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A CONFORMING FINITE ELEMENT DISCRETIZATION OF THE

STREAMFUNCTION FORM OF THE UNSTEADY QUASI-GEOSTROPHIC

EQUATIONS

ERICH L FOSTER, TRAIAN ILIESCU, DAVID WELLS, AND DAVID WELLS

Abstract. This paper presents a conforming finite element semi-discretization of the streamfunction form of the

one-layer unsteady quasi-geostrophic equations, which are a commonly used model for large-scale wind-driven ocean
circulation. We derive optimal error estimates and present numerical results.
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1. Introduction

The quasi-geostrophic equations (QGE), a standard simplified mathematical model for large scale
oceanic and atmospheric flows [7, 23, 25, 28], are often used in climate models [8]. We consider a
finite element (FE) discretization of the QGE to allow for better modeling of irregular geometries.
Indeed, it is important to represent features like coastlines in ocean models; numerical artifacts
can result from stepwise boundaries, which can affect ocean circulation predictions over long time
integration [1, 9, 30].

Most analyses of the QGE have been done on the mixed streamfunction-vorticity rather than the
pure streamfunction form. This work focuses on the latter, which has the advantage of known opti-
mal error estimates (see the error estimate 13.5 and Table 13.1 in [17]). However, the disadvantage
of not using a mixed formulation is that the pure streamfunction form of the QGE is a fourth-order
problem: this necessitates the use of a C1 FE space for a conforming FE discretization.

In what follows we first introduce, in Section 1, the streamfunction-vorticity form of the QGE
and its nondimensionalization, followed by the pure streamfunction form of the QGE. In Section 3
we introduce the functional setting and the FE discretization in space. From there, we develop
optimal error estimates in Section 4 followed by, in Section 5, numerical verification of the error
estimates developed in Section 4.

2. The Quasi-Geostrophic Equations

The QGE are usually written as follows (e.g., equation (14.57) in [28], equation (1.1) in [23],
equation (1.1) in [29], and equation (1) in [16]):

∂q

∂t
+ J(ψ, q) = A∆q + F(1a)

q = ∆ψ + β y,(1b)

where q is the potential vorticity, ψ is the velocity streamfunction, β is the coefficient multiplying
the y-coordinate (which is oriented northward) in the β-plane approximation (3), F is the forcing,
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A is the eddy viscosity parameterization, and J(·, ·) is the Jacobian operator given by

J(ψ, q) :=
∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
.(2)

The β-plane approximation reads

(3) f = f0 + β y,

where f is the Coriolis parameter and f0 is the reference Coriolis parameter (see the discussion
on page 84 in [6] or Section 2.3.2 in [28]). As noted in Chapter 10.7.2 in [28] (see also [27]), the
eddy viscosity parameter A in (1a) is usually several orders of magnitude higher than the molecular
viscosity. This choice allows the use of a coarse mesh in numerical simulations. The horizontal
velocity u can be recovered from ψ and q by the formula

u := ∇⊥ψ =

(
−∂ψ∂y
∂ψ
∂x

)
.(4)

The computational domain considered in this report is the standard [16] rectangular, closed basin
on a β-plane with the y-coordinate increasing northward and the x-coordinate eastward. The center
of the basin is at y = 0, the northern and southern boundaries are at y = ±L, respectively, and
the western and eastern boundaries are at x = 0 and x = L (see Figure 1 in [16]).

We are now ready to nondimensionalize the QGE (1). There are several ways of nondimen-
sionalizing the QGE, based on different scalings and involving different parameters (see standard
textbooks on geophysical fluid dynamics, such as [7, 23, 25, 28]). Since the FE error analysis in this
report is based on a precise relationship among the nondimensional parameters of the QGE, we
present a careful nondimensionalization of the QGE below. We first need to choose a length scale
and a velocity scale – the length scale we choose is L, the width of the computational domain. To
define the velocity scale, we first need to specify the forcing term F in (1a). To this end, we follow
the presentation in Section 14.1.1 in [28] and assume that F is the scaled wind-stress curl at the
top of the ocean:

(5) F =
1

H ρ

(
∂τy

∂x
− ∂τx

∂y

)
,

where H is the depth of the fluid, ρ is the density of the fluid, and τ = (τx, τy) is the wind-stress
at the top of the ocean (see also Section 2.12 and equation (14.3) in [28] and Section 5.4 in [6]),
which is measured in N/m2 (e.g., page 1462 in [16]). To determine the characteristic velocity scale,
we use the Sverdrup balance given in equation (14.20) in [28] (see also Section 8.3 in [6]):

(6) β

∫
vdz =

1

ρ

(
∂τy

∂x
− ∂τx

∂y

)
,

in which the velocity component v is integrated along the depth of the fluid. The Sverdrup balance in
(6) represents the balance between wind-stress (i.e., forcing) and β-effect, which yields the Sverdrup
velocity

(7) U :=
τ0

ρHβL
,

where τ0 is the amplitude of the wind stress. It is easy to check that the Sverdrup velocity defined
in (7) has velocity units. We note that the same Sverdrup velocity is used in equation (8-11) in
[6] and on page 1462 in [16] (the latter has an extra π factor due to the particular wind forcing
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employed). The Sverdrup velocity (7) will be used as the characteristic velocity scale in the nondi-
mensionalization. Once the length and velocity scales are chosen, the variables in the QGE (1) can
be nondimensionalized as follows:

x∗ =
x

L
, y∗ =

y

L
, t∗ =

t

L/U
, q∗ =

q

β L
, ψ∗ =

ψ

U L
,(8)

where a superscript ∗ denotes a nondimensional variable. We denote derivatives taken with respect
to nondimensional coordinates by ∆∗ and J∗(·, ·). Using (8), the nondimensionalization of (1b) is

β L q∗ =
1

L2
∆∗(U Lψ∗) + β (Ly∗).(9)

Dividing (9) by β L, we get:

q∗ =

(
U

β L2

)
∆∗ψ∗ + y∗.(10)

Defining the Rossby number Ro as

Ro :=
U

β L2
,(11)

equation (10) becomes

q∗ = Ro∆∗ψ∗ + y∗.(12)

Then we nondimensionalize (1a). We start with the left-hand side:

∂q

∂t
= (βU)

∂q∗

∂t∗
,(13)

J(ψ, q) =
∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
= U

∂ψ∗

∂x∗
β
∂q∗

∂y∗
− U ∂ψ

∗

∂y∗
β
∂q∗

∂x∗
= (βU)J∗(ψ∗, q∗).(14)

Next, we nondimensionalize the right-hand side of (1a). The first term can be nondimensionalized
as

(15) A∆q = A

(
∂2q

∂x2
+
∂2q

∂y2

)
= A

(
1

L2

∂2

∂x∗2
(βLq∗) +

1

L2

∂2

∂y∗2
(βLq∗)

)
= A

β

L
∆∗q∗.

