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FLUX RECOVERY AND SUPERCONVERGENCE OF

QUADRATIC IMMERSED INTERFACE FINITE ELEMENTS

SO-HSIANG CHOU AND CHAMPIKE ATTANAYAKE

Abstract. We introduce a flux recovery scheme for the computed solution of a quadratic im-
mersed finite element method introduced by Lin et al. in [13]. The recovery is done at nodes

and interface point first and by interpolation at the remaining points. In the case of piecewise
constant diffusion coefficient, we show that the end nodes are superconvergence points for both
the primary variable p and its flux u. Furthermore, in the case of piecewise constant diffusion
coefficient without the absorption term the errors at end nodes and interface point in the approx-

imation of u and p are zero. In the general case, flux error at end nodes and interface point is
third order. Numerical results are provided to confirm the theory.

Key words. Recovery technique, quadratic immersed interface method, Superconvergence, con-

servative method, Green’s function.

1. Introduction

We consider the interface two-point boundary value problem

(1)

{
−(β(x)p′(x))′ + q(x)p(x) = f(x), x ∈ (a, b),

p(a) = p(b) = 0,

where q(x) ≥ 0 and 0 < β ∈ C(a, α) ∪ C(α, b)) is piecewise constant with a finite
jump across the interface point α so that the solution p satisfies

[p]α = 0,(2)

[βp′]α = 0,(3)

where [s]α = s+ − s− denotes the jump of the quantity s across α.
Physically the variable p may stand for the pressure or temperature in a material

with certain physical properties and the derived quantity u := −βp′ is the corre-
sponding flux, which may be of equal interest. The piecewise constant β reflects a
nonuniform material and the function q(x) reflects a property of the material or its
surroundings. In this paper we will refer to p as pressure. Problem (1)-(3) can also
be viewed as the steady neutron diffusion problem [14]. Due to its simple structure,
a lot of its mathematical and numerical properties of related numerical methods
can be explicitly worked out. Therefore, it is very instructive to study this problem
before moving to its higher dimensional and/or nonsteady state versions. It is in
this spirit that we shall study the immersed finite elements for this problem.

Efficient numerical methods for (1)-(3) may use meshes that are either fitted
or unfitted with the interface. A method allowing unfitted meshes would be very
efficient when one has to follow a moving interface in a temporal problem. For an
in-depth exposition of the numerics and applications of interface problems, we refer
the readers to [9] and the references therein. In an immersed finite element (IFE)
method, the mesh is made up of interface elements where the interface intersects
elements (thus immersed) and noninterface elements where the interface is absent.
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On a noninterface element one uses standard local shape functions, whereas on
an interface element one uses piecewise standard local shape functions subject to
continuity and jump conditions. Representative works on IFE methods can be
found in [1, 7, 8, 9, 10, 11, 12, 16], among others. In particular, reference [1] gives a
unified discussion on 1-D IFE spaces, including the quadratic space. A more recent
contribution highly related to the present paper is [2] (pointed out by a referee),
which studies superconvergence using generalized Legendre polynomials.

In this paper, we are interested in studying IFE methods that can produce
accurate approximate flux uh of p once an approximate ph has been obtained, par-
ticularly those that can recover flux without having to solve a system of equations.
Chou and Tang [6] initiated such methods when the mesh is fitted. Later it was gen-
eralized to the immersed interface mesh case using linear immersed finite elements
(IFE) of Lin et al. [13] and their variants for one dimensional elliptic and parabolic
problems [4, 5]. In this paper we concentrate on quadratic elements. We aim at a
method that will extend good features such as existence of superconvergence points
and the discrete conservation law that we have either proved or observed in the
linear immerse finite element case.

To begin with, let’s first give the central idea [6] behind our flux recovery scheme
on a mesh {ti}. Suppose we want to evaluate u(ti) at some mesh point ti using
some weighted integral of p. We can proceed as follows. Let ϕ be a function
with compact support K such that Ii = [ti−1, ti] ⊂ K, the interface point α ̸∈ K,
ϕ(ti−1) = 0, ϕ(ti) = 1. An example of such a function is the standard finite element
hat function. Multiplying (1) by ϕ and integrating by parts, we see that the flux u
satisfies

u(ti) = −
∫
Ii

βp′ϕ′dx−
∫
Ii

qpϕdx+

∫
Ii

fϕdx.

It is then natural to define an approximate flux uh at ti as

uh(ti) = −
∫
Ii

βp′hϕ
′dx−

∫
Ii

qphϕdx+

∫
Ii

fϕdx.

The error Ei := u(ti)− uh(ti) then satisfies

Ei = −
∫
Ii

β(p′ − p′h)ϕ
′dx−

∫
Ii

q(p− ph)ϕdx.

