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MATHEMATICAL MODELS FOR QUALITY ANALYSIS OF

MOBILE VIDEO
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TARRAF

Abstract. With the explosive growth of mobile video applications, analysis of video quality
becomes increasingly important because it is an important Key Performance Indicator (KPI) for
Quality of Experience (QoE). In this paper, a framework for non-reference video quality analysis

is proposed and applied to Video Telephony (VT) in LTE networks. Three metrics, blockiness,
blur and freezing, are used to estimate the MOS. Blockiness is detected by taking the H.264
codec features into account, blur is estimated by utilizing the percentage of noticeable blurred
edges in each frame, and freezing is evaluated by using a sigmoid function to mimic the effect of

different freezing duration on the Human Visual System (HVS). Furthermore, the three metrics
are combined into one objective MOS by considering different weighting factors and using the
linear curve fitting. Above 90% correlation is achieved between the objective MOS score and

subjective MOS score.

Key words. Mathematical models, video quality analysis, quality of experience, mean opinion
score, blockiness, blur, freezing, human visual system, modeling.

1. Introduction

As smartphones and tablets are increasingly being used by more and more people
and cellular network capacity is being significantly improved with more 4G LTE
network deployment, mobile data traffic is growing explosively. Among the data
traffic, video traffic is playing a big role. In a recent study [5], mobile video traffic
was already 51 percent of the entire mobile data traffic by the end of 2012. It
forecasts that mobile video will increase 16 times between 2012 and 2017 and two-
thirds of the world’s mobile data traffic will be video by 2017. As a consequence
the analysis of video quality is becoming increasingly important because it is an
important Key Performance Indicator (KPI) for Quality of Experience (QoE). In
recent years, QoE research and development has gained significant attraction in
both academia and industry since the first international workshop on Quality of
Multimedia Experience (QoMEX) was held in 2009 and more and more video qual-
ity models are recommended by Video Quality Expert Group (VQEG) to the ITU-T
standardization process [25].

Fig. 1 is a typical architecture for Video Telephony (VT) over all-IP based
LTE network. The User Equipment (UE) of the originator sends out the original
video through the uplink indicated by blue lines, and the UE terminator receives
the video through the downlink indicated by red lines. The real-time video for
VT application is usually encoded in H.264 and transmitted through the Real-time
Transport Protocol (RTP). During transmission, especially over the air interface
between UE and base station, IP packets may experience network impairments such
as packet loss, delay, and jitter, which are crucial factors in causing degradation
to the quality of the received video. Video packets may be lost due to network
congestion or they may be discarded by the video decoder if they arrive at the
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Figure 1. Components in LTE network.

terminator UE with a delay so large that it exceeds the video de-jitter buffer’s
limit. When the terminator UE does not receive the video packets for certain time
duration, it will use the latest decoded frame for display, resulting in freezing or
jerky video. When a few video packets in one Group of Picture (GOP) are lost,
the video decoder will produce some impaired frames even after error concealment,
which cause annoying blockiness and blur. Once there is an impaired frame, the
subsequent frames until the next I frame will be also adversely affected due to
the error propagation property in H.264 codec. It is worthwhile to mention that
although conceptually the blockiness occurs on the regular 8x8 block boundaries,
and has clear block edges, this notable feature is diminished due to the de-blocking
filter and error concealment at the video decoder, making blockiness detection more
challenging.

There exist subjective video quality and objective video quality. Subjective
video quality can be evaluated according to the standard P.910 [11]. Essentially, a
group of people are asked to watch the video in a specific environment with certain
lighting requirements and to give their scores to the video, according to their liking,
using a certain scale, e.g. 1-5. After averaging the scores over the audience, each
video is provided with a Mean Opinion Score (MOS). However, this process to
obtain the subjective MOS is both time and resource consuming, especially when
a lot of video sequences need to be evaluated. The purpose of objective video
quality metrics [23] is to use artificial intelligence to replace people evaluating the
video. Such a predicted MOS approximates the subjective MOS by detecting and
estimating the impairments most sensitive to the Human Visual System (HVS),
e.g. freezing/jerkiness, blockiness, and blur, and combining these impairments into
one MOS.

