field boundary

conditions for IFE method

Yes

No

dt

Start

Define objects and input plasma parameters from

object.inp and pic.inp

Generate mesh and assemble the stiff matrix A for

IFE method based on mesh.inp and ife.inp

Deposit particle charge

density from particles to

mesh nodes

Steady-state

achieved?

End and Post-processing

Load plasma particles into the simulation domain

based on pic.inp

Figure 5. Flow chart of IFE-PIC method.

In a 3D domain, the contribution of a particle, which is located at the position
xp, to the charge density at node (i, j, k) is calculated via linear weighting scheme
based on volumes, as described below:

qi,j,k = qp
V (xi+1,j+1,k+1 ,xp)

V (xi,j,k,xi+1,j+1,k+1)
,(20)

where xi,j,k is the mesh node with index (i, j, k), respectively, qp is the charge
density of the particle, and V (x,y) represents the volume of the box which can
be uniquely determined by its two diagonal vertices x and y. We can similarly
compute the contribution of this particle to the charge density at other nodes of
the box whose two diagonal vertices are xi,j,k and xi+1,j+1,k+1.

As shown in Algorithm 2, the module PIC-IFE is called to deposit the particle
charge density to mesh nodes in order to form the right hand side vector in the
linear system of IFE in the IFE modules.

Algorithm 2. Locate plasma particles and deposit charge to mesh nodes.

DO i part = 1, N Particle

IME-PIC SIMULATION TOOL FOR PLASMA SURFACE INTERACTION 191

xpos, ypos, zpos ← part(i part, 1 : 3)
isp← part(i part, 7)
i, j, k← INT(xpos/hx), INT(ypos/hy), INT(zpos/hz)
dx, dy, dz← xpos/hx − I, ypos/hy − J, zpos/hz −K
rho s(i, j, k, isp) = rho s(i, j, k, isp) + (1 − dx) ∗ (1 − dy) ∗ (1 − dz)
rho s(i + 1, j, k, isp) = rho s(i + 1, j, k, isp) + dx ∗ (1− dy) ∗ (1− dz)
rho s(i, j + 1, k, isp) = rho s(i, j + 1, k, isp) + (1 − dx) ∗ dy ∗ (1− dz)
rho s(i, j, k + 1, isp) = rho s(i, j, k + 1, isp) + (1 − dx) ∗ (1 − dy) ∗ dz
rho s(i, j + 1, k + 1, isp) = rho s(i, j + 1, k + 1, isp) + (1 − dx) ∗ dy ∗ dz
rho s(i + 1, j, k + 1, isp) = rho s(i + 1, j, k + 1, isp) + dx ∗ (1− dy) ∗ dz
rho s(i + 1, j + 1, k, isp) = rho s(i + 1, j + 1, k, isp) + dx ∗ dy ∗ (1 − dz)
rho s(i + 1, j + 1, k + 1, isp) = rho s(i + 1, j + 1, k + 1, isp) + dx ∗ dy ∗ dz

ENDDO

DO isp=1,ispe tot
DO k=1,nz

DO j=1,ny
DO i=1,nx

rho(i, j, k) = rho(i, j, k) + qs(isp) ∗ rho s(i, j, k, isp)
ENDDO

ENDDO

ENDDO

ENDDO

Here (xpos, ypos, zpos) is the location of the particle with index i part, isp is the
species index, hx, hy, hz are the mesh sizes in (x, y, z) direction, rho s is the charge
density of each species of plasma particle on mesh nodes, ispe tot is the total number
of species of plasma particles, (nx, ny, nz) are the number of mesh nodes in (x, y, z)
direction, and qs is the unit charge of different types of plasma particle. Hence, the
parameter rho is the charge density on mesh nodes which is used to form the right
hand side vector in the linear system of IFE.

4.3. Interpolate electric field at particle locations. After the IFE method
is applied to solve the interface Poisson’s equation (1)-(5), the IFE solution of the
electrostatic potential φ is utilized to compute the electric field which needs to be
evaluated at the locations of all particles in PIC for pushing particles. The electric
field E can be easily obtained from the electric potential φ as follows:

(21) E(x, y, z) = −∇φ(x, y, z).

