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A NEW CURVATURE-BASED IMAGE REGISTRATION MODEL

AND ITS FAST ALGORITHM

JIN ZHANG AND KE CHEN

Abstract. Recently, Chumchob-Chen-Brito (2011) proposed the so-called mean curvature model

which appeared to deliver better registration results for both smooth and non-smooth deformation

fields than a large class of competing methods. However, the two displacement variables in
a deformation field are regularized separately in their model and so coupling between them is

not present. Therefore their mean curvature model has a weakness and may not yield the best

registration results in some situations such as in non-smooth registration problems with non-
axis-aligned discontinuities, as expected of a high order model. To design a new model based

on interdependence between components of the deformation field, suitable for smooth and non-

smooth registration problems, we propose a new vectorial curvature regularizer in this paper and
present an iterative method for numerical solution of the resulting variational model. Experiments

using both synthetic and realistic images confirm that the proposed model is more robust than

the Chumchob-Chen-Brito (2011) model in registration quality for a wide range of examples.
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1. Introduction

In image processing, one is often interested not only in analyzing an image but
also in comparing images in order to combine information or track changes. For
this reason, image registration, also called image matching or image warping, is one
of the most useful and challenging tasks in imaging applications. It is a problem
frequently encountered in diverse application areas, such as astronomy, art, biology,
chemistry, remote sensing and so on. Especially, in medical applications, noninva-
sive imaging is increasingly used in almost all stages of patient care: from disease
detection to treatment guidance and monitoring. For comprehensive surveys of
these applications, we refer to [8, 25], and references therein.

A general framework of image registration can be stated as follows: given two
images of the same object, respectively the reference R (fixed) and the template T
(moving), we search for a vector-valued transformation ϕ defined by

ϕ(u)(·) : Rd → Rd, ϕ(u)(x) : x 7→ x+ u(x)

or equivalently the unknown displacement field u

u : Rd → Rd, u : x 7→ u(x) = (u1(x), u2(x), · · · , ud(x))
>
,

such that the transformed template T ◦ ϕ(u(x)) = T (x + u(x)) = T (u) becomes
similar to the reference R. Here d ∈ N represents the spatial dimension of the images
which is usually d = 2 in the two-dimensional case or d = 3 the three-dimensional
case with boundary ∂Ω. Without loss of generality, we focus on d = 2 and state
that registration results are readily extendable to d = 3. Then x = (x1, x2) and
dΩ = dx1dx2. When the corresponding location ϕ(u(x)) = x+ u(x) is calculated
for each spatial location x in the image domain Ω ⊂ R2, an image interpolation
is required to assign the image intensity values for the transformed template T (u)
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at non-grid locations within image boundaries. For location outside the image
boundaries, the image intensities are usually set to be a constant value, typically
zero, we can refer to [25]. It is well worth noticing that the displacement u is more
intuitive than the transformation ϕ because it can measure how much a point in
the transformed template T (u) has moved away from its original position in T .
Here we shall restrict ourselves to scalar or gray intensity images and model them
as compactly supported functions mapping from the image domain Ω ⊂ R2 into
V ⊂ R+

0 . Assuming the image intensities of R and T are comparable, the image
registration problem can be formulated as the following similarity minimization

(1) min
u

{
D(u) =

1

2

∫
Ω

(T (x+ u(x))−R(x))
2
dΩ
}
.

It has long been known that image registration (or the above model) is an ill-
conditioned problem [25]. As a consequence, regularization is inevitable. A common
treatment of the registration problem is based on the Tikhonov type regularization
approach: find the transformation u by minimizing the joint energy functional

(2) Jα(u) = D(u) + αR(u)

where R(u) is a deformation regularizer and α > 0 is the regularization parameter
that compromises similarity and regularity.

Non-surprisingly, the choice of R(u) is very crucial for effective registration.
For instance, R(u) = ‖u‖2 is sufficient to ensure (2) to be well defined but it
does not lead to a useful model. There exist many models for deformable im-
age registration, mainly differing in how regularization is introduced. For smooth
registration problems (where u can be assumed to be smooth), the common reg-
ularization techniques such as diffusion-, elastic-, or curvature-based image regis-
tration are known to generate globally smooth deformation fields, see more details
in [11, 13, 14, 24, 23, 22, 25, 30] and references therein. However, these techniques
become poor if discontinuities or steep gradients in the deformation fields are re-
quired. The total variation-based (TV) image registration is better for preserving
discontinuities of the deformation fields [15, 16, 28]. Nevertheless, the TV model
may not be appropriate for smooth registration problems. Clearly u is unknown
and any assumption on it is practically unrealistic; therefore a common wish is for
a model to achieve robustness regardless of what properties u may have.