In general, there are three categories for objective video quality analysis. The
first category is Full Reference (FR) video quality, in which the analysis is performed
by comparing the received and decoded video with the original reference video.
The most used FR metric is Peak Signal-to-Noise Ratio (PSNR) because of its
computational simplicity and simple mathematical formula. However, it correlates
poorly with the subjective ratings [3] [22]. Thus many new FRmetrics are developed
that better correlate with subjective ratings than PSNR does, such as structure
similarity (SSIM) [22] and visual signal-to-noise ratio (VSNR) [3], and the latest
FR video quality standard for multimedia application is ITU-T J.247 [10]. Another
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category is Reduced Reference (RR) video quality, which analyzes the received
and decoded video using auxiliary information about a limited number of features
extracted from the original reference video. The auxiliary information may be
embedded into the video packet header or transmitted through the ancillary data
channel [7] [13]. The latest RR video quality standard is ITU-T J.246 [9]. The third
category is No Reference (NR) video quality analysis in which only the received
video is analyzed because no information about the original video is available. As
described in [8] by Hemami et al. NR video quality analysis is more attractive and
more practical since the original reference video source or video information is not
available in many scenarios. At the same time, NR video quality analysis is most
challenging due to the lack of reference video. In this paper, we will focus on the
NR video quality analysis.

1.1. Related Work. The related work about NR video quality can be divided into
another three categories. The first category is based on the analysis of the received
bit-stream without decoding it into video frames. Various features of the video
stream, such as quantization parameter, motion vector information, macroblock
information, frame rate, frame type, frame size, packet loss, are extracted directly
from H.264 coded bit-stream at the receiver, and then applied in a MOS prediction
model such as neural networks [1] [4] [12] [19] [27]. Another category is based on
the analysis of decoded video. In [17], Shen et al. apply natural video statistics,
2D/3D curvelet and cosine transforms of decoded video, and investigate the relation
between video quality, specific video characteristics, and motion vectors. However,
this method has a high computational complexity. The final category is based on
analysis of the combined bit-stream and decoded video, which is called a hybrid
model. The hybrid NR video quality analysis is a very promising method and has
the highest accuracy among all the NR video quality methods since it has more
information available for predicting MOS as illustrated in [18] [20] [28]. Obviously,
the complexity of hybrid model is higher than a model just based on bit-stream itself
or decoded video itself. The decoded video NR video quality has higher accuracy
than bit-stream based NR video quality since a bit-stream based method is still
performed before decoding and ignores the impact of video decoder such as error
concealment.

1.2. Main Contribution and Motivation. By considering a compromise be-
tween accuracy and complexity, we focus, in this paper, on NR video quality based
on received decoded video analysis. The novelty of this paper is that it intro-
duces a new method for computing an objective MOS by combining NR metrics
for freezing/jerkiness, blockiness and blur. Furthermore, we use a new content-
agnostic method for detection and estimation of blockiness, and new edge ratio for
the detection of blur. For freezing/jerkiness detection, we use a novel detection
algorithm by using a histogram of inter-frame pixel differences and also taking into
consideration of shaking disturbance to prevent false detection.

The purpose of our VT video quality analysis over LTE networks is to ensure that
the end user has a good QoE and is satisfied with the VT service. The VT videos in
this paper are obtained in the various network situations. Our analysis will provide
the quantitative results for these videos. Thus we will know how the network
conditions affect the VT quantitatively, which is also very useful information for
VT service providers and helps them improve VT service over LTE. Three most
critical impairments, i.e. blockiness, blur and freezing/jerkiness will be analyzed
using our novel adaptation for the state-of-the-art image processing techniques. The
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metrics for these impairments are used for predicting the objective MOS. Finally,
a polynomial curve fitting model is adopted based on the video database from
practical VT testing over LTE network.

The paper is organized as follows. First, the algorithm for blockiness estima-
tion and the corresponding implementation are described and examples are given.
Second, the algorithm for blur estimation and the corresponding implementation
is described and examples are given. Third, freezing/jerkiness detection and es-
timation method and model are described. Fourth, the MOS prediction model is
described and its performance is given. Finally we summarize the paper with future
work in the conclusion section.

2. BLOCKINESS DETECTION AND ESTIMATION

2.1. Algorithm Description. First of all, the blockiness algorithm and the blur
algorithm in the following section will deal with grayscale image. Since our decoded
video image is RGB format, we need convert it into gray image by computing the
luminance value from RGB values as follows.