In the case that ϕ is linear on Ii, q = 0, p = ph at ti−1, ti, we immediately see
that the error in flux is also zero at ti. With a little calculation using the jump
conditions (2)-(3), the same line of thought works when α ∈ Ii. In this paper the
ϕ’s will be from the immersed quadratic shape functions and we show in Thm 3.2
that in the case of q = 0, the quadratic IFE solution ph = p at all end nodes and as
a consequence u = uh at those points as well. When q ̸= 0, the exactness cannot be
attained due to the nature of the Green’s function involved (see the proof of Thm
3.3), but those points are still superconvergence points of the pressure and flux .
Another feature of our scheme is that when q = 0 the following conservation law or
discrete first fundamental theorem of calculus holds:

uh(ti)− uh(ti−1) =

∫
Ii

f(x)dx,

whose continuous version can be obtained for the exact flux from integrating (1).
The above two features in higher dimensional IFE methods are under investigation
[3]. Finally, since the IFE reduces to the standard finite elements in absence of
the interface, the superconvergence results in this paper also apply to the standard
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finite elements and are consistent with those corresponding results in [15] when
applicable. The organization of this paper is as follows. In Section 2 we introduce
the quadratic immersed finite element space of Lin et al. [13] and its approximation
properties. In Section 3 we give the main pointwise error estimates for both pressure
and flux. In the last section we provide numerical results to confirm the theory.

2. Approximation Space

Consider the weak formulation of the interface problem (1)–(3) : Find p ∈
H1

0 (a, b) such that

(4) a(p, v) = l(v) ∀v ∈ H1
0 (a, b),

where

a(p, v) =

∫ b

a

β(x)p′(x)v′(x)dx+

∫ b

a

q(x)p(x)v(x)dx,

l(v) =

∫ b

a

f(x)v(x)dx, f ∈ L2(a, b).

It is known that solution p ∈ H1
0 (a, b) exists and further p ∈ H2(a, α) ∩H2(α, b).

We use functions in the quadratic IFE space introduced in [13] to approximate p.
Let a = t0 < t1 < . . . < tk < tk+1 . . . < tn = b be a partition of I = [a, b], and the
interface point α ∈ (tk, tk+1) for some k. Let h = max1≤i≤n(ti − ti−1). To build
local quadratics, each element Ij = [tj , tj+1] is associated with two end nodes and
one midpoint node, whose local labels are

xj,1 = tj , xj,2 = tj+1/2 =:
tj + tj+1

2
, xj,3 = xj+1,1 = tj+1.

Note that in this ordering we have

xj−1,3 = xj,1, xj,3 = xj+1,1.

On a non-interface element Ij , j ̸= k we let ϕj,i denote the standard local quadratic
shape functions associated with xj,i, i = 1, 2, 3 such that ϕj,i(xj,l) = δi,l, i.e.,

ϕj,1 =
x2 − x(xj,2 + xj,3) + xj,2xj,3

(xj,2 − xj,1)(xj,3 − xj,1)
,

ϕj,2 =
x2 − x(xj,1 + xj,3) + xj,1xj,3

(xj,1 − xj,2)(xj,3 − xj,2)
,

ϕj,3 =
x2 − x(xj,1 + xj,2) + xj,1xj,2

(xj,1 − xj,3)(xj,2 − xj,3)
.

For the interface element Ik, the basis function ϕk,i associated with xk,i, i = 1, 2, 3
is defined so that it is quadratic on (xk,1, α) and (α, xk,3) individually with

[ϕk,i]α = [βϕ′
k,i]α = [βϕ′′

k,i]α = 0.

More specifically, for j = k define

(5) D = (α− xj,1)(xj,2 − xj,1) + (α− xj,1)(xj,3 − α) + ρ(α− xj,2)(α− xj,3) > 0,

where ρ = limx→α− β(x)/ limx→α+ β(x).
The interface point α ∈ (xj,1, xj,2) or α ∈ (xj,2, xj,3). Throughout the ensuing

analysis we will only work out the case of α ∈ (xj,1, xj,2), since the other case can
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be similarly handled. With this in mind, we list out the local basis functions in the
case of α ∈ (xj,1, xj,2):

ϕj,1(x) =

{
(x−(xj,2+xj,3−xj,1))(x−xj,1)

D + 1 x ∈ (xj,1, α),
ρ(x−xj,2)(x−xj,3)

D x ∈ (α, xj,3).

ϕj,2(x) =

{
(xj,1−α)(x−α)(x−xj,1)−ρ(xj,3−α)(x−xj,1)(x−(α+xj,3−xj,1))

Dρ(xj,3−xj,2)
x ∈ (xj,1, α),

(xj,1−α)(x−xj,3)(x+(xj,3−α−xj,1))−ρ(xj,3−α)(x−α)(x−xj,3)
D(xj,3−xj,2)

x ∈ (α, xj,3).

ϕj,3(x) =

{
(α−xj,1)(x−α)(x−xj,1)−ρ(α−xj,2)(x−xj,1)(x−(α+xj,2−xj,1))

Dρ(xj,3−xj,2)
x ∈ (xj,1, α),

(α−xj,1)(x−xj,2)(x−(α+xj,1−xj,2))−ρ(α−xj,2)(x−α)(x−xj,2)
D(xj,3−xj,2)

x ∈ (α, xj,3).

By adding the three functions above, it is easily checked that

(6)

3∑
i=1

ϕk,i = 1.

Alternatively one can check that d(x) :=
∑3

i=1 ϕk,i − 1 is zero at xk,j , j = 1, 2, 3
and [d] = [βd′] = [βd′′] = 0. By unisolvency d(x) is identically zero.