Recently, Chumchob-Chen-Brito [12] proposed the so-called mean curvature-
based variational model

(3) min
u
Jα(u) = D(u) + αRCCBc(u), RCCBc(u) =

2∑
l=1

∫
Ω

φ(κCCB(ul))dΩ.

Here φ(s) = 1
2s

2 and κCCB(ul) = ∇· ∇ul|∇ul|β
with |∇ul|β =

√
((ul)x)2 + ((ul)y)2 + β,

and β > 0 is a small real parameter for avoiding non-differentiability where |∇ul| =
0 [12, 15, 16, 28]. The work of [12] showed that RCCBc shares some attractive prop-
erties with the Fischer-Modersitzki’s linear curvature-based regularizer [14, 24, 25],
e.g. the energy functional (3) does not penalize affine-linear transformations and
it is invariant under planar rotation and translation. Moreover, model (3) ap-
peared to deliver excellent results for both smooth and non-smooth registration
problems, provided that u1 and u2 are not strongly coupled. This is because the
nonlinear diffusion processes resulting from the first variation of RCCBc(u) do not
enforce coupling between the primary components of the deformation field, u1 and
u2. Thus their mean curvature model may not obtain a good registration in some
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situations, such as non-smooth registration problems with non-axis-aligned discon-
tinuities. Motivated by several regularization techniques that have been proved to
be very useful in vector-valued image denoising [4, 5, 7] and in optical flow compu-
tation [2, 3], we propose a new vectorial curvature model for image registration in
this paper.

Although related regularization techniques have been used for color image de-
noising, to the best of our knowledge, they have not been studied thoroughly yet
for the registration problem (2), especially for solving smooth and non-smooth reg-
istration problems. We summaries the advantages of the new model as follows: 1)
these vectorial regularization methods lead to desirable properties, e.g. they pre-
serve discontinuities in the deformation field for non-smooth registration problems
and smoothness for smooth registration problems; 2) they incorporate the coupling
information between two primary components of the deformation field so that no
priori assumption of deformation is needed.

In general, the optimization problem (2) cannot be solved analytically, thus
numerical schemes and appropriate discretizations are required. Developing an effi-
cient numerical solution of the registration problem is an important task. Over the
past decades, there are two commonly used types of numerical schemes to compute
a numerical solution of the minimization problem (2) for a given regularization
parameter α. The first approach, the optimize-discretize approach, first forms the
objective function and then derives the continuous Euler-Lagrange equations, which
are finally discretized and solved numerically; see, e.g., [12, 25, 11, 13, 30, 14, 24, 28].
The second approach is the discretize-optimize approach which aims to discretize
the joint functional Jα in (2) and then solve the discrete minimization problem by
standard optimization methods; see, e.g. [22, 23, 21, 20, 19]. In this paper, we take
the latter discretize-optimize approach. Thus our framework is related to some
previous works of [22, 23] where an elastic (first order) rather than a higher-order
regularizer was used. We remark that, though a small smoothing parameter β is
desirable in (3), smaller β corresponds to stronger nonlinearity and slows down the
convergence of many numerical methods. Chumchob-Chen-Brito [12] developed a
convergent multigrid method using a local primal-dual fixed-point method as as a
smoother to solve (2), provided that the smoothing parameter β is large enough
(e.g. β ≥ 10−2). In contrast, our new model can be solved for very small smoothing
parameter β (e.g. β ≤ 10−16).

The rest of the paper is organized as follows. In Section 2, we present a new
curvature model suitable for both smooth and non-smooth deformation problems.
Then in Section 3, we develop a numerical method based on fixed-point methods,
a Gauss-Newton scheme with Armijo’s Line Search and a multilevel method to
achieve fast convergence. Experimental results both syntectic and real images are
illustrated in Section 4 before conclusions are made in Section 5.

2. A new curvature regularizer based image registration model

Our ideal regulariser is expected to be related to the mean curvatures κ(u1), κ(u2)
as used by [12], but yet allows coupling between two primary components u1, u2 of
the deformation field to further improve the registration quality for both smooth
and non-smooth registration problems. One possible method is to introduce the
model

min
u
Jα(u) = D(u) + αR(u), R(u) =

∫
Ω

√
κ(u1)2 + κ(u2)2dΩ
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which, unfortunately, is not the best approach due to enforcing extremely strong
coupling. Other possibilities may be based on the work of [7]. Below we make use of
the modified mean curvatures κ1(u), κ2(u). Our motivations are based on several
regularization techniques that have been proved to be very useful in vector-valued
image denoising [4, 5, 7] and in optical flow computation [2, 3].