Thus, inserting (13)-(15) in (1a), we get

(β U)
∂q∗

∂t∗
+ (β U) J∗(ψ∗, q∗) = A

β

L
∆∗q∗ + F.(16)

Dividing by β U , we get:

∂q∗

∂t∗
+ J∗(ψ∗, q∗) =

(
A

U L

)
∆∗q∗ +

F

β U
.(17)

Defining the Reynolds number Re as

Re :=
U L

A
,(18)

equation (17) becomes

∂q∗

∂t∗
+ J∗(ψ∗, q∗) = Re−1 ∆∗q∗ +

F

β U
.(19)
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The last term on the right-hand side of (19) has the following units:

(20)

[
F

βU

]
(5),(7)∼


1

H ρ

(
∂τy

∂x
− ∂τx

∂y

)
β

τ0
ρHβL

 ,
which is nondimensional. Thus, (20) clearly shows that the last term on the right-hand side of (19)
is nondimensional, so (19) becomes

∂q∗

∂t∗
+ J∗(ψ∗, q∗) = Re−1 ∆∗q∗ + F ∗,(21)

where F ∗ = F/(βU). Dropping the ∗ superscript in (21) and (10), we obtain the nondimensional
vorticity-streamfunction form of the one-layer quasi-geostrophic equations

∂q

∂t
+ J(ψ, q) = Re−1 ∆q + F(22a)

q = Ro∆ψ + y,(22b)

where Re and Ro are the Reynolds and Rossby numbers, respectively.
Substituting (22b) in (22a) and dividing by Ro, we get the pure streamfunction form of the

one-layer quasi-geostrophic equations

∂ [∆ψ]

∂t
−Re−1 ∆2ψ + J(ψ,∆ψ) +Ro−1 ψx = Ro−1 F.(23)

We note that the streamfunction-vorticity form has two unknowns (q and ψ), whereas the stream-
function form has only one unknown (ψ). The streamfunction-vorticity form, however, is more
popular than the streamfunction form, since the former is a second-order partial differential equa-
tion, whereas the latter is a fourth-order partial differential equation.

We also note that (22) and (23) are similar in form to the 2D Navier Stokes Equations (NSE)
written in both the streamfunction-vorticity and streamfunction forms. There are, however, several
significant differences between the QGE and the 2D NSE. First, we note that the term y in (22b)
and the corresponding term ψx in (23), which model the rotation effects in the QGE, do not have
counterparts in the 2D NSE. Furthermore, the Rossby number, Ro, in the QGE, which is a measure
of the rotation effects, does not appear in the 2D NSE.

To ensure the velocity and the streamfunction are related by u = (ψy,−ψx) (which is the relation
used in [17]), we will consider the QGE (23) with ψ replaced with −ψ:

−∂ [∆ψ]

∂t
+Re−1 ∆2ψ + J(ψ,∆ψ)−Ro−1 ∂ψ

∂x
= Ro−1 F.(24)

We consider the boundary and initial conditions

(25) ψ =
∂ψ

∂n
= 0 on ∂Ω and ψ(0) = ψ0,

which were used in [17] for the streamfunction form of the 2D NSE. The boundary conditions in (25)
are the no-slip boundary conditions.
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3. Finite Element Discretization

In this section we build the mathematical framework for the FE discretization of the QGE. To
this end, we consider the strong formulation of the QGE in pure streamfunction form (24). The
following functional spaces will be used:

L2(0, T ;H2
0 (Ω)) :=

{
ψ(t,x) : [0, T ]→ H2

0 (Ω) :

∫ T

0

‖∆ψ‖2 dt <∞

}
(26)

L∞(0, T ;H1
0 (Ω)) :=

{
ψ(t,x) : [0, T ]→ H1

0 (Ω) : ess sup
0<t<T

‖∇ψ‖ <∞
}
.(27)

Additionally, let

(28) X := H2
0 (Ω) =

{
ψ ∈ H2(Ω) : ψ =

∂ψ

∂n
= 0 on ∂Ω

}
.

Also, we will denote the L2 inner product by (·, ·) and the associated norm as ‖ · ‖. With this
notation we take the norm associated with the spaces Hk(Ω) to be the standard norms given by [3,
Definition 1.3.1], i.e.

Definition 1 (Sobolev Norms). Let k be a non-negative integer, and let f ∈ L1
loc(Ω). Suppose that

the weak derivatives Dα
wf exist for all |α| ≤ k. Define the Sobolev norm as

‖f‖k :=

∑
|α|≤k

‖Dα
wf‖2

1/2

.

Given Definition 1 we can then define the semi-norm associated with the space Hk(Ω).

Definition 2 (Semi-norms). Let k be a non-negative integer, and let f ∈ L1
loc(Ω). Suppose that

the weak derivative Dk
wf exists for all |α| = k. Define the semi-norm as

|f |k :=

∑
|α|=k

‖Dα
wf‖2

1/2

.

The strong formulation (see [22, Definition 33] for a definition of strong solution of the NSE)
of the QGE in pure streamfunction form (24) reads: Find ψ ∈ L2(0, T ;H2

0 (Ω)) ∩ L∞(0, T ;H1
0 (Ω))

such that

(∇ψt,∇χ) +Re−1(∆ψ,∆χ) + b(ψ;ψ, χ)−Ro−1(ψx, χ) = Ro−1(F, χ), ∀χ ∈ X,(29)

ψ(0) = ψ0,(30)

where the trilinear form is defined as follows (see (13) in [14] and Section 13.1 in [17]):

(31) b(ξ;ψ, χ) =

∫
Ω

∆ξ (ψyχx − ψxχy) dx.