Defining for 0 ≤ j ≤ n− 1 the local approximation space

Sh(Ij) = span{ϕj,i, i = 1, 2, 3},

we see that it is the standard quadratics for non-interface elements and is a piecewise
quadratic space with a notable second derivative jump condition [βϕ′′

k,i]α = 0 for

the interface element. This space was introduced in [13] and the extra condition is
to guarantee optimal approximation error (Lin et al.[13] also defined other spaces,
but they do not have optimal approximability). For each end node tj we define
the global basis function ϕj to be one at the node and zero at other nodes so that
ϕj ∈ Sh(Ij) and similarly for midpoint nodes. In this way we have constructed the
global finite element space

Vh = span{ϕi, ϕi+1/2}n−1
i=0 ∩H1

0 (a, b)

as an IFE space for approximating p. Consider the following immersed interface
method for problem (1): Find ph ∈ Vh ⊂ H1

0 (a, b) such that

(7) a(ph, vh) = l(vh) ∀vh ∈ Vh.

For simplicity, we assume that the positive coefficient β is piecewise constant, i.e.,

β(x) = β− for x ∈ (a, α); β(x) = β+ for x ∈ (α, b).

Using the optimal approximation property of the interpolant pI ∈ Vh of p in [13],
it is routine to prove the following theorem.

Theorem 2.1. Assume that the solution to p of (1)-(3) further satisfies [βp′′] = 0
then

∥p− ph∥0,I + h|p− ph|1,I ≤ Ch3∥p∥3,I ,

where the norm ∥p∥3,I is piecewise defined as

∥p∥2s,I := ∥p∥2Hs(a,α) + ∥p∥2Hs(α,b), s = 3.
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3. Construction of Approximate Flux

In this section we construct the approximate flux uh of the exact flux u = −βp′.
In other words, we shall do flux recovery after we have obtained the approximate
pressure ph. We first derive simple formulas for uh at the nodes of the elements
and at the interface point. To build the global uh we use piecewise quadratic
interpolation. It is proper to point out at this stage that uh below is not defined
as −βp′h.

To shorten the presentation of the equations below we will collect the two terms
in (1) as

(8) F := f(x)− qp(x) and its discrete version Fh := f(x)− qph(x).

Let us now multiply (1) by ϕj,3 and integrate by parts over Ij = [xj,1, xj,3], j ̸= k
to get

(9) u(x−
j+1,1) = u(x−

j,3) = −β(xj,3)p
′(xj,3) = −

∫ xj,3

xj,1

βp′ϕ′
j,3dx+

∫ xj,3

xj,1

Fϕj,3dx.

Next we multiply (1) by ϕj+1,1 and integrate by parts over Ij+1 = [xj+1,1, xj+1,3],
j ̸= k to get

u(x+
j+1,1) = u(x+

j,3) = −β(xj+1,1)p
′(xj+1,1)(10)

=

∫ xj+1,3

xj+1,1

βp′ϕ′
j+1,1dx−

∫ xj+1,3

xj+1,1

Fϕj+1,1dx.

Thus, if ph is a good approximate of p, we can define uh(x
−
j+1,1) and uh(x

+
j+1,1) on

Ij and Ij+1 respectively as,

uh(x
−
j+1,1) = uh(x

−
j,3)

= −
∫ xj,3

xj,1

βp′hϕ
′
j,3dx+

∫ xj,3

xj,1

Fhϕj,3dx,(11)

uh(x
+
j+1,1) = uh(x

+
j,3)

=

∫ xj+1,3

xj+1,1

βp′hϕ
′
j+1,1dx−

∫ xj+1,3

xj+1,1

Fhϕj+1,1dx.(12)

Substituting vh = ϕj+1,1 into (7), we see that∫ xj+1,3

xj,1

βp′hϕ
′
j+1,1dx =

∫ xj+1,3

xj,1

Fhϕj+1,1dx,

−
∫ xj,3

xj,1

βp′hϕ
′
j,3dx+

∫ xj,3

xj,1

Fhϕj,3dx =

∫ xj+1,3

xj+1,1

βp′hϕ
′
j+1,1dx−

∫ xj+1,3

xj+1,1

Fhϕj+1,1dx.

Thus, from (11) and (12) we can uniquely define uh(xj+1,1) = uh(x
−
j+1,1) = uh(x

+
j+1,1).

In a similar fashion by setting vh = ϕj,1 in (7), we can show that uh(x
−
j,1) =

uh(x
+
j,1) = uh(xj,1).

For the midpoint nodes with the basis function by ϕj,2, over the interval
[xj,1, xj,2], j ̸= k we can define

uh(x
−
j,2) = −

∫ xj,2

xj,1

βp′hϕ
′
j,2dx+

∫ xj,2

xj,1

Fhϕj,2dx,

and for the interval [xj,2, xj,3]

uh(x
+
j,2) =

∫ xj,3

xj,2

βp′hϕ
′
j,2dx−

∫ xj,3

xj,2

Fhϕj,2dx.
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Again setting vh = ϕj,2 in (7) gives∫ xj,3

xj,1

βp′hϕ
′
j,2dx =

∫ xj,3

xj,1

Fhϕj,2dx

−
∫ xj,2

xj,1

βp′hϕ
′
j,2dx+

∫ xj,2

xj,1

Fhϕj,2dx =

∫ xj,3

xj,2

βp′hϕ
′
j,2dx−

∫ xj,3

xj,2

Fhϕj,2dx.