To this end, we first note that minimizing the TV semi-norm∫
Ω

|∇u|dΩ

for a scalar function u leads to the mean curvature [28]

κ(u) = κCCB(u) = ∇ · ∇u
|∇u|

.

We next note that minimizing the vectorial TV semi-norm [4]∫
Ω

|∇u|dΩ ≡
∫

Ω

√
|∇u1|2 + |∇u2|2dΩ

leads to two new mean curvature like quantities

(4) κ1(u) = ∇ · ∇u1

|∇u|
, κ2(u) = ∇ · ∇u2

|∇u|
which clearly have built-in coupling between u1, u2 through |∇u|.

Therefore, to make full use of the coupling information, we propose a new vari-
ational model based on (4)

(5) min
u
Jα(u) = D(u) + αRNewC(u), RNewC(u) =

1

2

2∑
l=1

∫
Ω

(∇ · ∇ul
|∇u|β

)
2

dΩ

where |∇u|β =

√
|∇u1|2 + |∇u2|2 + β with β a small positive parameter for avoid-

ing singularities when |∇u| = 0. That is, our vectorial curvature model takes the
form

(6) min
u

{
Jα(u) =

1

2

∫
Ω

(
T (x+u(x))−R(x)

)2
dΩ +

α

2

2∑
l=1

∫
Ω

(
∇ · ∇ul
|∇u|β

)2

dΩ
}
.

Our particular choice of regularizer in (6) has advantages. Firstly, the new curvature
regularization RNewC shares some attractive properties with Fischer-Modersitzki’s
curvature-based regularization and RCCBc (e.g. affine transform and invariance).
Secondly, as intended, a visually pleasing registration result can be obtained by
using RNewC for non-smooth registration problems with non-axis-aligned discon-
tinuities. Finally, due to the above two advantages, it is worth stating that it is
expected to outperform RCCBc which was previously the best.

We remark that the Euler Lagrange equations for (6) will be of fourth order
and highly nonlinear and subsequent numerical solutions would be a numerically
challenging task. If one takes the optimize-discretize approach, the ideas from
[6, 7, 12] have to be used to develop convergent numerical methods. Below we
consider the alternative discretize-optimize approach.

3. Numerical solution of the image registration model (6)

In general, an optimization problem such as (6) cannot be solved analytically;
thus numerical schemes and appropriate discretizations are required. In the discretize-
optimize method, in order to take advantage of efficient optimization techniques,
all parts of the discrete problem need to be continuously differentiable which is
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true if β is not zero (though small). In this section, we first discuss briefly the
discretization we use, and then describe the details of numerical algorithms.

3.1. Finite difference discretization. We assume that our discrete images have
m1×m2 pixels. For the sake of simplicity, we further assume that the image domain
Ω = [0, ω1] × [0, ω2] ⊂ R2, then each side of each pixel has length hi = ωi/mi, i =
1, 2. Let the discrete domain in Ω be denoted by

Ωh = {x
∣∣∣x =

(
x1j1
x2j2

)
=

(
(j1 − 0.5)h1

(j2 − 0.5)h2

)
, j1 = 1, 2, · · · ,m1; j2 = 1, 2, · · · ,m2}.

Points in this set can be arranged into vector form. Let

xc,1 =[x11,1
, x12,1

, · · · , x1m1,1
, x11,2

, x12,2
, · · · ,

x1m1,2
, · · · , x11,m2

, x12,m2
, · · · , x1m1 ,m2

]>,

xc,2 =[x21,1
, x22,1

, · · · , x2m1,1
, x21,2

, x22,2
, · · · ,

x2m1,2
, · · · , x21,m2

, x22,m2
, · · · , x2m1,m2

]>,

and Xh
c = [xc,1;xc,2].