It is strongly recommended to use the same interpolation/weighting scheme as in
the section 4.2 for depositing the electric field from the mesh nodes to the locations
of all particles, which can significantly reduce the associated numerical noise [6].
The module IFE-PIC is utilized to interpolate the electric field at particle positions,
shown in Algorithm 3.

Algorithm 3. Interpolate electric field at particle positions.

DO i part = 1, N Particle
xpos, ypos, zpos ← part(i part, 1 : 3)
isp← part(i part, 7)
i, j, k← INT(xpos/hx), INT(ypos/hy), INT(zpos/hz)

192 Y. CHU, D. HAN, Y. CAO, X. HE, AND J. WANG

dx, dy, dz← xpos/hx − I, ypos/hy − J, zpos/hz −K

f = efx(i, j, k) + dx ∗ (efx(i + 1, j, k)− efx(i, j, k))
f = f + dy ∗ (efx(i, j + 1, k) + dx ∗ (efx(i + 1, j + 1, k)− efx(i, j + 1, k))− f)
g = efx(i, j, k + 1) + dx ∗ (efx(i + 1, j, k + 1)− efx(i, j, k + 1))
g = g + dy ∗ (efx(i, j + 1, k + 1) + dx ∗ (efx(i + 1, j + 1, k + 1)
−efx(i, j + 1, k + 1))− g)

efx = f + dz ∗ (g − f)

The computation of efy and efy is similar to that of efx.

ENDDO

Here efx, efy, efz are the (x, y, z) components of the electric field E.

5. Numerical experiments

In this section we present two numerical examples for the ion thruster acceler-
ator grid erosion and plasma thruster plume-spacecraft interaction. The examples
involve different types of plasma, complex objects, collisions, and so on, which illus-
trate the applicability and the discussed features of the IFE-PIC plasma simulation
tool.

5.1. Ion thruster accelerator grid erosion. The ion optics system is made
of electrically biased multi-aperture grids. The ions in the discharge chamber are
extracted and accelerated through the optics using the high potential between the
grids, which is how the ions offer specific impulses for the spacecraft. The erosion
of accelerator grid in ion thruster is a key issue in the design of grid which is very
important in ion-thruster system. It has been found that the erosion of the accel-
erator is caused by the CEX ions that resulted from the charge-exchange collisions
between fast beam ions and neutral atoms. Through the IFE-PIC simulation tool,
the beam extraction process and the charge exchange collisions can be simulated
self-consistently to study the erosion mechanism of accelerator grid.

Wang et al. developed the first ground test data validated, 3D PIC simulation
model of ion thruster accelerator grid erosion [71]. The finite difference based PIC
model [71] was extended by using the IFE-PIC method in [37] to simulate the grid
erosion for an entire sub-scale ion optics [66]. The IFE-PIC simulation setup of an
entire sub-scale ion optics of [37, 66] is shown in Figure 6. Recently, Cao et al. [9]
further extended the simulation model to investigate the barrel erosion of the ion
thruster accelerator.

In table 1, the potential Vs of the screen grid is set slightly below the plasma
potential VN to extract the ions and screen out the electrons. The potential Va
of the accelerator grid is set at a negative potential to provide the accelerating
field and prevent electrons from back-streaming. The total accelerating voltage is
denoted by VT . These parameters and the geometry information for the ion optic
model can be found in [71].

Since the upstream boundary surface is set to be immersed in the upstream
plasma, we apply Dirichlet potential boundary condition on the upstream surface.
All side surfaces satisfy the Neumann boundary condition due to a symmetric po-
tential boundary condition. Since the downstream boundary surface is set to be
immersed in the downstream plasma, we assume a Neumann potential boundary
condition on the downstream surface such that the potential on the downstream

IME-PIC SIMULATION TOOL FOR PLASMA SURFACE INTERACTION 193

 = s

screen grid

 = a

 = n

y

z

0
!

"!

n

0
!

"!

n

0
!