Thus uh(xj,2) := uh(x
−
j,2) = uh(x

+
j,2). So we have uh(xj,i) = u−

h (xj,i) = u+
h (xj,i)

for i = 1, 2, 3.
On a non-interface element, uh at a non-nodal point is defined by quadratic

interpolation: Ij j ̸= k, we define uh(x) as

(13) uh(x) := uh(xj,1)ϕj,1(x) + uh(xj,2)ϕj,2(x) + uh(xj,3)ϕj,3(x) for x ∈ Ij .

To approximate flux on the interface element, first we multiply (1) by ϕk,1 and
integrate by parts over Ik = [xk,1, xk,3] to get

u(x+
k−1,3) = u(x+

k,1)

= −β(xk,1)p
′(xk,1)

=

∫ α

xk,1

βp′ϕ′
k,1dx+

∫ xk,3

α

βp′ϕ′
k,1dx−

∫ α

xk,1

Fϕk,1dx−
∫ xk,3

α

Fϕk,1,

where we have used the jump condition(2). For the adjacent non-interface element
Ik−1 = [xk−1,1, xk−1,3], we get

u(x−
k−1,3) = u(x−

k,1) = −β(xk,1)p
′(xk,1)

= −
∫ xk−1,3

xk−1,1

βp′ϕ′
k−1,3dx+

∫ xk−1,3

xk−1,1

Fϕk−1,3dx.

Then if ph is a good approximate for p it is natural to define

uh(x
+
k−1,3) = uh(x

+
k,1)

=

∫ α

xk,1

βp′hϕ
′
k,1dx+

∫ xk,3

α

βp′hϕ
′
k,1dx−

∫ α

xk,1

Fhϕk,1dx−
∫ xk,3

α

Fhϕk,1dx,(14)

uh(x
−
k−1,3) = uh(x

−
k,1)

= −
∫ xk−1,3

xk−1,1

βp′hϕ
′
k−1,3dx+

∫ xk−1,3

xk−1,1

Fhϕk−1,3dx.(15)

Again setting vh = ϕk,1 in (7) as in the interface element gives

−
∫ xk−1,3

xk−1,1

βp′hϕ
′
k−1,3dx+

∫ xk−1,3

xk−1,1

Fhϕk−1,3dx.

=

∫ α

xk,1

βp′hϕ
′
k,1dx+

∫ xk,3

α

βp′hϕ
′
k,1dx−

∫ α

xk,1

Fhϕk,1dx−
∫ xk,3

α

Fhϕk,1dx.

Thus, from (14) and (15) uh(x
−
k,1) = uh(x

+
k,1) = uh(xk,1). Similarly, it is easy to

see that uh(x
−
k,2) = uh(x

+
k,2) = uh(xk,2) and uh(x

−
k,3) = uh(x

+
k,3) = uh(xk,3).

Since we want higher precision for uh(α), it will not be defined by interpolation.
According to the experience [5], we define

(16) uh(α) = uh(xk,1) +

∫ α

xk,1

Fh(x)dx,
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which is based on

(17) u(α) = u(xk,1) +

∫ α

xk,1

F (x)dx.

Then, we can define the flux approximation over the interface element Ik = [xk, xk+1]
by a cubic interpolating polynomial at α and the three nodal points. Of course there
are other choices based on how smooth u can be. For example, one can first define
by interpolation

(18) uh(x) = uh(xk,1)ϕk,1(x) + uh(xk,2)ϕk,2(x) + uh(xk,3)ϕk,3(x) for x ∈ Ik

and get uh(α) by evaluation. This approach is more natural for higher dimensional
case. In any case it is not hard to see that the resulting L2 norm error estimates
can be derived once the pointwise error estimates at nodal and/or interface points
are known, which will be addressed in the next section.

For completeness, let us include in the next theorem a possible second order L2

estimate without the knowledge of pointwise errors. Thus it will be justified to call
a point x a superconvergent point if

u(x)− uh(x) = O(h2+σ), for some σ > 0.

Theorem 3.1. Let u be the exact flux and uh be the approximated flux as defined
by (13) and (18) for non-interface and interface elements respectively. Then

∥u− uh∥0,I ≤ Ch2∥p∥3,I .

Proof. We give a proof for the interface element Ik = [xk,1, xk,3]. The non-interface
follows similarly. On the interval (xk,1, xk,3)

|(uh − u)(x)| ≤
3∑

i=1

|(uh − u)(xk,i)ϕk,i|+
3∑

i=1

|(u(xk,i)− u(x))ϕk,i|(19)

where we have used
∑3

i=1 ϕk,i = 1. Let β∗ = max{β−, β+}. For i = 1, 3

∥(u(xk,i)− uh(xk,i))ϕk,i∥0,Ik = ∥(
∫ xk,3

xk,1

β(p′h − p′)ϕ′
k,idx)ϕk,i∥0,Ik +

+∥(
∫ xk,3

xk,1

q(p− ph)ϕk,idx)ϕk,i∥0,Ik

= J1 + J2,

where

J1 ≤ β∗|
∫ xk,3

xk,1

(p′h − p′)ϕ′
k,idx|∥ϕk,i∥0,Ik

≤ β∗∥p′h − p′∥0,Ik∥ϕ′
k,i∥0,Ik∥ϕk,i∥0,Ik .