We assume that the strong formulation of the QGE (29)-(30) has a unique solution which satisfies
the following regularity property:

(32)

∫ T

0

‖∆ψ‖4dt <∞.
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We note the solution of the strong formulation of the NSE satisfies a similar regularity property
(see Definition 33 in [22]). We also assume that ‖F‖−2 is in L2(0, T ), where the dual norms are
defined by (see Definition 24 in [22])

(33) ‖F‖−1 = sup
v∈H1

0 (Ω)

(F, v)

|v|1
and ‖F‖−2 = sup

v∈H2
0 (Ω)

(F, v)

|v|2
.

It can be proven that |v|2 = ‖∆v‖,∀v ∈ X, see (1.2.8) in [5]. Thus, the seminorm v → ‖∆v‖
is a norm in X = H2

0 (Ω), which is equivalent to the norm ‖ · ‖2. As a byproduct, we obtain the
following Poincaré-Friedrichs inequality: there exists a finite, positive constant Γ0 such that for any
ψ ∈ H2

0 (Ω),

(34) ‖∇ψ‖ ≤ Γ0‖∆ψ‖.

Let T h denote a triangulation of Ω with mesh size (maximum triangle diameter) h. We consider
a conforming FE discretization of (29)-(30), i.e., let Xh be piecewise polynomials such that Xh ⊂
X = H2

0 (Ω). The FE discretization of the streamfunction form of the QGE (29)-(30) reads: Find
ψh ∈ L2(0, T ;Xh) ∩ L∞(0, T ;H1

0 (Ω)) such that, ∀χh ∈ Xh,

(∇ψht ,∇χh) +Re−1(∆ψh,∆χh) + b(ψh;ψh, χh)−Ro−1(ψhx , χ
h) = Ro−1(F, χh),(35)

ψh(0) = ψh0 ,(36)

where ψh0 is the FE initial condition. We assume (35)-(36) has a unique solution ψh.

4. Error Analysis

In this section we present the convergence and error analysis associated with (35)-(36). We will
use the same approach as the one used in Section 4 of [14], which contains the error analysis for
the stationary QGE.

The following lemma will introduce some useful bounds for the forms introduced in Section 3.

Lemma 1. There exist finite constants Γ1,Γ2 > 0 such that for all ψ, χ, ϕ ∈ X the following
inequalities hold:

(∆ψ,∆χ) ≤ |ψ|2 |χ|2,(37)

b(ψ;ϕ, χ) ≤ Γ1|ψ|2 |ϕ|2 |χ|2,(38)

(ψx, χ) ≤ Γ2 |ψ|2 |χ|2,(39)

(F, χ) ≤ ‖F‖−2 |χ|2.(40)

For a proof of this result, see (12)-(21) of [14], (5.7)-(5.10) of [13], and inequalities (2.2)-(2.3) in
[4].

Proposition 1. The solution of (35)-(36), ψh, is stable; for any t > 0 the following inequality
holds:

(41)
1

2
‖∇ψh(t)‖2 +

Re−1

2

∫ t

0

‖∆ψh(t′)‖2 dt′ ≤ 1

2
‖∇ψh0 ‖2 +

ReRo−2

2

∫ t

0

‖F (t′)‖2−2 dt
′.

Proof. Take χh = ψh in (35) and note that b(ψh;ψh, ψh) = 0 and (ψhx , ψ
h) = 0 (see Remark 1 in

[14]). Using the definition of the ‖ · ‖−2 norm we get

(42)
1

2

d

dt
‖∇ψh‖2 +Re−1‖∆ψh‖2 = Ro−1(F,ψh) ≤ Ro−1‖F‖−2 ‖∆ψh‖.
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Using the Young inequality in (42) we have

(43)
1

2

d

dt
‖∇ψh‖2 +Re−1‖∆ψh‖2 ≤ Ro−2

2ε
‖F‖2−2 +

ε

2
‖∆ψh‖2.

Taking ε = Re−1 in (43) results in

(44)
1

2

d

dt
‖∇ψh‖2 +

Re−1

2
‖∆ψh‖2 ≤ ReRo−2

2
‖F‖2−2.

Since ‖F‖−2 ∈ L2(0, T ), integrating (44) over (0, t) gives the final result. �

The following lemma will be used in the proof of Lemma 3.

Lemma 2. For ψ, ξ, χ ∈ H2
0 (Ω), we have

(45) b(ψ; ξ, χ) = b∗(χ; ξ, ψ)− b∗(ξ;χ, ψ),

where

(46) b∗(ξ, ψ, φ) =

∫
Ω

(ξyψxy − ξxψyy)φy − (ξxψxy − ξyψxx)φxdx

For a proof, see equation (8) and Lemma 5.6 in [11].

Lemma 3. There exist finite constants Γ3,Γ4 > 0 such that, for all ψ, ϕ, χ ∈ X, the following
inequalities hold:

b(ψ;ϕ, χ) ≤ Γ3‖∆ψ‖ ‖∆ϕ‖
(
‖∇χ‖1/2‖∆χ‖1/2

)
(47)

b(ψ;ϕ, χ) ≤ Γ4

(
‖∇ψ‖1/2‖∆ψ‖1/2

)
‖∆ϕ‖ ‖∆χ‖.(48)

Proof. To prove estimate (47), we apply the Hölder inequality to b(ψ;ϕ, χ):

(49) b(ψ;ϕ, χ) ≤ ‖∆ψ‖Lp‖∇ϕ‖Lq‖∇χ‖Lr , where
1

p
+

1

q
+

1

q
= 1.

Letting p = 2 and q = r = 4 in (49) yields

(50) b(ψ;ϕ, χ) ≤ ‖∆ψ‖‖∇ϕ‖L4‖∇χ‖L4 .