Y = 0.2989 ∗R+ 0.587 ∗G+ 0.114 ∗B.(1)

In [24], Wang et al. proposed a NR blockiness estimation method by averaging
the differences across block boundaries, which are located at multiple of 8 columns
and rows due to the 8x8 DCT-based coding blocks. In [15], Muijs et al. introduced
the normalized gradient metric to estimate the blockiness. However, these methods
are content dependent, i.e., the blockiness metric value could be very different for
the different image content with similar blockiness level, or the blockiness metric
value could be similar for one image (simple texture and some blockiness) and an-
other image (complex texture and no blockiness). Thus we propose a novel content
independent blockiness estimation method by explicitly detecting the blockiness
perceived by HVS and calculating the severity of blockiness. H.264 is a block trans-
form based codec. Therefore, we use the method in [15] to verify that blockiness
indeed occurs at multiple of 8 columns (vertical blockiness) and rows (horizontal
blockiness). In the following, we only describe the details for vertical blockiness
detection, and the detection of horizontal blockiness can be performed in a similar
fashion.

Let I denote a grayscale image with M rows and N columns, and I(i, j) denote
the pixel value at ith row and jth column, where 1 ≤ i ≤ M and 1 ≤ j ≤ N . The
horizontal difference between two neighbor columns is computed as

DH(i, j) = I(i, j + 1)− I(i, j).(2)

In the areas with a lot of texture, DH will be big, which value is comparable with
the one when blockiness occurs. In order to solve this issue, we define the following
horizontal neighbor average difference and normalized horizontal difference.

DH,ave,left(i, j) =
1

p2 − p1 + 1

j−p1∑
k=j−p2

DH(i, k),(3)

DH,ave,right(i, j) =
1

p2 − p1 + 1

j+p2∑
k=j+p1

DH(i, k),(4)
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DH,norm(i, j) =
DH(i, j)

min (DH,ave,left(i, j), DH,ave,right(i, j)) + ϵ
,(5)

where j is only considered for multiple of 8 as in [24], p1 and p2 are parameters
to take into consideration of deblocking filter. By checking the blockiness area, we
notice that when blockiness occurs, the value of DH at block boundary is large,
and its value close to block boundary is also not small when deblocking filter is
used, but the value of DH away from block boundary is small. Taking this fact into
account, we set p1 and p2 to 2 and 6 (but not 1 and 7), respectively. If DH,ave,left

and DH,ave,right are smaller than Dave,thresh (we set it to 3 after checking the
blockiness areas), they will be set to 0 in order to magnify DH,norm since they
are the candidates for blockiness in this situation. ϵ stands for a very small value
(e.g. 1e-6) in order to avoid to be divided by 0. The initial binary image IV,bin for
vertical blockiness edge is obtained as follows

IV,bin(i, j) =

{
1 DH(i, j) > Dthresh andDH,norm(i, j) > Dnorm,thresh

0 else
,(6)

where again j is only considered for multiple of 8,Dthresh is set to 5 andDnorm,thresh

is set to 1000 in our case. For other columns, IV,bin(i, j) equals to 0 since they are
not the places of vertical blockiness edge.

Existing work in literature stops at Eq. (2) or Eq.(5). However, we will utilize
the definition in Eq. (6) and perform further processing to arrive at a new metric
in order to be content independent.

In the initial IV,bin, we get the initial vertical blockiness edge segments. Due to
the use of deblocking filter, we observe that some blockiness segments that belong
to the same blockiness edge have a gap between them. Thus the blockiness edge
becomes discontinuous in most cases. In order to solve this issue, if the gap of two
neighbor segments is less than some threshold (we use 4 pixels in our case), we will
connect them. It is like the dilation operation in binary morphology. After this
connection processing, we will consider the segments which has length less than 8
pixels as noise since the blockiness length must be greater than 8.

After the above processing, by testing the different content images, we also notice
that some vertical blockiness edge segments come from the image content itself.
One way to reduce them is to consider the fact that there should be at least one
corresponding horizontal blockiness edge around one vertical blockiness edge since
they are blocks. After this processing, we will get the final IV,bin. Similarly final
IH,bin can be obtained by the same processing. The blockiness metric is calculated
as

FBlockiness =
1

2
(TotalLengthV + TotalLengthH),(7)

where TotalLengthV is the total length of vertical blockiness segments in the final
IV,bin, and TotalLengthH is the total length of horizontal blockiness segments in
the final IH,bin.

Above described blockiness detection and estimation algorithm is summarized
as follows.

Step 1: initialize all parameters (p1, p2, Dave,thresh, Dthresh, Dnorm,thresh, Seg-
ment distance, Minimum segment length),

Step 2: (vertical blockiness) calculate the absolute difference DH for each pair
of neighbor columns in grayscale image,

Step 3: compute the average of DH around the columns of multiples of 8
(DH,ave,left and DH,ave,right) and process them according to Dave,thresh,
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(a) (b)

(c)

Figure 2. Blockiness algorithm verification (a) Original image
with blockiness impairment, (b) Corresponding grayscale image,
(c) Original image overlapped with blockiness detection results.