Now note it is not hard to see from (5) that D ≥ Ch2 with the constant C
independent of h and α and so

∥ϕk,i∥0,Ik ≤ Ch
1/2
k ≤ Ch1/2

∥ϕ′
k,i∥0,Ik ≤ Ch

−1/2
k ≤ Ch−1/2.

With this in mind, we have

J1 ≤ Ch2∥p∥3,Ik , J2 ≤ Ch4∥p∥3,Ik ,
where

∥p∥23,Ik := ∥p∥2H3(xk,1,α)
+ ∥p∥2H3(α,xk,3)

.
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Hence

∥u(xk,i)− uh(xk,i)ϕj,i∥0,Ik ≤ Cβ∗∥p′h − p′∥0,Ik
≤ Ch2∥p∥3,Ik .(20)

Similar estimate holds when i = 2.
As for the second term on the right of (19), we have by the mean value theorem

with some ξ ∈ (xk,1, xk,2) so that

|(u(xk,i)− u(x))ϕk,i| = |xk,i − x||u′(ξ)||ϕk,i|.

Now note that the inequality

||w||L∞(xk,1,xk,2) ≤ Ch1/2||w′||L2(xk,1,xk,2)

can be derived by a homogeneity (scaling) argument applied to the Sobolev imbed-
ding to a reference element of unit size. Thus with w = u′ in the above inequality
we can extract a factor of h1/2 to obtain

(21) ∥(u(xk,i)− u(x))ϕk,i∥0,Ik ≤ Ch3/2∥ϕk,i∥∥p∥3,Ik ≤ Ch2∥p∥3,Ik .

Combining this with (20) and (21) on (19) gives

∥u− uh∥0,Ik ≤ Ch2∥p∥3,Ik .

�

3.1. Pointwise Errors at Nodes and Interface Point. In this section we es-
timate approximate pressure and flux errors at nodes and interface point. Super-
convergence points of pressure and flux are shown to be end nodes.

Theorem 3.2. Consider problem (1) with q = 0. Let the approximate flux uh be
defined by (13) and (14)–(16). Let ph be the approximate pressure defined by (7)
and p be the pressure defined by (4). Suppose that the coefficient β is piecewise
constant. Then, the following statements hold.

(i) Exactness of approximate pressure ph at the end nodes:

p(ti) = ph(ti) at all end nodes ti, i = 0, . . . , n.

(ii) Error in the approximate pressure at the interface point:

|p(α)− ph(α)| ≤ Ch2.5,

and at the midpoints

|p(x)− ph(x)| ≤ Ch2.5, x = ti+1/2, i = 0, . . . , n− 1.

(iii) Uniform error at the end nodes and interface point: The errors at
the end nodes and interface point are identical, i.e.

(22) E(x) = u(x)− uh(x) = C

for all x = ti, i = 0 . . . n, α.
(iv) Exactness of approximate flux at the nodes and interface point.

The constant C in (22) is zero, i.e.,

u(x) = uh(x) for all x = ti, i = 0, . . . , n and α.
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Proof. Fix ξ ∈ (a, b) and let G(x, ξ) be the Green’s function satisfying

a(G(·, ξ), v) =< δ(x− ξ), v >, v ∈ H1
0 (a, b).

By working out the closed form of G satisfying the classical formulation

(23) −(βG′)′ = δ(x− ξ), [G]α = 0, [βG′]α = 0, G(a, ξ) = G(b, ξ) = 0,

we see that G can be expressed in terms of
∫ x

d
1

β(t)dt for different d. For instance,

the Green’s function for (a, b) = (0, 1) and ξ < α takes the form [5]

(24) G(x, ξ) =



A

∫ x

0

1

β(t)
dt, 0 < x ≤ ξ,

(A− 1)

∫ x

ξ

1

β(t)
dt+A

∫ ξ

0

1

β(t)
dt, ξ ≤ x ≤ α,

(1−A)

∫ 1

x

1

β(t)
dt, α ≤ x ≤ 1,

where

A =

∫ 1

ξ
1

β(t)dt∫ 1

0
1

β(t)dt
.

Note that G(x, ti) is piecewise linear when β is piecewise constant. Now let G =
G(x, ti) and use Galerkin orthogonality property, then

e(ti) = (δ(x− ti), e) = a(G, e) = 0,

since G ∈ Vh (when β(t) is piecewise constant, G is piecewise linear and satisfies
all the jump conditions including [βG′′] = 0). This proves (i).

As for (ii), without loss of generality let’s assume α lies in (tk, tk+1/2). At the
interface point α, G(x, α) is no longer in Vh since [βG′]α = −1, not zero (Equations
(23) and (24) have obvious modifications). In this case, let Gh := G− bh, where bh
is the bubble function with support [tk, tk+1], piecewise linear, and [βb′h]α = −1,
i.e.,

bh(x) =


A(tk+1 − α)(x− tk), x ∈ [tk, α]

A(α− tk)(tk+1 − x), x ∈ [α, tk+1]

0, otherwise,

where

A =
1

β−(tk+1 − α) + β+(α− tk)
.