Applying the Ladyzhenskaya inequality twice (Theorem 4 in [22]) to the last two factors on the
right hand side of (50) yields

(51) b(ψ;ϕ, χ) ≤ Γ5‖∆ψ‖‖∇ϕ‖
1/2‖∆ϕ‖1/2‖∇χ‖1/2‖∆χ‖1/2,

where Γ5 is a positive constant. Using (34) on ‖∇ϕ‖1/2 in (51) gives

b(ψ;ϕ, χ) ≤ Γ3‖∆ψ‖ ‖∆ϕ‖
(
‖∇χ‖1/2‖∆χ‖1/2

)
,

where Γ3 is also a positive constant, which proves estimate (47).
To prove estimate (48), we first rewrite b(ψ;ϕ, χ) with relations (45) and (46) in Lemma 2:

(52) b(ψ;ϕ, χ) = b∗(ϕ, χ, ψ)− b∗(χ, ϕ, ψ).

Next we apply the Hölder inequality to each of the terms on the right hand side of (52), obtaining

(53) b(ψ;ϕ, χ) ≤ +‖∆ϕ‖‖∇χ‖L4‖∇ψ‖L4‖∆χ‖‖∇ϕ‖L4‖∇ψ‖L4 .
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We apply the Ladyzhenskaya inequality to each term on the right hand side of (53):

(54)
b(ψ;ϕ, χ) ≤Γ6‖∆ϕ‖(‖∇χ‖

1/2‖∆χ‖1/2)(‖∇ψ‖1/2‖∆ψ‖1/2)+

Γ7‖∆χ‖(‖∇ϕ‖
1/2‖∆ϕ‖1/2)(‖∇ψ‖1/2‖∆ψ‖1/2),

where Γ6 and Γ7 are two positive constants. Finally, by applying (34) to each term on the right
hand side of (54) we achieve the desired result:

b(ψ;ϕ, χ) ≤ Γ4

(
‖∇ψ‖1/2‖∆ψ‖1/2

)
‖∆ϕ‖ ‖∆χ‖.

�

The next theorem proves the convergence of the FE approximation ψh to the exact solution ψ.
The proof is similar to the proof for Theorem 22 in [22].

Theorem 1. Let ψ be the unique solution of the QGE (29)-(30) and ψh be its FE approximation
in (35)-(36). Then the following estimate holds:

‖∇
(
ψ − ψh

)
(T )‖2 +Re−1

∫ T

0

‖∆
(
ψ − ψh

)
‖2 dt ≤ C

{∥∥∇ (ψ − ψh) (0)
∥∥2

+ inf
λh:[0,T ]→Xh

[
‖∇(ψ − λh)(0)‖+

∫ T

0

∥∥∇ (ψ − λh)
t

∥∥2
+
∥∥∆
(
ψ − λh

)∥∥2
dt

+
∥∥∆
(
ψ − λh

)∥∥2

L4(0,T ;L2)
+ ‖∇

(
ψ − λh

)
(T )‖2

]}
,

(55)

where C is a generic positive constant which can depend on T, F, ψ0, Re,Ro,Γ0,Γ1,Γ2,Γ3, and Γ4,
but not on the mesh size h.

Proof. Let χ = χh ∈ Xh and subtract (35) from (29). Denoting e := ψ − ψh, we obtain
(56)
(∇et,∇χh) +

[
b(ψ;ψ, χh)− b(ψh;ψh, χh)

]
+Re−1(∆e,∆χh)−Ro−1(ex, χ

h) = 0 ∀χh ∈ Xh ⊂ X.

Now adding and subtracting b(ψh;ψ, χh) in (56) gives
(57)
(∇et,∇χh) +

[
b(e;ψ, χh) + b(ψh; e, χh)

]
+Re−1(∆e,∆χh)−Ro−1(ex, χ

h) = 0 ∀χh ∈ Xh ⊂ X.

Taking λh : [0, T ] → Xh arbitrary and decomposing the error in (57) as e = η − Φh, where
η := ψ − λh and Φh := ψh − λh, results in
(58)

(∇Φht ,∇χh) +Re−1(∆Φh,∆χh) = (∇ηt,∇χh) +Re−1(∆η,∆χh)−Ro−1
[
(ηx, χ

h)− (Φhx, χ
h)
]

+
[
b(η;ψ, χh)− b(Φh;ψ, χh) + b(ψh; η, χh)− b(ψh; Φh, χh)

]
.

Let χh = Φh in (58). Noting that b(ψh; Φh,Φh) = 0 and (Φhx,Φ
h) = 0 (see Remark 1 in [14]), we

get

(59)

1

2

d

dt
‖∇Φh‖2 +Re−1‖∆Φh‖2 = (∇ηt,∇Φh) +Re−1(∆η,∆Φh)−Ro−1(ηx,Φ

h)

+
[
b(η;ψ,Φh)− b(Φh;ψ,Φh) + b(ψh; η,Φh)

]
.
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Using the Cauchy-Schwarz inequality, (34), and (39) from Lemma 1 we have

1

2

d

dt
‖∇Φh‖2 +Re−1‖∆Φh‖2 ≤ Γ0‖∇ηt‖‖∆Φh‖+Re−1‖∆η‖ ‖∆Φh‖+Ro−1Γ2‖∆η‖‖∆Φh‖

+
[
b(η;ψ,Φh)− b(Φh;ψ,Φh) + b(ψh; η,Φh)

]
.

(60)

Using the Young inequality with some ε > 0 on the first three terms of the right hand side of (60),
we get

Γ0‖∇ηt‖‖∆Φh‖ ≤ ε

2
‖∆Φh‖2 +

Γ2
0

2ε
‖∇ηt‖2(61)

Re−1‖∆η‖‖∆Φh‖ ≤ ε

2
‖∆Φh‖2 +

Re−2

2ε
‖∆η‖2(62)

Ro−1Γ2‖∆η‖‖∆Φh‖ ≤ ε

2
‖∆Φh‖2 +

Ro−2Γ2
2

2ε
‖∆η‖2.(63)

Using the Young inequality with ε > 0 and estimate (38) in Lemma 1 yields

(64) b(η;ψ,Φh) ≤ Γ1‖∆η‖ ‖∆ψ‖ ‖∆Φh‖ ≤ ε

2
‖∆Φh‖2 +

Γ2
1

2ε
‖∆η‖2‖∆ψ‖2.