"!

n

accelerator grid

upstream downstreamion beam extraction

y

x

60

A

B

A

B

60

Figure 6. Two-quarter aperture simulation domain [37, 66].

Table 1. Operating conditions for the ion optics.

VN Vs Va VT

1800 V 1770 V -190 V 1990 V

surface is determined self-consistently. The particles hit the z = 0 and z = zmax

surfaces are absorbed, while those hitting the other four surfaces are reflected. More
details for the problem set-up and plasma parameters can be found in [9].

Figure 7 shows the selected potential contour lines and the beamlet ion density
contours for the plasma density in the upstream region with n0 equal to 0.5 ×
1017m−3. It can be observed that under well-focused operating condition, the ions
which impact on the downstream surface of the accelerator grid are all CEX ions.
Figure 8 shows the erosion of the downstream surface caused by CEX ions after
1000 hour. The generation of CEX ions in this example is simulated with the
collision module MCC Collision. The pit and groove pattern on the downstream
surface of accelerator grid agree with the phenomenon which has been observed via
simulation and experiment in [71]. Both the existing results and the new results
clearly illustrate the capability of the IFE-PIC simulation tool for this type of
plasma problems with particle collisions and non-trivial geometry.

5.2. Plasma thruster plume-spacecraft interaction. An electric thruster pro-
pels a spacecraft by continuously emitting a partially ionized gas. However, the
interaction between the thruster plume and the spacecraft surface may adversely
affect spacecraft operation. Therefore, it is necessary to study the interaction be-
tween the thruster plume and the spacecraft which is crucial in the design of a
satellite with electric propulsion.

Wang et al. developed the first in-flight data validated, 3D PIC simulation
model to study ion thruster plume-spacecraft interactions for the Deep Space 1
spacecraft [65]. The finite-difference based PIC model was later extended by using
the IFE-PIC method for the Dawn spacecraft so it can resolve the more details
of the complicated surface geometry [37, 39, 68]. As showed in [37, 39, 68], even

194 Y. CHU, D. HAN, Y. CAO, X. HE, AND J. WANG

a) ni: 1.0x10-06 5.1x10-05 2.6x10-03 1.4x10-01 7.0x10+00

b)

Figure 7. Potential and ion density (with CEX) results for n0 =
0.5× 1017m−3 [9].

a) b)

Figure 8. Erosion depth on the downstream surface of accelerator
grid: a) erosion profile after 1000h b) pit and groove pattern of the
downstream surface erosion.

a simplified Dawn spacecraft model will need to include various object shapes in
order to retain the geometrical details that may affect the results. The numerical
experiments show that different types of objects, plasmas, and collisions can be
easily input in the object data structure and the PIC parameter input file of the
IFE-PIC simulation tool, and then automatically handled by the corresponding
modules to obtain physically valid results.

In the rest of this section, we present another numerical example which simulates
the Hall thruster plasma plume interactions with the SMART-1 spacecraft [60,61].
The geometry and dimensions of SMART-1 spacecraft model are illustrated in
Figure 9(a). Based on the SMART-1 spacecraft model in [61], the main body of
SMART-1 can be considered as a cubic shape with the dimensions of l × w × h =
1100mm× 1100mm× 900mm. The Hall thruster is simplified as a cylinder with
the diameter of 100mm and the height of 50mm. Two thin rectangle plates with
length= 5400mm and width= 1000mm are utilized to represent the solar arrays
which can rotate around the satellite. Let θ denote the divergence angle of Hall
thruster and γ denote the angle between the normal direction of the solar arrays
and the center line of the beam flow.

Due to the symmetry of SMART-1, half of the geometry model is employed to
simulate the interaction between the plume and the surface of SMART-1, as shown
in Figure 9(b). The simulation domain has a size of 4.0m × 7.5m × 4.0m with

IME-PIC SIMULATION TOOL FOR PLASMA SURFACE INTERACTION 195

(a) The geometry of SMART-1(in mm)

(b) Dimensions of the simulation region

Figure 9. Geometry of SMART-1 and simulation domain [60].

x

z

20 40 60 80
0

20

40

60

80

50.00

42.22

34.44

26.67

18.89

11.11

3.33

-4.44

-12.22

-20.00

(V)

(a)

y

z

0 50 100 150
0

20

40

60

80
-20.00 -12.22 -4.44 3.33 11.11 18.89 26.67 34.44 42.22 50.00 (V)

(b)

Figure 10. Plasma potential distribution (at θ = 45◦,γ = 0◦) [60].