Noting that now Gh ∈ Vh and |bh|1,I ≤ Ch1/2, we have

e(α) = (δ(x−α), e) = a(G, e) = a(G−Gh, e) = a(bh, e) ≤ C|bh|1,I |e|1,I ≤ Ch5/2∥p∥3,I .

For a midpoint ξ = ti+1/2, its associated Green’s function G(x, ξ) is neither in

H2(ti, ti+1) nor in Vh, being piecewise linear in (ti, ti+1). To approximate G, we
construct Gh ∈ Vh such that G = Gh over I − (ti, ti+1), and on (ti, ti+1) Gh is
defined as the quadratic interpolant to G at the nodes ti, tm, ti+1, tm = ti+1/2.
Thus using the local ordering

(25) Gh(x) =

3∑
j=1

G(xi,j)ϕi,j(x) ∀x ∈ [ti, ti+1].
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In addition, it is easy to see that

Gh(x)−G(x) =

{
s
2 (x− ti)(x− tm), x ∈ [ti, tm],
s
2 (x− tm)(x− ti+1), x ∈ [tm, ti+1],

where the second derivative s = G′′
h can be computed from (25) (or centered differ-

ence by inspection !!) and

s =
4

h2
(G(ti)−G(tm) +G(ti+1)−G(tm))

=
2

h
(G′(t+m)−G′(t−m))

=
2

hβ
(βG′(t+m)− βG′(t−m))

=
−2

hβ
.

Consequently,

(26) |G(x)−Gh(x)| ≤ Ch and |G′
h(x)−G′(x)| ≤ C.

With this in mind we see that

(27) |G−Gh|1,I = |G−Gh|1,Ii ≤ Ch0.5 Ii = (ti, ti+1).

Hence

e(ξ) = (δ(x− ξ), e) = a(G, e) = a(G−Gh, e) ≤ Ch2.5∥p∥3,I .
This completes the proof of (ii).

Next, we prove (iii). Let E(x) = u(x)− uh(x). By (9)-(12),

E(xj,3) = −
∫ xj,3

xj,1

β(p′ − p′h)ϕ
′
j,3dx+

∫ xj,3

xj,1

q(ph − p)ϕj,3dx

and

E(xj+1,3) = −
∫ xj+1,3

xj+1,1

β(p′ − p′h)ϕ
′
j+1,3dx+

∫ xj+1,3

xj+1,1

q(ph − p)ϕj+1,3dx

=

∫ xj+1,3

xj+1,1

β(p′ − p′h)(ϕ
′
j+1,1 + ϕ′

j+1,2)dx

+

∫ xj+1,3

xj+1,1

q(ph − p)(1− (ϕj+1,1 + ϕj+1,2))dx.

Assembling contributions from the local shape functions, we have in terms of global
shape functions ϕj+ 3

2
, ϕj+1

E(xj+1,3)− E(xj,3)

= a(p− ph, ϕj+ 3
2
) + a(p− ph, ϕj+1) +

∫ xj+1,3

xj+1,1

q(ph − p)dx

=

∫ xj+1,3

xj+1,1

q(ph − p)dx.(28)

Hence E(xj+1,3) = E(xj,3) when q = 0. The above argument holds for both
interface and non-interface elements. Finally, subtracting (16) from (17) we have

u(α)− uh(α) = E(tk) = C.

This completes the proof of (iii).
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Now we prove (iv). Due to (iii), it suffices to look at

E(t0) = u(a)− uh(a)

=

∫ t1

a

β(p′ − p′h)ϕ
′
0dx ϕ0 is the nodal quadratic shape function at t0

=
2β−

h2

∫ t1

a

(p′ − p′h)(2x− t1/2 − t1)dx

=
2β−

h2

∫ t1

a

(p′ − p′h)(2x)dx by (i)

= 0,

where the last equality is derived as follows. Since a(p− ph, ϕ1/2) = 0, we have

0 =
−4β−

h2

∫ t1

a

(p′ − p′h)(2x− a− t1)dx

=
−4β−

h2

∫ t1

a

(p′ − p′h)(2x)dx by (i).

This completes the proof of (iv) for end nodes.
Subtracting (16) from (17), we have

u(α)− uh(α) = E(tk) = 0.

�

We now move to the general case.

Theorem 3.3. Consider problem (1) with q ≥ 0. Let the approximate flux uh be
defined by (13) and (14)–(16), ph defined by (7), and p defined by (4). Suppose
that the coefficient β is piecewise constant. Then the following statements hold.

(i) Fourth order convergence rate for approximate pressure ph at the
end nodes.

|p(ti)− ph(ti)| ≤ Ch4, at all end nodes ti, i = 0, . . . , n.

(ii) The error in the approximate pressure at the interface point sat-
isfies

|p(α)− ph(α)| ≤ Ch2.5,

and at the midpoints

|p(x)− ph(x)| ≤ Ch2, x = ti+1/2, i = 0, . . . , n− 1.

(iii) Almost uniform error at the end nodes and interface point. Define
E(x) := u(x)− uh(x). Then

(29) E(ti) = E(ti−1) +O(h3.5) i = 1, . . . n,

and

(30) E(α) = E(tk) +O(h3.5).