3.1.1. Discretization of the new regularizer RNewC(u). We denote the dis-
crete analogue of the continuous displacement field u = (u1, u2)> in the discrete
domain Ωh by uh = (uh1 , u

h
2 )>, where uh1 and uh2 are grid functions: (uhl )j1,j2 =

uhl (x1j1
, x2j2

), j1 = 1, 2, · · · ,m1; j2 = 1, 2, · · · ,m2 and l = 1, 2. Since the new cur-

vature regularizers RNewC(u) is expressed in terms of the more complex differential
operators gradient ∇ and divergence ∇·, we introduce the notation ∇h and ∇h· for
their discrete analogues. The discrete gradient operator ∇h at each pixel (j1, j2) is
defined by

(∇huh)j1,j2 = ((∇h,1uh1 )j1,j2 , (∇h,2uh2 )j1,j2)>

with

(∇h,luhl )j1,j2 = ((∂h,l1 uhl )j1,j2 , (∂
h,l
2 uhl )j1,j2)>

(∂h,l1 uhl )j1j2 =

{
(uhl )j1+1,j2

− (uhl )j1,j2 , if j1 < m1

0, if j1 = m1,

(∂h,l2 uhl )j1j2 =

{
(uhl )j1,j2+1 − (uhl )j1,j2 , if j2 < m2

0, if j2 = m2.

Here homogeneous Neumann boundary conditions on u are assumed:

∂ul
∂ν

= 0, l = 1, 2 on ∂Ω.

The discrete divergence operator is the negative adjoint of the gradient operator
due to the analysis of the continuous setting, namely ∇· = −∇∗. Therefore, it can
be defined by the following:

(∇ · wl)j1,j2 =


(w1

l )j1,j2 − (w1
l )j1−1,j2

(w1
l )j1,j2

− (w1
l )j1−1,j2

+


(w2

l )j1,j2 − (w2
l )j1,j2−1 if 1 < ji < mi , i = 1, 2,

(w2
l )j1,j2 if j1 = j2 = 1,

− (w2
l )j1,j2−1 if j1 = m1 , j2 = m2.
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For later convenience, we re-arrange the grid functions uh1 and uh2 as column vectors
uh1 and uh2 according to lexicographical ordering, respectively

uh1 = (uh11,1
, uh12,1

, · · · , uh1m1,1
, uh11,2

, uh12,2
, · · · , uh1m1,2

, · · · , uh11,m2
, uh12,m2

, · · · , uh1m1,m2
)>,

uh2 = (uh21,1
, uh22,1

, · · · , uh2m1,1
, uh21,2

, uh22,2
, · · · , uh2m1,2

, · · · , uh21,m2
, uh22,m2

, · · · , uh2m1,m2
)>.

Then uh1 ∈ RN , uh2 ∈ RN and Uh = (uh1 ;uh2 ) ∈ R2N , where N = m1m2. The
discrete gradient (∇h,luhl )j1,j2 can be expressed by a multiplication of the matrix
A>k ∈ R2×N (k = 1, 2, · · · , N) to the vector uhl (l = 1, 2):

A>k u
h
l =


((uhl )k+1 − (uhl )k; (uhl )k+m2

− (uhl )k), if k mod m1 6= 0 and k +m2 ≤ N

(0; (uhl )k+m2 − (uhl )k), if k mod m1 = 0 and k +m2 ≤ N

((uhl )k+1 − (uhl )k; 0), if k mod m1 6= 0 and k +m2 > N

(0; 0), if k mod m1 = 0 and k +m2 > N.

By concatenating the matrices Ak, k = 1, 2, · · · , N , we define

A = (A1, A2, · · · , AN ) = (A1,1, A1,2, · · · , AN,1, AN,2) ∈ RN×2N ;

Ax = (A1,1, A2,1, · · · , AN,1) ∈ RN×N ; Ay = (A1,2, A2,2, · · · , AN,2) ∈ RN×N ;

∇h,1uh1 =

[
Ax
>

Ay
>

]
uh1 , Buh1 ; ∇h,2uh2 =

[
Ax
>

Ay
>

]
uh2 , Buh2 .

Thus, for the discrete gradient operator ∇h, we have

∇hUh =

[
∇h,1 0

0 ∇h,2
] [
uh1
uh2

]
=

[
B 0
0 B

] [
uh1
uh2

]
, AUh.

The discrete divergence operator is the negative adjoint of the gradient operator
due to the analysis of the continuous setting, namely ∇· = −∇∗.

Now we consider the main operator

(7) RNewC(u) =
1

2

∫
Ω

B[u]dΩ, B[u] = (∇ · ∇u1

|∇u|β
)2 + (∇ · ∇u2

|∇u|β
)2.