Figure 11. CEX ions distribution on the surface of SMART-1
main body and solar array.

81× 151× 81 grid points. The ion-neutral charge exchange collisions are simulated
with Monte Carlo method.

In this numerical example, we consider three different plasma species, including
Xe neutral atoms, Xe+ beam ions, and charge-exchange ions. The plasma parame-
ters can be found in [60]. Zero-Neumann boundary conditions is applied on all the
domain boundaries and the particles going out of domain boundary are removed.
Dirichlet boundary conditions, φ = −2V , are applied to the thruster and satellite
body and all the particles colliding on the object surfaces are absorbed.

196 Y. CHU, D. HAN, Y. CAO, X. HE, AND J. WANG

(a) γ = 0◦ (b) γ = 45◦ (c) γ = 90◦

Figure 12. Heat flux density distribution by CEX ions on the
solar array of SMART-1(at θ = 45◦)(in W/m2).

Figure 10 presents the distribution of the potential under the condition of θ = 45◦

and γ = 0◦. The backflow of the CEX ions result in that the iso-potential surface
expand toward a direction opposite to the ion beam movement. This makes the
pattern of the distribution looks like a mushroom which has been observed for
SMART-1. Figure 11 shows the CEX ions distribution on the surface of both
the main body and the solar array. Figure 12 compares the heat flux density
distribution by CEX ions on the solar array for different γ with θ = 45◦. As
expected, it can be easily observed that the solar arrays receive much more CEX
ions and bear much more heat flux at γ = 0◦ than γ = 90◦. All of the existing
and new physically valid results well illustrate the applicability of the IFE-PIC
simulation tool to this problem and the features of the tool discussed in this paper.

6. Conclusions

In this paper we presented the IFE-PIC simulation tool for plasma simulation.
Both the IFE method and the PIC method are briefly reviewed. The featured mod-
ules and data structures of the IFE-PIC package are discussed in detail and the
other modules are briefly introduced to illustrate the formation of the whole pack-
age. The IFE and PIC methods are integrated into a dynamical system through
their interactions for charge density and electric potential field. Two numerical ex-
periments are provided to illustrate the applicability and features of the IFE-PIC
simulation tool.

Acknowledgments

The authors would like to thank Dr. Raed Kafafy for his significant and funda-
mental contribution to the IFE-PIC simulation tool as one of the major developers
of this tool and Dr. Tao Lin for his long-term support on the IFE method as one of
the major developers of IFE. This work is partially supported by National Natural
Science Foundation of China (11175052), Shenzhen fundamental research program
(JCYJ20160226201347750) and University of Missouri Research Board.

IME-PIC SIMULATION TOOL FOR PLASMA SURFACE INTERACTION 197

References

[1] S. Adjerid, M. Ben-Romdhane, and T. Lin. Higher degree immersed finite element methods
for second-order elliptic interface problems. Int. J. Numer. Anal. Model., 11(3):541?66, 2014.

[2] S. Adjerid and T. Lin. p-th degree immersed finite element for boundary value problems with
discontinuous coefficients. Appl. Numer. Math, 59(6):1303–1321, 2009.

[3] M. Andrenucci, L. Biagioni, and A. Passaro. PIC/DSMC models for Hall ef-
fect thruster plumes: Present status and ways forward. In AIAA-2002-4254, 38th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Inianapolis, Indiana,
2002.

[4] M. Auweter-Kurtz, M. Fertig, D. Petkow, T. Stindl, M. Quandt, C. Munz, P. Adamis,
M. Resch, S. Roller, and D. D’Andrea. Development of a hybrid PIC/DSMC code. In IEPC-
2005-71, 29 th International Electric Propulsion Conference, Princeton, USA, 2005.