(iv) Third order superconvergence rate of approximate flux at the
nodes and interface point.

|u(x)− uh(x)| ≤ Ch3 for all x = ti, i = 0, . . . , n and α.
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Proof. Let G(x, ξ) be the Green’s function satisfying

a(G, v) =< δ(x− ξ), v >, v ∈ H1
0 (a, b).

By working out the closed form of G satisfying the classical formulation

(31) −(βG′)′ + qG = δ(x− ξ), [G]α = 0, [βG′]α = 0, G(a, ξ) = G(b, ξ) = 0,

just as in (23), it is not hard to see that G is a linear combination of smooth
functions in (a, ξ), (ξ, α), (α, b) and G(x, ti) ∈ H3(Ω), for Ω = (tj , tj+1), j ̸= k and
Ω = (tk, α), (α, tk+1). Similar conclusions hold when ξ > α. Also observe that
[βG′′]α = 0 as well. In fact, the classical interpretation of the Green’s function
implies that

−βG′′ + qG = 0 on (a, α), (α, ξ),

since β is piecewise constant. So [βG′′]α = [qG]α = 0. Now let G = G(x, ti)
and without loss of generality let’s assume α lies in (tk, tk+1/2). By the local
approximation estimates, there exists Gh ∈ Vh, the interpolant of G, such that

(32) ∥G−Gh∥1,Ω ≤ Ch2||G||3,Ω

for all the Ω’s listed above. Hence

e(ti) = (δ(x− ti), e) = a(G, e) = a(G−Gh, e) ≤ Ch4.

This completes the proof of (i). The proof of the interface case in (ii) is similar
to that of Thm 3.2. However, for the midpoint case, the estimate in (26) or (32)
is not applicable since now the Green’s function is neither piecewise linear nor in
H3(ti, ti+1). Instead we have

e(ti+1/2) = (δ(x− ti+1/2), e) = a(G, e) ≤ Ch2∥p∥3,I .

Table 3 in the next section will confirm this order is the best we can achieve. The
statement (iii) is a direct consequence of (28).

We now prove (iv).

E(t0) = u(a)− uh(a)

=

∫ t1

a

β(p′ − p′h)ϕ
′
0dx+

∫ t1

a

q(p− ph)ϕ0dx.

= J1 + J2.

As in (iv) of Thm 3.2 we need a refined estimate for the first term J1 on the right
side. First observe that a(p− ph, ϕ1/2) = 0 with ϕ′

1/2 = − 4
h2 (2x− a− t1) leads to

a relation∫ t1

a

β(p− ph)
′(2x)dx =

∫ t1

a

β(p− ph)
′(a+ t1)dx+

h2

4

∫ t1

a

q(p− ph)ϕ1/2dx

= (a+ t1)β(p− ph)(t1) +
h2

4

∫ t1

a

q(p− ph)ϕ1/2dx.(33)
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Further, with ϕ′
0 = 2

h2 (2x− t1 − t1/2) we have

J1 =
2

h2

∫ t1

a

β(p− ph)
′(2x− t1 − t1/2)dx

=
2

h2

∫ t1

a

β(p− ph)
′(2x)dx− 2

h2
β(t1 + t1/2)(p− ph)(t1)

=
2

h2
(a+ t1)β(p− ph)(t1) +

1

2

∫ t1

a

q(p− ph)ϕ1/2dx

− 2

h2
β(t1 + t1/2)(p− ph)(t1) by (33)

=
2

h2
[β(a− t1/2)(p− ph)(t1)] +

1

2

∫ t1

a

q(p− ph)ϕ1/2dx.

Thus

J1 ≤ Ch−2hh4 + Ch3h0.5 ≤ Ch3,

and J2 ≤ Ch3 imply

E(t0) ≤ Ch3.

The rest of the proof follows from (29) and iteration. This completes the proof of
(iv). �

4. Numerical examples

Problem 1. Consider

−(βp′)′ = f(x) = xm, p(0) = p(1) = 0,

where m is a nonnegative integer. The interface point is located at α and

β(x) =

{
β− x ∈ [0, α),

β+ x ∈ (α, 1].

The exact solution is

(34)

p(x) =


−1

(m+ 1)(m+ 2)β−xm+2 +
t−

β−x x ≤ α,

−1

(m+ 1)(m+ 2)β+
xm+2 +

t+

β+
x− t+

β+
− −1

(m+ 1)(m+ 2)β+
x ≥ α,

where

t+ = t− =

(
α− 1

β+
− α

β−

)
×
(

−αm+2

(m+ 1)(m+ 2)β− +
αm+2

(m+ 1)(m+ 2)β+
− 1

(m+ 1)(m+ 2)β+

)
.

The flux

(35) u(x) = −βp′(x) =
1

m+ 1
xm+1 − t−
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Table 1. Maximum error at the nodes and the interface point of
approximate pressure.