The discrete form of the above is the following

(8) RhNewC(Uh) =
1

2
hd
∑
i,j

(B[uh])i,j =
1

2
hdBh[Uh]

where hd = h1h2 and

Bh[Uh] =
∣∣∣−B>Buh1
|AUh|β

∣∣∣2 +
∣∣∣−B>Buh2
|AUh|β

∣∣∣2
=

(uh1 )
>
B>BB>Buh1
|AUh|2β

+
(uh2 )

>
B>BB>Buh2
|AUh|2β

=
1

|AUh|2β
((uh1 )

>
B>BB>Buh1 + (uh2 )

>
B>BB>Buh2 )

=
1

|AUh|2β

(
(uh1 )>, (uh2 )>

)[ B>BB>B 0
0 B>BB>B

] [
uh1
uh2

]

=
1

|AUh|2β
(Uh)>

[
B 0
0 B

]> [
B 0
0 B

] [
B 0
0 B

]> [
B 0
0 B

]
Uh

=
(Uh)>A>AA>AUh

|AUh|2β
.
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Further

(9) RhNewC(Uh) =
hd
2

(Uh)
>
A>AA>AUh

|AUh|2β
.

3.1.2. Discretization of images T and R. Linear interpolation which can be
evaluated with low computational costs is a reasonable tool in image registration.
However, although the interpolation is differentiable almost everywhere, it is not
differentiable at the grid points. In order to benefit from fast and efficient op-
timization schemes, smoother interpolation are needed. For noisy image we use
a smoothing B-spline to approximation the images where the smoothing parame-
ter can be chosen accordingly if the noise level of the data is known a priori; see
[18, 33]. In our implementation we use a cubic B-spline approximation. The con-
tinuous smooth approximations for template T and reference R are denoted by T
and R, respectively. For further discussion on the effects of higher or lower order
B-spline interpolation on the quality of the registration, we can refer to [31].

We can get the discrete reference image

(10) ~R = R(Xh
c )

and the discrete transformed template image

(11) ~T (Uh) = T (Xh
c +Uh).

Note that ~T (Uh) is the discrete analogue of the transformed template image T (x+

u(x)) as a function of u. We denote the Jacobian of ~T by

~TUh =
∂ ~T

∂Uh
(Uh) =

∂T
∂Uh

c

(Uh
c )

where Uh
c = Xh

c + Uh, and the Jacobian of T is a block matrix with diagonal
blocks.

3.1.3. Discretization of the similarity term D. In the discrete analogue, the
integral is approximated by a midpoint quadrature. According to (10) and (11) our
discretization of the similarity (distance) measure D in (1) is straightforward:

Dh(Uh) =
hd
2

(~T (Uh)− ~R)>(~T (Uh)− ~R)

and the derivative of the discretized functional Dh(Uh) with respect to Uh is com-
puted by

dDh(Uh) = hd(~T (Uh)− ~R)> ~TUh

In addition, the second derivative d2Dh(Uh) of D can also be calculated straight-
forwardly

(12) d2Dh(Uh) = hd(~TUh)> ~TUh .

3.2. Solution of the discrete optimization problem. The discretized ana-
logue of the image registration problem (6) reads as follows:

(13) min
Uh
{Jα(Uh) = Dh(Uh) + αRhNewC(Uh)}

i.e.

min
Uh
{Jα(Uh) = Dh(Uh) +

α

2
hd

(Uh)
>
A>AA>AUh

|AUh|2β
.
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Obviously, the above functional in an algebraic form is nonlinear. In subsequent so-
lutions, we need to differentiate it twice. To facilitate differentiation, we shall intro-
duce a lagging into the denominator of the new curvature regularizer RhNewC(Uh).

The lagged quantity in (13) uses a previous and known iterate Uh(k)
. We note that

the lagging method by ’frozen coefficients’ is well known for variational approaches,
e. g. see [32, 29, 10, 9] when related to the total variation (TV ) operator. Thus we
obtain the following form

(14) min
Uh

{
Ĵα(Uh) = Dh(Uh) +

α

2
hd

(Uh)>A>AA>AUh

|AUh(k)|2β

}
.

This is equivalent to replacing Jα by a quasi-quadratic Ĵα obtained in a Taylor
expansion,

Jα(Uh(k)
+ δUh) ≈ Ĵα(Uh(k)

+ δUh) = Ĵα(Uh(k)
) + dĴα(Uh(k)

)δUh +
1

2
δ>UhHδUh

where the gradient dĴα(Uh) at the known iterate Uh(k)
is

(15) dĴα(Uh(k)
) = dDh(Uh(k)

) + αhd
(Uh(k)

)>A>AA>A

|AUh(k)|2β
and H, positive and semi-definite, is an approximation to the Hessian matrix

(16) H = d2Dh(Uh(k)
) + αhd

A>AA>A

|AUh(k)|2β
.

The approximation is due to lagging in the regularization term. Note Ĵα(Uh(k)
) =

Jα(Uh(k)
).