Substituting ε = 2ε in (64) we obtain

(65) b(η;ψ,Φh) ≤ ε‖∆Φh‖2 +
Γ2

1

4ε
‖∆η‖2‖∆ψ‖2.

Using (61) - (65) in (60) we obtain

1

2

d

dt
‖∇Φh‖2 +

1

2

(
2Re−1 − 5ε

)
‖∆Φh‖2 ≤ 1

2ε

[
Γ2

0‖∇ηt‖2 +
(
Re−2 +Ro−2Γ2

2

)
‖∆η‖2

]
+

Γ2
1

4ε
‖∆η‖2‖∆ψ‖2 −

[
b(Φh;ψ,Φh)− b(ψh; η,Φh)

]
.

(66)

For the term b(Φh;ψ,Φh) we use Lemma 3 and the following version of the Young inequality
(equation (1.1.4) in [22]): given a, b > 0, for any ε > 0 and pair p, q satisfying

1 ≤ p, q ≤ ∞, 1

p
+

1

q
= 1

it holds that

(67) ab ≤ ε ap +
(p ε)

−q/p

q
bq.

Picking p = 4/3 and q = 4 in (67), we obtain

(68) |b(Φh;ψ,Φh)| ≤ Γ3 ‖∆Φh‖3/2
(
‖∆ψ‖‖∇Φh‖1/2

)
≤ ε‖∆Φh‖2 + C∗1 (Γ3, ε)‖∆ψ‖4‖∇Φh‖2,

where C∗1 (Γ3, ε) = 27/256 Γ4
3 ε
−3. Combining (66) and (68) yields

1

2

d

dt
‖∇Φh‖2 +

1

2

(
2Re−1 − 7ε

)
‖∆Φh‖2 ≤ 1

2ε

[
Γ2

0‖∇ηt‖2 +
(
Re−2 +Ro−2Γ2

2

)
‖∆η‖2

]
+

Γ2
1

4ε
‖∆η‖2‖∆ψ‖2 + C∗1 (Γ3, ε)‖∆ψ‖4‖∇Φh‖2 + b(ψh; η,Φh).

(69)

For the final term, b(ψh; η,Φh), we use inequality (48) and the Young inequality with ε = 2ε, i.e.,

(70) b(ψh; η,Φh) ≤ Γ4

(
‖∇ψh‖1/2‖∆ψh‖1/2

)
‖∆η‖ ‖∆Φh‖ ≤ ε‖∆Φh‖2 +

Γ2
4

4ε
‖∇ψh‖ ‖∆ψh‖ ‖∆η‖2.
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By stability estimate (41) in Proposition 1, we have

(71) ‖∇ψh‖ ≤ C∗2 (F,ψ0, Re,Ro).

Using (71), estimate (70) becomes

(72) b(ψh; η,Φh) ≤ ε‖∆Φh‖2 +
Γ2

4

4ε
C∗2 (F,ψ0, Re,Ro)‖∆ψh‖ ‖∆η‖2.

Combining (69) and (72) gives

1

2

d

dt
‖∇Φh‖2+

1

2

(
2Re−1 − 9ε

)
‖∆Φh‖2 ≤ 1

2ε

[
Γ2

0‖∇ηt‖2 +
(
Re−2 +Ro−2Γ2

2

)
‖∆η‖2

]
+

Γ2
1

4ε
‖∆ψ‖2‖∆η‖2 +

Γ4

4ε
C∗2 (F,ψ0, Re,Ro)‖∆ψh‖ ‖∆η‖2 + C∗1 (Γ3, ε)‖∆ψ‖4‖∇Φh‖2.

(73)

Take ε = Re−1
/9 in (73). Letting C∗0 (Γ0) = Γ2

0, C∗3 (F,ψ0, Re,Ro,Γ4) =
Γ4

2
C∗2 (F,ψ0, Re,Ro),

C∗4 (Re) = 9
2Re, C

∗
5 (Re,Γ3) = 27

256 93Re3Γ4
3, C∗6 (Re,Ro,Γ2) = Re−2 + Ro−2Γ2

2, and C∗7 (Γ1) =
Γ2

1

2
,

(73) reads

1

2

d

dt
‖∇Φh‖2 +

Re−1

2
‖∆Φh‖2 ≤ C∗4 (Re)

[
C∗0 (Γ0)‖∇ηt‖2 + C∗6 (Re,Ro,Γ2)‖∆η‖2

+ C∗7 (Γ1) ‖∆ψ‖2‖∆η‖2 + C∗3 (F,ψ0, Re,Ro,Γ4)‖∆ψh‖ ‖∆η‖2
]

+ C∗5 (Re,Γ3)‖∆ψ‖4‖∇Φh‖2.

(74)

Let a(t) := 2C∗5 (Re,Γ3)‖∆ψ‖4 and

(75) A(t) :=

∫ t

0

a(t′) dt′ <∞.