[5] G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon
Press, 1994.

[6] C. Birdsall and A. Langdon. Plasma Physics via Computer Simulation. CRC Press, 2005.
[7] C. K. Birdsall. Particle-in-cell charged-particle simulations, plus monte carlo collisions with

neutral atoms, pic-mcc. IEEE Trans. Plasma Sci., 19(2):65–85, 1991.
[8] B. Camp, T. Lin, Y. Lin, and W. Sun. Quadratic immersed finite element spaces and their

approximation capabilities. Adv. Comput. Math., 24(1-4):81–112, 2006.
[9] H. Cao, Y. Chu, E. Wang, Y. Cao, G. Xia, and Z. Zhang. Numerical simulation study on

barrel erosion of ion thruster accelerator grid. J. Propul. Power, 31(6):1785–1792, 2015.
[10] H. Cao, Q. Li, K. Shan, Y. Cao, and L. Zheng. Effect of preionization on the erosion of the

discharge channel wall in a hall thruster using a kinetic simulation. IEEE Trans. Plasma
Sci., 43(1):130–140, 2015.

[11] Y. Cao, Y. Chu, X.-M. He, and T. Lin. An iterative immersed finite element method for
an electric potential interface problem based on given surface electric quantity. J. Comput.
Phys., 281:82–95, 2015.

[12] Y. Cao, Y. Chu, X. Zhang, and X. Zhang. Immersed finite element methods for unbounded
interface problems with periodic structures. J. Comput. Appl. Math., 307:72–81, 2016.

[13] S. Chou. An immersed linear finite element method with interface flux capturing recovery.
Discrete Contin. Dyn. Syst. Ser. B, 17(7):2343–2357, 2012.

[14] S. Chou, D. Y. Kwak, and K. T. Wee. Optimal convergence analysis of an immersed interface
finite element method. Adv. Comput. Math., 33(2):149–168, 2010.

[15] Y. Chu. Numerical Simulation Research About Sheath Characteristics and Lunar Dust Lev-
itation in Terminator Region of Lunar Surface. PhD. Dissertation, Harbin Institute of Tech-
nology, 2015.

[16] Y. Chu, Y. Cao, X.-M. He, and M. Luo. Asymptotic boundary conditions with immersed
finite elements for interface magnetostatic/electrostatic field problems with open boundary.
Comput. Phys. Commun., 182(11):2331–2338, 2011.

[17] D. Depew, D. Han, J. Wang, X.-M. He, and T. Lin. Immersed-Finite-Element Particle-In-Cell
simulations of lunar surface charging, #199. Proceedings of the 13th Spacecraft Charging
Technology Conference, Pasadena, California, June 23-27, 2014.

[18] R. E. Ewing, Z. Li, T. Lin, and Y. Lin. The immersed finite volume element methods for the
elliptic interface problems. Modelling ’98 (prague). Math. Comput. Simulation, 50(1-4):63–
76, 1999.

[19] W. Feng, X.-M. He, Y. Lin, and X. Zhang. Immersed finite element method for interface
problems with algebraic multigrid solver. Commun. Comput. Phys., 15(4):1045–1067, 2014.

[20] G. Fubiani and J. P. Boeuf. Role of positive ions on the surface production of negative ions
in a fusion plasma reactor type negative ion sourceinsights from a three dimensional particle-
in-cell monte carlo collisions model. Phys. Plasmas, 20(11):113511–1–10, 2013.

[21] Y. Gong, B. Li, and Z. Li. Immersed-interface finite-element methods for elliptic interface
problems with non-homogeneous jump conditions. SIAM J. Numer. Anal., 46:472–495, 2008.

[22] Y. Gong and Z. Li. Immersed interface finite element methods for elasticity interface problems
with non-homogeneous jump conditions. Numer. Math. Theory Methods Appl., 3(1):23–39,
2010.

[23] D. Han, J. Wang, and X.-M. He. A non-homogeneous immersed-finite-element particle-in-
cell method for modeling dielectric surface charging in plasmas. IEEE Trans. Plasma Sci.,
44(8):1326–1332, 2016.