Step 4: calculate the normalized difference DH,norm,
Step 5: binarize DH,norm according to Dthresh, Dnorm,thresh to compute the

initial IV,bin,
Step 6: connect segments and remove segments in the binary image IV,bin ac-

cording to segment distance and minimum segment length,
Step 7: do the similar steps (step 2 to step 6) for horizontal blockiness and obtain

the binary image IH,bin,
Step 8: further process the binary image IV,bin to obtain the final IV,bin, i.e. for

each segment in IV,bin, if any segment is found in IH,bin which is within 4 pixels
around it, then keep it, otherwise, consider it as noise and discard it,

Step 9: obtain the final IH,bin by similar processing with step 8,
Step 10: from final IV,bin and IH,bin, calculate the total length of vertical blocki-

ness edges and horizontal blockiness edges respectively and get the blockiness metric
of this image.

2.2. Implementation and Discussion. We take one image with blockiness from
a saved video at the receiver device for the video telephony application over LTE
networks to verify the effectiveness of our algorithm. Fig. 2 (a) is the color image
which is perceived by the end user. It has blockiness impairment due to the video
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Figure 3. Summation of DH for each column.

packet loss over LTE networks. Fig. 2 (b) is the corresponding grayscale image
which will be processed by our blockiness algorithm. This is the second section.

After calculation of DH for Fig. 2 (b), Fig. 3 is the plot for the summation of
DH for each column, where we can clearly see that the blockiness peaks happen at
the columns of multiple of 8. We label one peak which corresponds to the column of
160 and is in the middle of the image. Going back to the middle of image Fig. 2 (a),
we indeed see the severe blockiness. And the rows have the similar phenomenon.
Thus this confirms that the blockiness indeed occurs at the multiple of 8 columns
and rows if there is any.

Fig. 4 (a) is the initial vertical binary image IV,bin for Step 5, where we see
that a lot of segments are very small, which are not blockiness segments, and
some blockiness segments are broken into several parts. By connecting the close
segments and discarding the small ones after connection (i.e. Step 6), we get the
processed IV,bin as Fig. 4 (b). With the similar process for horizontal part, we get
the initial IH,bin as Fig. 4 (c) and processed IH,bin as Fig. 4 (d). Putting Fig.
4 (b) and Fig. 4 (d) together, we get Fig. 4 (e). Since one vertical blockiness
segment should have one corresponding horizontal blockiness segment around it,
we get the final blockiness detection results as Fig. 4 (f) after discarding the single
vertical/horizontal segments (Step 8 and Step 9).

In order to easily see the effectiveness of our blockiness detection algorithm, we
superimpose the final results in Fig. 4 (f) on top of original image and create Fig.
2 (c), where we can see that most of blockiness is successfully detected. Some of
blockiness is not detected because the error concealment changes the features of
some blockiness. For example, in Fig. 2 (c), the blockiness in the top-right part
is not detected because the vertical edges at those places are not at multiple of 8
due to error concealment process and hence discarded by our algorithm. However,
as we can see from Fig. 2 (c), the missing blockiness detection rate is very small.
More importantly, our blockiness detection algorithm works well for different image
content and different level of blockiness. Finally, the blockiness metric will be
calculated according to Eq. (7) and be used for the MOS score prediction.

We use the 233 JPEG images from LIVE image quality database in [29] to
verify our blockiness algorithm’s effectiveness and compare it with the existing
blockiness metric in [24]. The 233 JPEG images are DCT block-based compressed
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Blockiness detection process (a) Initial IV,bin, (b) Pro-
cessed IV,bin, (c) Initial IH,bin, (d) Processed IH,bin, (e) Putting
(b) and (d) together, (f) Final IV,bin and IH,bin.

images which have the similar compression properties with H.264 compression. This
database has different level of image quality. Among them, most of distorted images
have blockiness impairments and some of distorted images have blur impairments.
Also it provides the subjective MOS for each image (scale is from 0 to 100). Thus
it is a good database to verify our blockiness algorithm. For the same database, in
[24], it proposed one simple blockiness metric in eq. 2, i.e. the average differences
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Figure 5. (a) average difference across block boundaries in [24]
(b) total blockiness length in eq. (7) (c) image MOS prediction just
using blockiness metric in [24] (d) image MOS prediction using our
blockiness metric.