Multiplying (74) by the integrating factor e−A(t), we get{
d

dt

[
‖∇Φh‖2

]
− 2C∗5 (Re,Γ3)‖∆ψ‖4‖∇Φh‖2

}
e−A(t) +Re−1‖∆Φh‖2e−A(t)

≤ 2C∗4 (Re)

[
C∗0 (Γ0)‖∇ηt‖2 + C∗6 (Re,Ro,Γ2)‖∆η‖2 + C∗7 (Γ1) ‖∆ψ‖2‖∆η‖2

+ C∗3 (F,ψ0, Re,Ro,Γ4)‖∆ψh‖ ‖∆η‖2
]
e−A(t),

which can also be written as{
e−A(t) d

dt

[
‖∇Φh‖2

]
− d

dt

[
A(t)

]
e−A(t)‖∇Φh‖2

}
+Re−1‖∆Φh‖2e−A(t)

≤ 2C∗4 (Re)

[
C∗0 (Γ0)‖∇ηt‖2 + C∗6 (Re,Ro,Γ2)‖∆η‖2 + C∗7 (Γ1) ‖∆ψ‖2‖∆η‖2

+ C∗3 (F,ψ0, Re,Ro,Γ4)‖∆ψh‖ ‖∆η‖2
]
e−A(t),
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and simplifies to

(76)

d

dt

[
e−A(t)‖∇Φh‖2

]
+Re−1‖∆Φh‖2e−A(t)

≤ 2C∗4 (Re)

[
C∗0 (Γ0)‖∇ηt‖2 + C∗6 (Re,Ro,Γ2)‖∆η‖2 + C∗7 (Γ1) ‖∆ψ‖2‖∆η‖2

+ C∗3 (F,ψ0, Re,Ro,Γ4) ‖∆ψh‖ ‖∆η‖2
]
e−A(t).

Now, integrating (76) over [0, T ] and multiplying by eA(T ) gives

‖∇Φh(T )‖2 +Re−1

∫ T

0

‖∆Φh‖2eA(T )−A(t) dt ≤ eA(T )−A(0)‖∇Φh(0)‖2

+ 2C∗4 (Re)

[∫ T

0

C∗0 (Γ0)‖∇ηt‖2 + C∗6 (Re,Ro,Γ2)‖∆η‖2eA(T )−A(t) dt

+

∫ T

0

(
C∗7 (Γ1) ‖∆ψ‖2 + C∗3 (F,ψ0, Re,Ro,Γ4) ‖∆ψh‖

)
‖∆η‖2eA(T )−A(t) dt

]
.

(77)

Noting that eA(T )−A(t) ≥ 1, eA(T )−A(t) ≤ eA(T ), and A(0) = 0, (77) implies

‖∇Φh(T )‖2 +Re−1

∫ T

0

‖∆Φh‖2 dt ≤ C∗8 (T,Re,Γ3)‖∇Φh(0)‖2

+ C∗9 (T,Re,Γ3)

[∫ T

0

C∗0 (Γ0)‖∇ηt‖2 + C∗6 (Re,Ro,Γ2)‖∆η‖2 dt

+

∫ T

0

(
C∗7 (Γ1) ‖∆ψ‖2 + C∗3 (F,ψ0, Re,Ro,Γ4) ‖∆ψh‖

)
‖∆η‖2 dt

]
,

(78)

where

C∗8 (T,Re,Γ3) = exp

(
2

27

256
93Re3 Γ4

3

∫ T

0

‖∆ψ‖4 dt

)
,(79)

C∗9 (T,Re,Γ3) = 9Re exp

(
2

27

256
93Re3 Γ4

3

∫ T

0

‖∆ψ‖4 dt

)
.(80)

By the Cauchy-Schwarz inequality we have∫ T

0

‖∆ψh‖‖∆η‖2 dt ≤ ‖∆ψh‖L2(0,T ;L2)‖∆η‖2L4(0,T ;L2),(81) ∫ T

0

‖∆ψ‖2‖∆η‖2 dt ≤ ‖∆ψ‖2L4(0,T ;L2)‖∆η‖
2
L4(0,T ;L2).(82)
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Note that ‖∆ψh‖L2(0,T ;L2) ≤ C∗10(Re,Ro, F, ψ0) from the stability bound (41) and (by hypothesis)
‖∆ψ‖L4(0,T ;L2) ≤ C∗11. Thus, (78) can be written as

(83)

‖∇Φh(T )‖2 +Re−1

∫ T

0

‖∆Φh‖2 dt ≤ C∗8 (T,Re,Γ3)‖∇Φh(0)‖2

+ C∗9 (T,Re,Γ3)

[∫ T

0

C∗0 (Γ0)‖∇ηt‖2 + C∗6 (Re,Ro,Γ2)‖∆η‖2 dt

+

(
C∗7 (Γ1)C∗11 + C∗3 (F,ψ0, Re,Ro,Γ4)C∗10(Re,Ro, F, ψ0)

)
‖∆η‖2L4(0,T ;L2)

]
.

Remark 1. We note that the stability bound in Proposition 1 does not provide an estimate for
‖∆ψh‖L4(0,T ;L2), and this was the reasoning for treating the nonlinear terms b(η;ψ,Φh) and b(ψh; η,

Φh) in (60) differently.

Adding ‖∇η(T )‖2 +Re−1
∫ T

0
‖∆η‖2 dt to both sides of (83) and using the triangle inequality gives

1

2
‖∇(ψ − ψh)(T )‖2 +

Re−1

2

∫ T

0

‖∆
(
ψ − ψh

)
‖2 dt ≤ C∗8 (T,Re,Γ3)‖∇Φh(0)‖2

+ C∗9 (T,Re,Γ3)

∫ T

0

C∗0 (Γ0)‖∇
(
ψ − λh

)
t
‖2 + (Re−1 + C∗6 (Re,Ro,Γ2))‖∆

(
ψ − λh

)
‖2 dt

+
[
C∗7 (Γ1)C∗11

+ C∗3 (F,ψ0, Re,Ro,Γ4)C∗10(Re,Ro, F, ψ0)
]
‖∆
(
ψ − λh

)
‖2L4(0,T ;L2) + ‖∇

(
ψ − λh

)
(T )‖2.

(84)

Since ‖Φh(0)‖ ≤ ‖e(0)‖+ ‖η(0)‖, inequality (84) yields

1

2
‖∇(ψ − ψh)(T )‖2 +

Re−1

2

∫ T

0

‖∆
(
ψ − ψh

)
‖2 dt

≤ C∗8 (T,Re,Γ3)

(
‖∇e(0)‖2 + ‖∇(ψ − λh)(0)‖2

)
+ C∗9 (T,Re,Γ3)

∫ T

0

C∗0 (Γ0)‖∇
(
ψ − λh

)
t
‖2 +

(
Re−1 + C∗6 (Re,Ro,Γ2)

)
‖∆
(
ψ − λh

)
‖2 dt

+
[
C∗7 (Γ1)C∗11 + C∗3 (F,ψ0, Re,Ro,Γ4)C∗10(Re,Ro, F, ψ0)

]
‖∆
(
ψ − λh

)
‖2L4(0,T ;L2)

+ ‖∇
(
ψ − λh

)
(T )‖2.