198 Y. CHU, D. HAN, Y. CAO, X. HE, AND J. WANG

[24] D. Han, P. Wang, X.-M. He, T. Lin, and J. Wang. A 3D immersed finite element method
with non-homogeneous interface flux jump for applications in particle-in-cell simulations of
plasma-lunar surface interactions. J. Comput. Phys., 321:965–980, 2016.

[25] X.-M. He. Bilinear immersed finite elements for interface problems. Ph.D. Dissertation,
Virginia Polytechnic Institute and State University, 2009.

[26] X.-M. He, T. Lin, and Y. Lin. Approximation capability of a bilinear immersed finite element
space. Numer. Methods Partial Differential Equations, 24(5):1265–1300, 2008.

[27] X.-M. He, T. Lin, and Y. Lin. A bilinear immersed finite volume element method for the dif-
fusion equation with discontinuous coefficients, dedicated to richard e. ewing on the occasion
of his 60th birthday. Commun. Comput. Phys., 6(1):185–202, 2009.

[28] X.-M. He, T. Lin, and Y. Lin. Interior penalty bilinear IFE discontinuous Galerkin meth-
ods for elliptic equations with discontinuous coefficient, dedicated to David Russell’s 70th
birthday. J. Syst. Sci. Complex., 23(3):467–483, 2010.

[29] X.-M. He, T. Lin, and Y. Lin. Immersed finite element methods for elliptic interface problems
with non-homogeneous jump conditions. Int. J. Numer. Anal. Model., 8(2):284–301, 2011.

[30] X.-M. He, T. Lin, and Y. Lin. The convergence of the bilinear and linear immersed finite
element solutions to interface problems. Numer. Methods Partial Differential Equations,
28(1):312–330, 2012.

[31] X.-M. He, T. Lin, and Y. Lin. A selective immersed discontinuous Galerkin method for elliptic
interface problems. Math. Methods Appl. Sci., 37(7):983–1002, 2014.

[32] X.-M. He, T. Lin, Y. Lin, and X. Zhang. Immersed finite element methods for parabolic
equations with moving interface. Numer. Methods Partial Differential Equations, 29(2):619–
646, 2013.

[33] M. Ivanov and S. Rogasinskii. Theoretical analysis of traditional and modern schemes of the
dsmc method. In Rarefied Gas Dynamics, volume 1, pages 629–642, 1991.

[34] M. Ivanov and S. Rogasinsky. Analysis of numerical techniques of the direct simulation monte
carlo method in the rarefied gas dynamics. RUSS. J. NUMBER. ANAL. M., 3:453–466, 1988.

[35] H. Ji, J. Chen, and Z. Li. A symmetric and consistent immersed finite element method for
interface problems. J. Sci. Comput., 61(3):533–557, 2014.

[36] H. Jian, Y. Chu, H. Cao, Y. Cao, X.-M. He, and G. Xia. Three-dimensional IFE-PIC numer-
ical simulation of background pressure’s effect on accelerator grid impingement current for
ion optics. Vacuum, 116:130–138, 2015.

[37] R. Kafafy. Immersed finite element Particle-In-Cell simulations of ion propulsion. Ph.D.
dissertation, Virginia Polytechnic Institute and State University, 2005.

[38] R. Kafafy, T. Lin, Y. Lin, and J. Wang. Three-dimensional immersed finite element methods
for electric field simulation in composite materials. Int. J. Numer. Meth. Engrg., 64(7):940–
972, 2005.

[39] R. Kafafy and J. Wang. A hybrid grid immersed finite element particle-in-cell algorithm for
modeling spacecraft-plasma interactions. IEEE Trans. Plasma Sci., 34(5):2114–2124, 2006.

[40] R. Kafafy, J. Wang, and T. Lin. A hybrid-grid immersed-finite-element particle-in-cell sim-
ulation model of ion optics plasma dynamics. Dyn. Contin. Discrete Impuls. Syst. Ser. B
Appl. Algorithms, 12:1–16, 2005.

[41] M. Keidar, I. D. Boyd, and I. I. Beilis. Plasma flow and plasma-wall transition in hall thruster
channel. Phys. Plasmas, 8(12):5315–5322, 2001.