Table 1. Blockiness metric comparison

Metrics Pearson Spearman RMSE
Metric in [24] 0.4861 0.4873 19.844
Our metric 0.9341 0.8891 8.1048

across block boundaries (multiple of 8). We will compare our blockiness metric
with the one in [24].

First the 233 JPEG images are sorted in the ascending order for the subjective
MOS. Then the blockiness metric in [24] is plotted in Fig. 5 (a) and our blockiness
metric in eq. (7) is plotted in Fig. 5 (b). Bigger metric indicates more blockiness.
We can see that our metric is decreasing much better than the one in [24] when the
image quality is increasing. Also we use the logistic function in [21] to predict the
image MOS using both metrics respectively. The results are shown in Fig. 5 (c)
and (d) and the performance in terms of Pearson correlation coefficient, Spearman
rank-order correlation coefficient, Root mean square error is presented in Tab. 1.
As we can see, the prediction using our blockiness metric is much better than the
one using the blockiness metric in [24].
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Figure 6. Edge width calculation.

3. BLUR DETECTION AND ESTIMATION

3.1. Algorithm Description. The HVS is very sensitive to the image edges.
In [14], Marziliano et al. describe a method to compute the edge width. When
the value of edge width is small, the edge appears being sharp. On the contrary,
when the value of edge width is large, the edge appears as blurred. An image will
be perceived to be annoyingly blurred if there are a lot of blurred edges in the
image. In [14], the metric for measuring the amount of blurring is the average
edge width for all strong vertical edges in one image. The blur metric in [14] is
improved by Ferzli er al. in [6] by taking the Just Noticeable Blur (JNB) concept
into account. Based on [6], Narvekar et al. in [16] uses a Cumulative Probability
of Blur Detection (CPBD) as the blur metric. Following the analysis in [16], we
find that their proposed blur metric is essentially calculated from the percentage
of sharp edges among all the edges. However, we find that it is not necessary
to compute the blur detection probability and CPBD in order to arrive at that
percentage. And we can easily obtain that percentage right after computing the
edge width. Thus our blur detection and estimation algorithm will utilize the edge
width and JNB information to compute the percentage of JNB as our blur metric.

We first apply the Sobel vertical edge detection to identify the edge locations,
where edge width is calculated as in [14]. A general method to compute edge
width is illustrated in Fig. (6). The black curve represents the pixel values for one
horizontal line in the image. The red point is a detected vertical edge point using
the Sobel vertical operator. Intuitively, the magnitude of the slope at the red edge
point is locally maximum, which means that the gradient at the red point is also
locally maximum. Since the HVS is very sensitive to the large gradient and the
corresponding point will be perceived as edge point. The left blue point is the local
maximum closest to red point and the right blue point is the local minimum closest
to the red point. At these two points, the two slopes are equal to zero and HVS
will not be sensitive to the two points. Then the edge width for the red edge point
is calculated as the horizontal length between the two blue points.

After computing the edge width for all the edge points, we utilize the concept of
JNB, that is, the edge point is regarded as blurred point if the edge width is greater
than a threshold (e.g. 5 pixels), and otherwise it is regarded as sharp point. Our
blur metric is the percentage of blurred edge points among all the edge points, that
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is,

FBlur =
number of blurred edges

total number of edges
.(8)

We can process the horizontal edges using the similar way as above for vertical
edges. However, as in [6] and [14], we also find that such processing does not
help improve accuracy of blur estimation, on the contrary, it will increase the
computational complexity. Thus we only process the vertical edges. Also we notice
that around the image borders there are usually some edges, which the HVS will
not pay attention to. Hence we will remove a small part of the image (8 pixel width
or height) close to the four image borders before doing any process.

The algorithm for blur detection and estimation described above can be summa-
rized as follows.

Step 1: remove a small part of image close to each image border,
Step 2: convert color image to grayscale image,
Step 3: find vertical edges using the vertical Sobel operator,
Step 4: calculate the edge width for each vertical edge, if the edge width is bigger

than JNB, it is blurred edge.
Step 5: compute the percentage of blurred edges and determine the blur metric.

3.2. Implementation and Discussion. We take one blurred image from our
saved video at the receiver for the video telephony application over LTE networks.
The blurred image could be due to video packet loss over LTE air interface in severe
channel condition and the error concealment method of the video decoder cannot
fully recover the corrupted image.