(85)

Finally, taking infλh:[0,T ]→Xh of both sides of (85) and letting

C = max

{
2C∗8 (T,Re,Γ3), 2C∗9 (T,Re,Γ3) max{1, Re−1 + C∗6 (Re,Ro,Γ2)},

2[C∗7 (Γ1)C∗11 + C∗3 (F,ψ0, Re,Ro,Γ4)C∗10(F,Re,Ro, ψ0)], 2

}



COMFORMING FE DISCRETIZATION OF THE UNSTEADY QGES 963

gives

‖∇
(
ψ − ψh

)
(T )‖2 +Re−1

∫ T

0

‖∆
(
ψ − ψh

)
‖2 dt ≤ C

{∥∥∇ [ψ − ψh] (0)
∥∥2

+ inf
λh:[0,T ]→Xh

[∥∥∇ [ψ − λh] (0)
∥∥2

+

∫ T

0

∥∥∇ (ψ − λh)
t

∥∥2
+
∥∥∆
(
ψ − λh

)∥∥2
dt

+
∥∥∆
(
ψ − λh

)∥∥2

L4(0,T ;L2)
+ ‖∇

(
ψ − λh

)
(T )‖2

]}
,

which is the desired result. �

Next we determine the FE convergence rates yielded by the error estimate (55) in Theorem 1
for the Argyris element. To this end, in the remainder of this section we let Xh ⊆ X denote the
FE space associated with the Argyris element. Furthermore, we assume the nodes of the FE mesh
do not move. Finally, let Ih be the P5-interpolation operator associated with the Argyris element
(see Theorem 6.1.1 in [5]). The following two lemmas will be used in Corollary 1 to determine the
FE convergence rates for the Argyris element.

Lemma 4. Assuming ψ,ψt ∈ H6, we have that

(86)
(
Ihψ

)
t

= Ih (ψt) ,

(87)
∥∥∇ (ψ − Ihψ)∥∥ ≤ C h5 |ψ|6 ,

and

(88)
∥∥∇ (ψ − Ihψ)

t

∥∥ ≤ C h5 |ψt|6 .

Remark 2. Estimate (32) in Theorem 6 of Section 5.6 from [10] shows that H6 ↪→ C1. Thus, the
interpolation operator Ih can be applied to ψ and ψt.

Proof. Estimate (86) follows from the explicit formulas for the P5 interpolant, Ih (see [5]). Estimate
(88) follows from a combination of (86) and estimate (6.1.9) in Theorem 6.1.1 from [5] with p = q = 2
and m = 1. �

Lemma 5. Suppose that ψ,ψt ∈ H6(Ω). Then

(89)

∫ T

0

‖∇
(
ψ − Ihψ

)
t
‖2 + ‖∆

(
ψ − Ihψ

)
‖2 dt ≤ C h8

∫ T

0

h2 |ψt|26 + |ψ|26 dt

and

(90) ‖∆
(
ψ − Ihψ

)
‖2L4(0,T ;L2(Ω)) ≤ Ch

8|ψ|2L4(0,T ;H6(Ω)).

Proof. At each time instance we see from inequality (6.1.9) in [5] that ‖∆
(
ψ − Ihψ

)
‖ ≤ C h4 |ψ|6.

Squaring and integrating this and using the interpolation error bound (88) from Lemma 4 gives the
first estimate. The second estimate follows analogously, i.e.,

(91) ‖∆
(
ψ − Ihψ

)
‖L4(0,T ;L2(Ω)) =

(∫ T

0

‖∆
(
ψ − Ihψ

)
‖4 dt

) 1
4

≤ C h4

(∫ T

0

|ψ|46 dt

) 1
4

,

which proves (90). �
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Corollary 1. Suppose that ψ,ψt ∈ H6(Ω). Suppose also that the assumptions of Theorem 1 hold.
Then

(92)

‖∇
(
ψ − ψh

)
(T )‖2 +Re−1

∫ T

0

‖∆
(
ψ − ψh

)
‖2 dt

≤ h8 C

{
h2 |ψ|26 + h2 ‖ψt‖2L2(0,T ;H6(Ω)) + ‖ψ‖2L2(0,T ;H6(Ω)) + ‖ψ‖2L4(0,T ;H6(Ω))

}
.

Proof. The proof follows from Theorem 1, Lemma 4, and Lemma 5. �

5. Numerical Results

In this section we verify the theoretical error estimates developed in Section 4. As noted in Section
6.1 of [5] (see also Section 13.2 in [17], Section 3.1 in [19], and Theorem 5.2 in [2]), in order to develop
a conforming FE discretization for the QGE (29), we are faced with the problem of constructing FE
subspaces of H2

0 (Ω). Since the standard, piecewise polynomial FE spaces are locally regular, this
construction amounts in practice to finding FE spaces Xh that satisfy the inclusion Xh ⊂ C1(Ω),
i.e., C1 FEs. Several FEs meet this requirement (e.g., Section 6.1 in [5], Section 13.2 in [17], and
Section 2.5 in [2]): the Argyris triangular element, the Bell triangular element, the Hsieh-Clough-
Tocher triangular element (a macroelement), and the Bogner-Fox-Schmidt rectangular element.
In our numerical investigation, we will use the Argyris triangular element, depicted in Figure 1.
We emphasize, however, that other C1 FEs could be used, especially since the error analysis in
Section 4 holds for any conforming FE discretization. Additionally, we note that (35)-(36) is only
a semi-discretization, since the formulation is still continuous in time, but discretized in space.
For this numerical discretization, we apply the method of lines in the time domain, i.e., we use a
finite difference approximation (implicit Euler scheme) for the time derivative. We apply Newton’s

Figure 1. Argyris element with its 21 degrees of freedom.

method to solve the resulting nonlinear system at each time step. We test for convergence of the
nonlinear solver by examining the `2-norm of the Newton update; when the norm of the update is
less than 10−8, then we consider the iteration to have converged.