[42] D. Y. Kwak, K. T. Wee, and K. S. Chang. An analysis of a broken p1-nonconforming finite
element method for interface problems. SIAM J. Numer. Anal., 48(6):2117–2134, 2010.

[43] T. Lee, Y. Chang, J. Choi, D. Kim, W. Liu, and Y. Kim. Immersed finite element method
for rigid body motions in the incompressible Navier-Stokes flow. Comput. Methods Appl.
Mech. Engrg., 197(25-28):2305–2316, 2008.

[44] Z. Li. The immersed interface method using a finite element formulation. Appl. Numer.
Math., 27(3):253–267, 1997.

[45] Z. Li, T. Lin, Y. Lin, and R. C. Rogers. An immersed finite element space and its approxi-
mation capability. Numer. Methods Partial Differential Equations, 20(3):338–367, 2004.

[46] Z. Li, T. Lin, and X. Wu. New Cartesian grid methods for interface problems using the finite
element formulation. Numer. Math., 96(1):61–98, 2003.

[47] Z. Li and X. Yang. An immersed finite element method for elasticity equations with interfaces.
Recent advances in adaptive computation. Contemp. Math., 383:285–298, 2005.

[48] T. Lin, Y. Lin, and W. Sun. Error estimation of a class of quadratic immersed finite element
methods for elliptic interface problems. Discrete Contin. Dyn. Syst. Ser. B, 7(4):807–823,
2007.

IME-PIC SIMULATION TOOL FOR PLASMA SURFACE INTERACTION 199

[49] T. Lin, Y. Lin, and X. Zhang. A method of lines based on immersed finite elements for
parabolic moving interface problems. Adv. Appl. Math. Mech., 5(4):548–568, 2013.

[50] T. Lin, Y. Lin, and X. Zhang. Immersed finite element method of lines for moving interface
problems with nonhomogeneous flux jump. Contemp. Math., 586:257–265, 2013.

[51] T. Lin, Y. Lin, and X. Zhang. Partially penalized immersed finite element methods for elliptic
interface problems. SIAM J. Numer. Anal., 53(2):1121–1144, 2015.

[52] T. Lin and D. Sheen. The immersed finite element method for parabolic problems with the
Laplace transformation in time discretization. Int. J. Numer. Anal. Model., 10(2):298–313,
2013.

[53] T. Lin, D. Sheen, and X. Zhang. A locking-free immersed finite element method for planar

elasticity interface problems. J. Comput. Phys., 247:228–247, 2013.
[54] T. Lin and J. Wang. An immersed finite element electric field solver for ion optics modeling.

In Proceedings of AIAA Joint Propulsion Conference, Indianapolis, IN, July, 2002. AIAA,
2002-4263.

[55] T. Lin and J. Wang. The immersed finite element method for plasma particle simulation. In
Proceedings of AIAA Aerospace Sciences Meeting, Reno, NV, Jan., 2003. AIAA, 2003-0842.

[56] T. Lin and X. Zhang. Linear and bilinear immersed finite elements for planar elasticity
interface problems. J. Comput. Appl. Math., 236(18):4681–4699, 2012.

[57] M. Nakano. Three-dimensional simulations of grid erosion in ion engines. Vacuum, 83(1):82–
85, 2008.

[58] D. Oh and D. Hastings. Three dimensional PIC-DSMC simulations of Hall thruster plumes
and analysis for realistic spacecraft configurations. In AIAA-96-3299, 32nd Joint Propulsion
Conference and Exhibit, Lake Buena Vista, FL, 1996.

[59] V. V. Serikov, S. Kawamoto, and K. Nanbu. Particle-in-cell plus direct simulation monte
carlo (pic-dsmc) approach for self-consistent plasma-gas simulations. IEEE Trans. Plasma
Sci., 27(5):1389–1398, 1999.

[60] K. Shan, Y. Chu, Q. Li, L. Zheng, and Y. Cao. Numerical simulation of interaction between
hall thruster cex ions and smart-1 spacecraft. Math. Prob. Eng., Accepted.