Problem 1 h=1/16 h=1/32 h=1/64 h=1/128 m order

pErrEndNodes 1.0755e-13 2.9143e-14 1.3910e-14 3.2916e-15 2 ≈ exact
pErrEndNodes 4.4541e-13 6.5573e-14 1.5613e-14 4.1633e-15 5 ≈ exact
pErrEndNodes 1.9241e-13 2.5717e-14 6.099e-15 1.9949e-15 10 ≈ exact
pErrMidNodes 1.5895e-08 9.9341e-10 6.2088e-11 3.8880e-12 2 ≈ 4
pErrMidNodes 1.4455e-07 9.4764e-09 6.0645e-10 3.8352e-11 5 ≈ 4
pErrMidNodes 5.5636e08 3.9438e-08 2.6245e-09 1.6925e-10 10 ≈ 4

pErr@alp 1.0282e-06 1.2412e-07 1.5790e-08 1.9565e-09 2 ≈ 3
pErr@alp 1.0260e-07 1.1108e-08 1.4884e-09 1.4884e-09 5 ≈ 3
pErr@alp 9.7359e-10 8.6795e-11 1.2635e-11 1.4572e-12 10 ≈ 3

Table 2. Maximum error at the nodes and the interface point of
approximate flux.

Problem 1 h=1/16 h=1/32 h=1/64 h=1/128 m order

uErrEndNodes 3.9077e-13 9.8865e-14 2.0622e-14 4.6352e-15 2 ≈ exact
uErrEndNodes 1.2890e-13 2.4626e-14 2.4626e-14 7.2650e-15 5 ≈ exact
uErrEndNodes 1.2244e-14 4.2251e-14 2.8484e-15 3.8858e-16 10 ≈ exact

uErr@alp 1.0729e-13 2.4786e-14 1.4710e-15 7.9381e-15 2 ≈ exact
uErr@alp 3.4445e-14 7.0742e-15 1.1657e-15 3.4348e-16 5 ≈ exact
uErr@alp 1.3572e-14 2.6056e-15 4.8399e-16 3.0184e-16 10 ≈ exact

is smooth over [0, 1]. For the numerical runs, we set β− = 100, β+ = 1, f(x) = xm,
α = 1/3 and calculate the maximum pressure and flux error at nodes

pErrEndNodes = max
1≤i≤n−1

|p(ti)− ph(ti)|,

pErrMidNodes = max
1≤i≤n−1

|p(ti+1/2)− ph(ti+1/2)|,

uErrEndNodes = max
1≤i≤n−1

|u(ti)− uh(ti)|,

respectively. At the interface point α errors are given by

pErr@alp = |p(α)− ph(α)|,(36)

uErr@alp = |u(α)− uh(α)|.(37)

In Tables 1 and 2 below we list the error at the nodes and the interface points for
different mesh sizes and m values for pressure and flux, respectively. The pressure
at the end nodes and the flux both at the end nodes and at the interface point
numerical values are exact, as predicted by Thm 3.2. However, for pressure at the
midpoint nodes and interface point numerical results are better than the theoretic
estimates.

Table 3. Maximum error at the nodes and the interface point of
approximated pressure.

Problem 2 h=1/16 h=1/32 h=1/64 h=1/128 m order

pErrEndNodes 1.5322e-08 9.7490e-10 6.1512e-11 3.8833e-12 2 ≈ 4
pErrEndNodes 1.4261e-07 9.4103e-09 6.0430e-10 3.8283e-11 5 ≈ 4
pErrEndNodes 5.5233e-07 3.9290e-08 2.6194e-09 1.6908e-10 10 ≈ 4
pErrMidNodes 1.5774e-04 4.0059e-05 1.0093e-05 2.5332e-06 2 ≈ 2
pErrMidNodes 3.5886e-04 9.5547e-05 2.4648e-05 6.2592e-06 5 ≈ 2
pErrMidNodes 6.1493e-04 1.7680e-04 4.7412e-05 1.2277e-05 10 ≈ 2

pErr@alp 1.0424e-06 1.2323e-07 1.5846e-08 1.9531e-09 2 ≈ 3
pErr@alp 1.0835e-07 1.496e-08 1.8093e-09 2.1834e-10 5 ≈ 3
pErr@alp 9.0030e-10 9.1423e-11 1.2038e-11 1.4361e-12 10 ≈ 3

Problem 2. Consider

−(βp′)′ + qp = f(x), p(0) = p(1) = 0,
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Table 4. Maximum error at the nodes and the interface point of
approximate flux.

Problem 2 h=1/16 h=1/32 h=1/64 h=1/128 m order

uErrEndNodes 2.7964e-08 1.7779e-09 1.1119e-10 6.9698e-12 2 ≈ 4
uErrEndNodes 3.3232e-08 2.0842e-09 1.3032e-10 8.1454e-12 5 ≈ 4
uErrEndNodes 3.4227e-08 2.1550e-09 1.3493e-10 8.4356e-12 10 ≈ 4

uErr@alp 3.0707e-08 1.9893e-09 1.2439e-10 7.8315e-12 2 ≈ 4
uErr@alp 4.2560e-08 2.6929e-09 1.6839e-10 1.0545e-11 5 ≈ 4
uErr@alp 4.5229e-08 2.8495e-09 1.7841e-10 1.1155e-11 10 ≈ 4

where m and α are defined in a same way as in Problem 1. We used the same exact
solution p(x) and u(x) defined in (34) and (35). For the numerical simulation we
set q = 1 and f(x) = xm + p(x) and β and α values are same as in Problem 1.
For Problem 2, convergence rates for pressure at nodes are as predicted in Thm
3.3, whereas for the flux numerical values have higher convergence rates at the end
nodes and at the interface point.
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