Fig. 7 (a) is the original blurred color image, Fig. 7 (b) is the corresponding
grayscale image, Fig. 7 (c) is the vertical edge image after using vertical Sobel oper-
ator, and Fig. 7 (d) is the original color image with edge information. Specifically,
the blues points are all the vertical edge points in Fig. 7 (c), and the red points are
the edge points which edge width is greater than the threshold (5 pixel). We can
clearly see that most blue points are overlapped by red points, which means most
of edges are blurred edges.

Fig. 8 is the CDF graph for the edge width, where we can see that the percentage
of blurred edges (edge width is greater than 5 pixel) is 76.8% (1-0.232). And this
value is our blur metric in Eq. (8).

The latest blur estimation method is presented in [16] with a good performance.
As we mentioned before, the key idea in [16] is to compute the percentage of blurred
edge and we do not find the necessity of computing the cumulative probability of
blur detection. We use the same dataset used in [16] to compare the effectiveness
and efficiency. The dataset is originally from LIVE image database [29] and consists
of 174 Gaussian blurred images which are generated using a 2-D Gaussian kernel
of standard deviation ranging from 0 to 15. After we get the blur metric, as in
[16] we also use the logistic function in [21] to predict the image MOS, which
is compared with the subjective image MOS (scale is from 0 to 100) from LIVE
database. The performance in terms of Pearson correlation coefficient, Spearman
rank-order correlation coefficient, Root mean square error and Computational time
is presented in Tab. 2.

We use the released software in [30] to get the CPBD metric performance and
in the same code we just use our metric computation function instead of CPBD
metric computation function to get our metric performance. The computational
time in Tab. 2 is the average metric computation time for 174 Gaussian blurred
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(a) (b)

(c) (d)

Figure 7. Verification of the blur algorithm (a) Original image
with blur impairment, (b) Corresponding grayscale image, (c)
Edges after vertical Sobel operator, (d) Original image overlapped
with blue edges (c) and red edges with edge width greater than 5
pixels.
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Table 2. Blur metric comparison

Metrics Pearson Spearman RMSE Computational Time
CPBM metric 0.9256 0.9446 6.4688 4.86 sec
Our metric 0.9225 0.9432 6.5991 0.68 sec
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Figure 9. Histogram of pixel difference for two freezing frames.

images. Our metric algorithm is about 7 times faster than CPBD metric algorithm
when it achieves the similar Pearson, Spearman, and RMSE performance.

4. FREEZING/JERKINESS DETECTION AND ESTIMATION

Freezing and jerkiness impairments are very annoying to end users. In order to
detect and estimate them, we need the timing information for each frame. After we
receive the video at UE, we will convert it to 30 fps uncompressed video. For mobile
video telephony application, the frame rate will not exceed 30 fps and usually it
is around 15 fps. Thus converting to 30 fps can catch all the frame information.
With the constant 30 fps frame rate, each frame will display for 1000/30=33.3 ms
and we get the timing information for each frame. The duplicate frames will be
produced when converting from lower frame rat to 30 fps and the end user will have
the same QoE for the video before and after conversion. We borrow the idea in
[2] by Borer for freezing and jerkiness detection and estimation, and add the new
process according to our practical need and problem.

Ideally when freezing happens, the difference of the frames during the freezing
period is zero. However, in practice we notice that this is not the case. After chang-
ing the color image to grayscale image, we extract two freezing neighbor frames and
compute the absolute difference of each pixel. And Fig. 9 is the corresponding his-
togram of pixel difference, where we can clearly see that there are still many pixels
which have small difference. However, HVS will not perceive the small difference
and this case will be experienced as a frame freeze. In order to deal with this case,
we use a pixel difference threshold (in our case we use 15 for 0-255 gray image), and
count all the pixels which have pixel difference greater than the threshold. If the
count is less than the counting threshold (in our case we use 20, which needs ad-
justment for different video resolution), these two neighbor frames will be regarded
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Figure 10. Sigmoid function for display time and motion intensity.

as freezing frames. In Fig. 9, the count number is only 2, so these two consecutive
frames constitute a frame freeze.

Also we notice that during some long freezing time, some frames will shake a
little bit. The freezing detection described above will regard these shaking frames
as non-freezing frames, thus the long freezing will be divided into several parts.
Usually for the shaking frames, the difference of neighbor frames is much smaller
than the one of the natural frames. We use some threshold to distinguish them.
If the sum of the total difference is less than 5000 pixels, they are shaking frames.
Otherwise, they are natural frames. In order to solve this problem, we will connect
the interrupted freezing frames if the number of detected different frames (actually
they are shaking frames) between two consecutive freezing periods is less than some
threshold (in our case we use 5 frames).