Hence for (14) , the Gauss-Newton scheme takes the form

(17) Uh(k+1)
= Uh(k)

+ δUh , HδUh = −dĴα(Uh(k)
).

In order to ensure a sufficient decrease in the objective function Jα(Uh), a line
search procedure is required; see [27]. So equation (17) becomes

(18) Uh(k+1)
= Uh(k)

+ tδUh , HδUh = −dĴα(Uh(k)
).

The numerical scheme is summarized in Algorithm 1.
In this paper, we use the standard Armijo line search. This procedure is iterated

until the stopping criteria are satisfied. Here the Armijo Line Search can be briefly

explained as follows. Starting with t = 1, the objective function Jα(Uh(k+1)
) of

the new iterate Uh(k+1)
= Uh(k)

+ tδUh is compared to the old value Jα(Uh(k)
).

If the reduction is not sufficient, the procedure is iterated, replacing t by 1
2 t. The

standard criterion

Jα(Uh(k+1)
) < Jα(Uh(k)

) + t ((dĴα(Uh(k)
))>Uh(k)

) tol

where the standard choice tol = 10−4 is used. As a safeguard, the line search
as well as the iteration is terminated if the step length t becomes too small. In
this situation, the optimization algorithm is declared to have failed to converge.

The algorithm is summarized in Algorithm 2. Denote Jc = Jα(Uh(k+1)
) for the

accepted t, Jinit = Jα(0h) and Jold = Jα(Uh(k)
). The following common stopping

criteria for optimization are used to ensure a robust convergence; see [17].
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Algorithm 1: Gauss-Newton for image registration: u← GNIRArmijo(α,u)

Set iter = 0;

while true do

Compute Jα(u), dĴα(u) and H using (14), (15) and (16), respectively;

Update the iteration count: iter←iter + 1;

Check the stopping rules;

Solve the quasi-Newton’s equation: Hδu = −dĴα(u) by using a
preconditioned conjugate gradient method;

Perform an Armijo Line Search: ut ← Armijo(α, δu,u) ;

if line search fail then
break;

else
Update current values: u← ut;

end

end

Algorithm 2: Armijo Line Search: u← Armijo(α, δu,u)

Compute Jα(u) and dĴα(u) using (14) and (15), respectively;

Set k ← 0, t← 1, MaxIter← 10, and η ← 10−4;

while true do
Set ut ← u+ tδu;

Compute Jα(ut) using (14);

If Jα(ut) < Jα(u) + tη(dĴα(u))>δu or k > MaxIter, break, end;

Set t← t
2 and k ← k + 1;

end
Set u← ut.

(1) Stop(1): |Jold − Jc| ≤ 10−3(1 + |Jinit|) and Stop(2): ‖uc − uold‖ ≤
10−2(1 + u0) and
Stop(3): ‖dJc‖ ≤ 10−2(1 + |Jinit|)

(2) or Stop(4): ‖dĴc‖ ≤ ε or Stop(5): (iter ≥ maxIter).

Here u0 is the initial guess on level k. The first criterion measures the relative vari-
ation in the objective function, the second criterion measures the relative variation
in the parameters, and the third measures the norm of the gradient. If all these
quantities are small, the iteration is terminated. The last two criteria ‖dĴc‖ ≤ ε
and iter≥maxIter are quite natural, where ε = 10−16 denotes the machine precision
and maxIter is an a priori chosen number. See, e.g., [17, 26] for a detailed discus-
sion. Here maxIter is chosen to be small on finer levels for efficiency consideration
and the largest on the coarsest level.

In order to save computational work and to speed up convergence, we combine
the Gauss-Newton method with the multilevel scheme to solve (14). Starting on
a coarse level where computations are cheap, a starting guess for a finer level is
computed. On the fine level, only a very few correction steps are expected. Using a
multilevel approach offers two major advantages. First, the optimization problems
are easier to solve on the coarser levels, i.e., less iterations are needed to compute
a minimizer. Second, details are diminished on coarser levels and the optimization
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is thus more robust, and the risk of being trapped in local minima is reduced. In
order to take advantage of efficient optimization techniques, all parts of the discrete
problem need to be continuously differentiable. Thus multilevel representation of
given images is necessary. The objective of multilevel representation is to derive
a family of continuous models for given images. In order to easily understand, we
give a simple example. Suppose that m1 = m2 = 2L with L ∈ N and T∈ Rm1×m2

is given. A multilevel representation of the data T is {Tl, l = 1, 2, · · · , L}, where
TL = T and for l = L : −1 : 1,

(19)
Tl−1(1 : 2l−1, :) = (Tl(1 : 2 : end, :) + Tl(2 : 2 : end, :))/2;
Tl−1(:, 1 : 2l−1) = (Tl(:, 1 : 2 : end) + Tl(:, 2 : 2 : end))/2

We next summarize the multilevel scheme in Algorithm 3. In this Algorithm, bi-
linear interpolation techniques are used for the interpolation operator denoted by
IhH .