[61] M. Tajmar, R. Sedmik, and C. Scharlemann. Numerical simulation of smart-1 hall-thruster
plasma interactions. J. Propul. Power, 25(6):1178–1188, 2009.

[62] Y. Todo, H. L. Berk, and B. N. Breizman. Simulation of intermittent beam ion loss in a
tokamak fusion test reactor experiment. Phys. Plasmas, 10(7):2888–2902, 2003.

[63] S. Vallaghè and T. Papadopoulo. A trilinear immersed finite element method for solving the
electroencephalography forward problem. SIAM J. Sci. Comput., 32(4):2379–2394, 2010.

[64] E. Wang, Y. Chu, Y. Cao, and J. Li. Numerical simulation of erosion mechanism for ion
thruster accelerator grid aperture walls based on ife-pic and mcc methods. High Volt. Eng.,
39(7):1763–1771, 2013.

[65] J. Wang, D. Brinza, and M. Young. Three-dimensional particle simulations of ion propulsion
plasma environment for deep space 1. J. Spacecraft Rockets, 38(3):433–440, 2001.

[66] J. Wang, Y. Cao, R. Kafafy, R.A. Martinez, and J.D. Williams. Numerical and experimen-
tal investigations of cross-over ion impingement for sub-scale ion optics. J. Propul. Power,
24(3):562–570, 2008.

[67] J. Wang, Y. Cao, R. Kafafy, J. Pierru, and V. Decyk. Ion propulsion simulations using parallel
supercomputers. In 29th International Electric Propulsion Conference, Princeton, NJ, Oct.
31-Nov.4, 2005. IEPC, 2005-271.

[68] J. Wang, Y. Cao, R. Kafafy, J. Pierru, and V. K. Decyk. Simulations of ion thruster plume-
spacecraft interactions on parallel supercomputer. IEEE Trans. Plasma Sci., 34(5):2148–2158,
2006.

[69] J. Wang, X.-M. He, and Y. Cao. Modeling spacecraft charging and charged dust particle
interactions on lunar surface. Proceedings of the 10th Spacecraft Charging Technology Con-
ference, Biarritz, France, 2007.

[70] J. Wang, X.-M. He, and Y. Cao. Modeling electrostatic levitation of dusts on lunar surface.
IEEE Trans. Plasma Sci., 36(5):2459–2466, 2008.

[71] Joseph Wang, James Polk, John Brophy, and Ira Katz. Three-dimensional particle simulations
of ion-optics plasma flow and grid erosion. Journal of Propulsion and Power, 19(6):1192–1199,

November-December 2003.
[72] P. Wang. Immersed finite element particle-in-cell modeling of surface charging in rarefied

plasmas. Ph.D. dissertation, Virginia Polytechnic Institute and State University, 2010.
[73] D. Yu, H. Liu, Y. Cao, and H. Fu. The effect of magnetic mirror on near wall conductivity

in hall thrusters. Contrib. Plasma Phys., 48(8):543–554, 2008.

200 Y. CHU, D. HAN, Y. CAO, X. HE, AND J. WANG

[74] X. Zhang. Nonconforming immersed finite element methods for interface problems. Ph.D.
Dissertation, Virginia Polytechnic Institute and State University, 2013.

Department of Mechanical Engineering & Automation, Harbin Institute of Technology, Shen-
zhen Graduate School, Shenzhen, Guangdong 518055, P. R. China, ychuan.chu@hitsz.edu.cn

Department of Astronautical Engineering, University of Southern California, Los Angles, CA
90089, USA, daoruhan@usc.edu

Department of Mechanical Engineering & Automation, Harbin Institute of Technology, Shen-
zhen Graduate School, Shenzhen, Guangdong 518055, P. R. China, yongc@hitsz.edu.cn, corre-
sponding author

Department of Mathematics and Statistics, Missouri University of Science and Technology,

Rolla, MO 65409, USA, hex@mst.edu, corresponding author

Department of Astronautical Engineering, University of Southern California, Los Angles, CA
90089, USA, josephjw@usc.edu