With above freezing detection and process, we can estimate the display time for
each frame. Then the jerkiness metric is calculated as in [2].

FJerkiness =
1

T

n∑
i=1

∆ti · τ(∆ti) · (mi),(9)

where n is the total number of different non-freezing frames, T is the total video
duration (in our case we choose 5 second for each freezing/jerkiness estimation),
∆ti = ti+1−ti (ti is the starting time for displaying the ith frame) is the display time
for ith frame, mi is the motion intensity for ith frame which is simply estimated by
the root mean square of the neighbor frame pixel difference over the whole frame,
both τ function and µ function are sigmoid function parameterized by (px, py, q)
as in [2]

S(x) =

{
a · xb if x ≤ px

d
1+exp(−c·(x−px))

+ 1− d otherwise
,(10)

where a = py/p
(q·px/py)
x , b = q ∗ px/py, c = 4q/d, and d = 2(1− py). This sigmoid

function polynomially increases from origin to (px, py), then exponentially increases
from (px, py) to (inf., 1). q is the slope at the point (px, py).

In Eq. (9), when ∆ti (display time for ith frame) increases, jerkiness value
will increase and more freezing/jerkiness will be perceived. The τ function and µ
function are chosen from [2] and plotted in Fig. 10. When ∆ti is very small, τ(∆ti)
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will be close to zero. Thus the jerkiness value will be also close to zero and the
freezing/jerkiness will not be perceived. On the contrary, when ∆ti is very large,
τ(∆ti) will be close to 1 and usually in this situation µ(mi) will be also close to 1.
Thus the jerkiness value will be close to 1 and a lot of freezing/jerkiness will appear.
The function τ is the red curve in Fig. 10 and has the parameters (0.12/1.18, 0.05,
1.5*1.18) as in [2] (in our case, we have QVGA size video which is close to CIF
size). The function τ is to mimic the HVS for freezing. When the display time is
very small, the function τ is close to zero. Then when display time increases, the
function τ increases linearly. Finally when display time reaches to about 2 second,
the function τ saturates to 1, which means HVS will notice jerkiness very much
once the display time is beyond 2 second. the function τ is to take the motion
intensity into account. When freezing happens, if the two frames before freezing
and after freezing have a big motion, HVS will experience a lot of jerkiness. On the
contrary, if the two frames have a small motion, HVS will experience less jerkiness.
And the function µ will saturate to 1 if motion intensity reaches to around 10. As
in [2], we also use the function µ with the parameters (5, 0.5, 0.25).

5. MOS PREDICTION

For video quality evaluation, the final result is MOS. Based on the three im-
portant impairment estimations described above, we are able to predict the MOS.
First, we need the subjective MOS database. The video samples come from video
telephony testing in different conditions over LTE networks. Video sources have 8
different contents in order to have diverse scenes from low motion to high motion.
They are Calendar, Container, Foreman, News, Mother & daughter, Car, Grandpa,
and Football [31]. In order to have different level of impairments, video telephony
is run in different LTE network conditions, such as near cell, middle cell, edge cell,
different fading conditions (slow speed, high speed), different mobility (intra hand-
off, inter handoff), and different interference. From a large set of received video, we
are able to choose different video content with different level of impairments. For
our own created dataset, we need subjective MOS. We adopt Absolute Category
Rating (ACR) subjective test method, which is no-reference method. We use the
EyeOne Display 2 calibration tool to calibrate the Samsung SyncMaster 24 inch
monitor for brightness, black level and white point conforming to the standard
specified in [11]. Then we assemble a team of people, give them some instruction in
the beginning, and ask them to evaluate the videos and provide a score from 1 to
5 (1: bad, 2: poor, 3: fair, 4: good, 5: excellent) for each video. We deleted some
outlier subjective MOS and calculated the mean of the remaining usable ones for
each video sample. Eventually we got the subjective MOS for 94 video samples.
Each video sample has QVGA size, and is 5 second long and encoded in H.264
with bit rate about 350 kbps. This dataset includes 14 instances of Calendar, 9 of
Container, 10 of Foreman, 17 of News, 13 of Mother & daughter, 10 of Car, 10 of
Grandpa, and 11 of Football. Four videos belong to [1 1.5), 13 videos belong to [1.5
2.5), 34 videos belong to [2.5 3.5), and 43 videos belong to [3.5 4.5). Since videos
are QVGA size and about 350 kbps, none of them is given the score of 5 (excellent).