Algorithm 3: Multilevel Image Registration: u← MLIR(MLData)

Maxlevel← L, % The finest level;

Minlevel← 3, % The coarsest level;
Input MLData, % Multilevel representation of given images R and T
according to (19);

for l = Minlevel:Maxlevel do
if l == Minlevel then

Providing the first guess u0 obtained by using a multilevel affine linear
preregistration;

u0← u0;

else
u0← IhH(u);

end

u← GNIRArmijo(α,u0) ;

end

4. Numerical experiments

In this section we present some experiments to

• compare the modeling results of our new vectorial curvature model RNewC

(Algorithm 3) with the model of Chumchob-Chen-Brito [12] with regulariser
RCCBc (the previously best method);
• test the performance of our proposed Algorithm 3 for RNewC with regard

to parameter sensitivities.

To measure the quality of the registered images, the relative reduction of the dis-
similarity rel.SSD is used, and it is defined as follows

rel · SSD =
Jα(u)

Jinit

where u is the current iteration and Jinit is the value of Jα(u) at u = 0. Three
representative data sets (Two non-smooth registration problems and a smooth reg-
istration problem to be denoted respectively as Example 1, Example 2 and Example
3) are selected for the experiments, as shown respectively in Figure 1.
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4.1. Comparison of RNewC with RCCBc. In the first experiment, our aim is
to investigate capabilities of RCCBc and RNewC for registration of the three test
Examples 1 − 3 in resolution 256 × 256, 512 × 512. Below we mainly highlight
the further gains from using RNewC. To be a fair comparison, we used the same
Algorithm as explained in Section 3 for solving the discretised energy functional
related to RCCBc.

The registered results by the two models are shown in Figure 2, Figure 3 and
Figure 4. On one hand, for the smooth registration problem (Example 3), one
can observe that the two curvature models work fine in producing acceptable reg-
istration results, however the registered result by the new model RNewC has the
more better value of rel.SSD; on the other hand, for the non-smooth registration
problems (Example 1−2), one can clearly see that our new model RNewC evidently
produced visually pleasing results, especially on Example 1 with non-axis-aligned
discontinuities. The main reason is that our new model utilize interdependence be-
tween the primary components of the deformation field for smooth and non-smooth
registration problems.

4.2. Tests of our new Algorithm 3. Here by experiments, we hope to test the
convergence issues of it with regard to parameters α, β in the model and the mesh
parameter h.

4.2.1. h-independent convergence tests. We shall resolve the same Example
2 − 3 as above using an increasing sequence of resolutions (or a decreasing mesh
parameter h) and show the results in Table 1. The results show that our new
Algorithm 3 not only convergence within a very short time, but it is also accurate
because the dissimilarities between the reference and registered images have been
reduced more than 93%. For overall performance the experimental results suggest
that our new Algorithm 3 would be preferred for practical applications.

Table 1. Registration results of our Algorithm 3 for processing
Example 2− 3 shown respectively in Figure 1. In the table, CPU
means the total runtimes including Image output and pre-
registration.

RNewC model
Example h α β rel.SSD CPU(second)

1/128 0.02 1e-6 4.1694% 9.0
2 1/256 0.02 1e-6 4.3884% 21.1

1/512 0.02 1e-6 4.2526% 68.5
Example h α β rel.SSD CPU(second)

1/128 100 1e-6 0.47126% 7.2
3 1/256 100 1e-6 0.46693% 13.7

1/512 100 1e-6 0.38297% 40.8

4.2.2. α-dependence test. Here we analyze how sensitive the performance of our
Algorithm 3 when varying α. To this end, our Algorithm 3 was tested on Example
3 (see Figure 1 last row) with the results shown in Table 2. Here the following
parameters are used: β = 1e− 6, and h = 1/256 for all experiments and α is varied
from 1000 to 1. For this example, we can see that the performance of our Algorithm
3 is basically consistently behaved.
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Example 1 (256× 256)

Example 2 (512× 512)

Example 3 (512× 512)

Figure 1. Three representative data sets of registration problems.
Left column: reference image R, right column: template image T .
Top to bottom: Example 1−2 (non-smooth registration problems)
and Example 3 (smooth registration problem).