We use Re = 1 and Ro = 1 in all of the following computational tests. The variables k and h
respectively refer to the time and spatial discretization stepsizes.

Test 1. We use an exact solution

(93) ψ(t;x, y) = [sin(πx) sin(πy)]
2

sin(t)

with spatial domain Ω = [0, 1]2. This is similar to Test 3 in [14]. The considered time interval
is
[
0, π2

]
. The forcing term F is derived by the method of manufactured solutions. The results

of this experiment are summarized in Table 1, which displays the orders of convergence of the
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Figure 2. Test 1: orders of convergence in space for the full discretization of (24)
with exact solution (93).

FE discretization in L2, H1, and H2 norms at the final time (T ) for differing h. The results in
Table 1 are plotted in Figure 2. Note that the observed orders of convergence are close to the
theoretical error estimates developed in Section 4. The L2 order, however, drops off for the last
spatial discretization due to the error per node being near machine precision.

Table 1. Test 1: spatial orders of convergence with exact solution (93).

k h DoFs eL2 L2 order eH1 H1 order eH2 H2 order
1/8192 1/2 38 1.23× 10−2 − 1.18× 10−1 − 1.57× 100 −
1/8192 1/4 174 2.12× 10−5 9.18 7.31× 10−4 7.34 2.79× 10−2 5.81
1/8192 1/8 662 7.88× 10−7 4.75 4.59× 10−5 3.99 3.04× 10−3 3.20
1/8192 1/16 2853 7.87× 10−9 6.65 9.05× 10−7 5.67 1.29× 10−4 4.56
1/8192 1/32 11690 6.97× 10−11 6.82 1.88× 10−8 5.59 5.98× 10−6 4.43
1/8192 1/64 47958 7.23× 10−12 3.27 5.26× 10−10 5.16 3.43× 10−7 4.12

Test 2. For this test we take the exact solution to be

(94) ψ(t;x, y) =
[(

1− x

3

) (
1− e−20 x

)
sin(πy)

]2
sin(t)

with spatial domain Ω = [0, 3] × [0, 1], which corresponds to Test 6 in [14] with a time-dependent
term. The time interval for integration is [0, 0.5]. A boundary layer will form along the western
edge of the problem domain in this example. Note that the observed orders of convergence match
the theoretical error estimates developed in Section 4. The results in Table 2 are also plotted in
Figure 3.

6. Conclusions

In this paper we studied the conforming FE semi-discretization of the pure streamfunction form
of the QGE. This semi-discretization requires a C1 FE, for which we chose the Argyris element. In
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Table 2. Test 2: spatial orders of convergence with exact solution (94).

k h DoFs eL2 L2 order eH1 H1 order eH2 H2 order
1/8192 1/2 38 2.86× 10−2 − 5.16× 10−1 − 1.82× 101 −
1/8192 1/4 174 4.79× 10−3 2.58 1.75× 10−1 1.56 9.28× 100 0.973
1/8192 1/8 662 5.04× 10−4 3.25 3.38× 10−2 2.37 2.96× 100 1.65
1/8192 1/16 2853 1.65× 10−5 4.94 2.17× 10−3 3.96 3.67× 10−1 3.01
1/8192 1/32 11690 4.17× 10−7 5.30 1.07× 10−4 4.34 3.47× 10−2 3.40
1/8192 1/64 47958 7.28× 10−9 5.84 3.70× 10−6 4.86 2.37× 10−3 3.87
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Figure 3. Test 2: orders of convergence in space for the full discretization of (24)
with exact solution (94).

Section 4 we proved optimal error estimates for the conforming FE semi-discretization of the QGE.
For this analysis only the fact that the semi-discretization is conforming was used.

In Section 5 we carried out numerical experiments for the QGE with the Argyris element. We
extended the code that was developed and verified for the stationary QGE in [14] to the time-
dependent case. We applied an implicit Euler scheme and verified numerically the theoretical
spatial rates of convergence proved for the semi-discretization.

We plan to extend these studies in several directions. First, we will prove error estimates for the
full discretization of the QGE, i.e., we will also consider the time discretization component of the
total error. Furthermore, we will investigate higher-order time discretizations that are appropriate
for the high-order spatial discretization that we used in these studies. Second, we will investigate
the QGE for realistic domains, such as the North Atlantic. These realistic settings involve large
computational domains and display internal and boundary layers. Thus, although the QGE are
a simplified model, a brute force approach to the numerical simulation of these realistic settings
is generally unfeasible. We will consider stabilized, regularized and LES models to deal with the
inherently coarse meshes used in these realistic settings (see, e.g., [18, 20, 24, 27, 26] for several
attempts in this direction). Third, we will perform a careful numerical comparison of the pure
streamfunction formulation and streamfunction-vorticity formulation of the QGE. To this end,
we will consider both test problems that have an analytical solution (such as those used in this
paper) and test problems without an analytical solution (such as the double-gyre forcing [16, 24]).
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The pros and cons for each formulation are carefully discussed on pages 105-106 of [14]. For
completeness, we briefly summarize this discussion below. The conforming FE discretization of the
pure streamfunction formulation of the QGE requires C1 elements, such as the Argyris element used
in this paper. These C1 elements do not generally have a straightforward implementation as their
C0 counterparts [14, 21]. It was shown, however, that optimal convergence rates can be proven for
the discretization of the pure streamfunction formulation of the QGE with C1 elements [14, 15].
For the FE discretization of the streamfunction-vorticity formulation of the QGE, C0 elements can
be used [12, 24]. These elements have a simple implementation. To the best of our knowledge,
however, optimal convergence rates are not available in this case. Specifically, although the optimal
convergence rates can be proven for the streamfunction, the convergence rates of the vorticity
approximation are generally suboptimal. We plan to conduct a careful comparison of the FE
discretization of the pure streamfunction formulation and streamfunction-vorticity formulation of
the QGE, monitoring ease of implementation, computational efficiency and convergence rates.
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