After we compute the estimation metrics for the three important impairments
described in previous sections, we need further processing before using them to
predict the subjective MOS. After we get the blockiness and blur metrics for each
image in the 5 second long video, the blockiness and blur impairments will be
smoothed out if we just use the mean value for all the images. Instead we use 75th
percentile value among all the values for both blockiness and blur respectively. In
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Figure 11. MOS prediction.

order to make our prediction model simpler, we can normalize all the metrics to the
range of [0 1]. Blur metric is already in the range of [0, 1]. For blockiness metric,
we use the sigmoid function as Eq. (10) (we choose (20, 0.1, 0.08) parameters) to
map the blockiness metric measured as Eq. (7) to [0, 1]. Jerkiness metric is already
processed based on the video sequences and is in the range of [0, 1]. Thus it does
not need to be further processed. Then we use some weighting factors for each
impairment metric considering the relative importance to HVS and integrate them
into one final metric as follows.

F = w1 · FJerkiness + w2 · F
′

Blockiness + w3 · F
′

Blur,(11)

where F
′

Blockiness and F
′

Blur are the processed blockiness metric and blur metric
from FBlockiness and FBlur as described above, and w1, w2, w3 are weighting factors.
We choose w1 = 0.55, w2 = 0.4, w3 = 0.25 considering that HVS will feel more
annoying in the sequence of jerkiness, blockiness and blur. In general, the predicted
MOS will decrease when F value increases, that is, it will be large for small F , and
it will be small for large F .

The last step is to choose an appropriate model to compute the objective MOS
based on the final metric F in Eq. (11). We evaluated several models for our
dataset, such as model given by (7) in [24], model in the VQEG report [21], BP
(back propagation) neural network model and polynomial curve fitting model. Both
neural network model and polynomial curve fitting model give us a very good
performance (Pearson correlation is above 90%). Considering the simplicity of
polynomial curve fitting, we choose it as our final model to predict the subjective
MOS. We use the fourth order polynomial function, that is,

MOS(F ) = a4F
4 + a3F

3 + a2F
2 + a1F + a0.(12)

Among our 94 video samples, we choose 44 samples where the subjective MOS
scores cover the whole score range [1 5] for the curve fitting model (12). That
is, for each video, i, of the 44 samples, whose subjective MOS score is MOSi, we
calculate the metric Fi according to Eq. (11), where i = 1, ..., 44. Then the values
(Fi,MOSi), i = 1, , 44, are used for the curve fitting in (12). And we get coefficient
values as a4 = 210.62, a3 = −233.55, a2 = 80.82, a1 = −15.25, a0 = 4.62. Then we
use the remaining 50 samples for testing. For our model (12), if the output value is
lower than 1, we will let it be 1. And if the output value is bigger than 5, we will let
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it be 5. The predicted MOS using Eq. (12) and corresponding subjective MOS for
each sample are potted in Fig. (11). The red points are for training samples, which
have the Pearson correlation 0.9950 and the blue points are for testing samples,
which have the Pearson correlation 0.9010. Overall, the Pearson correlation for all
samples is 0.9633.

6. Conclusion

In this paper, we propose a NR video quality analysis framework based on a
received decoded video obtained from our VT testing over LTE networks in vari-
ous channel and network conditions. Effective blockiness and blur detection and
estimation algorithms are proposed. Also our provided examples visually verify the
effectiveness of our novel algorithms. Freezing/jerkiness detection and estimation
take the subtle change between freezing frames and shaking distortion during freez-
ing period into account, and mainly use parameterized sigmoid function to mimic
the impact of freezing and motion intensity on HVS. After further post-processing
for the blockiness and blur metrics and combining three metrics into one weighted
final metric, the predicted MOS is obtained by polynomial curve fitting model which
is trained and tested through our video database from practical VT testing over
LTE networks, and above 90% Pearson correlation is achieved.

Although our video database is from specific VT testing with certain bit rate
and frame resolution, our NR video quality analysis can be easily extended to other
bit rates and frame resolutions through some parameters adjustment and further
training with the new database. The VT application in this paper is over LTE
networks, however, our video quality analysis techniques can also be applied into
other networks again with some parameters adjustment. Our current method is
still offline analysis. Our future work will include extend it to real-time analysis
by acquiring the decoded frame through the UE in real time and transporting it
to the high-performance computer for further analysis. Furthermore, hybrid NR
video quality model by combing the bit-stream analysis with our current decoded
video analysis is our ongoing work.
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