4.2.3. β-dependence test. As is well known, the quantities of results and the
performances of some numerical schemes in solving the nonlinear system related to
the total variation regularization technique are affected significantly by the value
of β. Theoretically β 6= 0 should be selected to be as small as possible, thus the
solution of (6) approaches to that of the original problem (2); see [1] for discussions
related to another problem. Here our aim is to see how our Algorithm is affected
when varying the values of β. To this end, the Algorithm 3 was tested on the
non-smooth Example 2 as from Figure 1 middle row with the results shown in
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Figure 2. Registration results for two sliding objects of size 256×
256 (Example 1). Top row: Difference between reference image and
template image before registration. Middle row left: registered
template image by RNewC; Middle row right: Difference between
reference image and deformed template image after registration
by RNewC; Last row left: registered template image by RCCBc;
Last row right: Difference between reference image and deformed
template image after registration by RCCBc. Here the heuristically
best α were selected for all cases and β = 10−6.

Table 3. Here the following parameters are taken: α = 0.02, and h = 1/256 for all
experiments and β is varied from 10−16 to 1. For this example, on one hand we
can see our Algorithm is still convergent when β is very small; On the other hand,
we can also observe the quality of registered image by Algorithm 3 is not sensitive
as β reduces.
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Figure 3. Registration results for two book images of size 512×
512 (Example 2). Top row: Difference between reference image
and template image before registration. Middle row left: registered
template image by RNewC; Middle row right: Difference between
reference image and deformed template image after registration
by RNewC; Last row left: registered template image by RCCBc;
Last row right: Difference between reference image and deformed
template image after registration by RCCBc. Here the heuristically
best α were selected for all cases and β = 10−6.

5. Conclusions

We proposed a new vectorial curvature model for image registration in this pa-
per, to make full use of interdependence between the primary components of the
deformation field for smooth and non-smooth registration problems. The proposed
regularizer is related but not identical to previous high order regularizers that have
been proved to be useful in vector-valued image denoising [4, 5, 7] and in opti-
cal flow computation [2, 3]. To solve the new model, we proposed a fixed point
method combined with a Gauss-Newton scheme with Armijo’s Line Search and fur-
ther with a multilevel method to achieve fast convergence. Numerical experiments
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Figure 4. Registration results for X-ray images of size 512× 512
(Example 3).Top row: Difference between reference image and
template image before registration. Middle row left: registered
template image by RNewC; Middle row right: Difference between
reference image and deformed template image after registration by
RNewC; Last row left: registered template image by RCCBc; Last
row right: Difference between reference image and deformed tem-
plate image after registration by RCCBc. Here α were well-selected
for all regularizer techniques and β = 10−6 was selected.
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Table 2. Results for α-dependence tests of Algorithm 3 for Ex-
ample 3 shown in Figure 1’s last row.

α β rel.SSD
1000 1e-6 0.59398%
500 1e-6 0.53479%
200 1e-6 0.55534%
100 1e-6 0.46693%
10 1e-6 0.48941%
1 1e-6 0.51263%

Table 3. Results for β-dependence tests of Algorithm 3 for Ex-
ample 2 shown in Figure 1’s middle row.

α β rel.SSD
0.02 1e-16 4.3767%
0.02 1e-12 4.3767%
0.02 1e-8 4.3846%
0.02 1e-6 4.3884%
0.02 1e-4 4.4124%
0.02 1e-2 4.4739%
0.02 1e-0 4.9293%

confirm that the proposed method can effectively find a highly accurate solution
for both synthetic and realistic images and produce more robust registration results
in quality than the previously best model [12]. Future works will consider mesh
constraints, multi-modality registration and other generalisations.
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[30] M. Stürmer, H. Köstler, and U. Rüde, A fast full mulitigrid solver for applications in image
processing, Numer. Linear Algebra Appl., 15 (2008), pp. 187–200.

[31] P. Thevenaz and M. Unser, Optimization of mutual information for multiresolution image
registration, IEEE Trans. Image Process., 9 (2000), pp. 2083–2089.

[32] C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci.
Comput., 17 (1996), pp.227–238.

[33] G. Wahba, Spline Models For Observational Data, SIAM publications, Philadelphia, 1990.

School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P R China

E-mail : zhangjindlut@163.com

Department of Mathematical Sciences and Centre for Mathematical Imaging Techniques, the
University of Liverpool, United Kingdom (For Correspondence).

E-mail : k.chen@liverpool.ac.uk

URL: http://www.liv.ac.uk/cmit, http://www.liv.ac.uk/∼cmchenke


