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Abstract. This work introduces novel unconditionally stable operator splitting methods for
solving the time dependent nonlinear Poisson-Boltzmann (NPB) equation for the electrostatic
analysis of solvated biomolecules. In a pseudo-transient continuation solution of the NPB equation,
the nonlinear term is analytically integrated, so that the difficulties in direct treatment of the
strong nonlinearity can be bypassed. However, in a pseudo-time NPB computation, the use of
large time increments is necessary to reach the steady state efficiently. The existing alternating
direction implicit (ADI) methods for the transient NPB equation are known to be conditionally
stable, although being fully implicit. To overcome this difficulty, we propose several new operator
splitting schemes, in both multiplicative and additive styles, including locally one-dimensional
(LOD) schemes and additive operator splitting (AOS) schemes. The proposed schemes become
much more stable than the ADI methods, and some of them are indeed unconditionally stable
in dealing with solvated proteins with source singularities and non-smooth solutions. By using
finite differences in space and implicit integrations in time, the numerical orders of the proposed
schemes are found to be one in both space and time. Nevertheless, the precision in calculating
the electrostatic free energy is low, unless a small time increment is used. Further accuracy
improvements are thus considered, through constructing a Richardson extrapolation procedure
and a tailored recovery scheme in treating the vacuum case. After acceleration, the optimized
LOD method can produce a reliable energy estimate by integrating for a small and fixed number
of time steps. Since one only needs to solve a tridiagonal matrix in each one dimensional subsystem,
the overall computation is very efficient. The unconditionally stable LOD method scales linearly
with respect to the number of atoms in the protein studies, and is over 20 times faster than the
conditionally stable ADI methods.

Key words. Nonlinear Poisson-Boltzmann equation, pseudo-transient continuation approach,
time splitting, alternating direction implicit (ADI), locally one dimensional (LOD), additive op-
erator splitting (AOS), electrostatic free energy.

1. Introduction

Analysis of the underlying biomolecular solvation is critical when carrying out
quantitative descriptions of various important biological processes at the atomic
level, such as protein folding and protein ligand bonding, DNA recognition, tran-
scription, and translation. From a biological perspective, solvation analysis is
concerned with interactions between a solute macromolecule and surrounding sol-
vent ions. From a mathematical perspective, these solute-solvent interactions may
be represented via solvation energies with contributions from polar and nonpolar
sources. The polar portion arises from electrostatic interactions, which may be rep-
resented with the Poisson-Boltzmann (PB) model [6, 14]. The PB model provides
a framework by which to model the distribution of electrostatic potential along the
surface of a solute macromolecule within a surrounding solvent with a particular
ionic concentration.
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Table 1. Acronyms used in this paper.

ADI alternating direction implicit LOD locally one-dimensional
AOS additive operator splitting IE implicit Euler
CFL Courant-Friedrich-Lewy NPB nonlinear Poisson Boltzmann
CN Crank-Nicolson PB Poisson Boltzmann
FFT fast Fourier transform RE Richardson extrapolation
MAOS multiplicative-additive operator splitting

In the PB model, the PB equation governing electrostatic potentials takes the
form of a nonlinear elliptic equation on multiple domains with discontinuous di-
electric coefficients across the molecular surface or solute-solvent interface [3, 4].
The PB equation cannot be solved analytically for molecules with complex geome-
tries, only admitting analytical solutions for shapes such as spheres or rods [12, 16].
However, solving the PB equation numerically also presents significant difficulties
because of the discontinuous dielectric coefficients, singularities in the source-term,
non-smoothness of the solution, and significant nonlinearity when strong ionic ef-
fects are present.

Recently, a pseudo-transient continuation approach has been proposed for solving
the nonlinear PB (NPB) equation [27, 28, 34], which creates a different way to tackle
the nonlinear term of the NPB equation. In classical finite difference and finite
element solutions of the NPB equation, a nonlinear algebraic system is typically
formed through the discretization of the boundary value problem. A nonlinear
relaxation method [15, 24] or inexact Newton method [13] can be employed to solve
such a nonlinear system. In the pseudo-transient continuation approach [27, 28, 34],
a pseudo-time derivative is added to the NPB equation so that one solves an initial-
boundary value problem now. The steady state solution of this problem gives rise
to the solution to the original boundary value problem. Numerically, it is desired
that a large time step can be used so that the steady state can be computed quickly.
Thus, the efficiency of a pseudo-time NPB solver is directly related to its stability,
which critically depends on the nonlinear term of the NPB equation – a hyperbolic
sine function that could be exponentially large.

Several time stepping schemes have been considered for solving the time depen-
dent NPB equation. The explicit Euler solution is straightforward, but invokes a
severe stability constraint [34]. Implicit time integrations have also been studied
[27, 28], for which care has to be exercised in handling the nonlinear term. In [27],
a linearization technique based on the first order Taylor expansion is proposed so
that a linear system is formed at each step of the implicit Euler integration. This
linearization essentially evaluates the nonlinear term at the previous time instant.
Similarly, by treating the nonlinear term explicitly, a modified alternating direction
implicit (ADI) method has been introduced in [28]. Since the Thomas algorithm
[21] can be employed to solve the tridiagonal finite difference systems in this time
splitting method, the efficiency is greatly improved. However, a very large time
increment is still prohibited in these methods, because these implicit schemes are
of semi-implicit nature.

More recently, we have successfully developed two fully-implicit ADI schemes
[11, 35] for solving the time dependent NPB equation. The success lies in an ana-
lytical integration of the nonlinear term, and the use of a time splitting framework.
This completely suppresses the nonlinear instability, so that these fully-implicit ADI
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schemes are unconditionally stable in solving benchmark problems with smooth so-
lutions. However, for the solvation analysis in applications to real biomolecules,
these ADI schemes are still conditionally stable, probably because of the singu-
larities in the charges and discontinuous dielectric coefficients. Nevertheless, these
fully-implicit ADI schemes are still found to be quite efficient, due to their high
temporal accuracy and much relaxed Courant-Friedrich-Lewy (CFL) constraints
[11, 35]. Moreover, the analytical treatment completely avoids the difficulties in
treating the strong nonlinearity of the time independent NPB equation so that the
pseudo-time NPB solver really becomes a viable approach for electrostatic analysis.

The objective of this paper is to introduce various new operator splitting meth-
ods for solving the time dependent NPB equation. The present investigation will
be conducted in the same pseudo-transient continuation framework as in [11, 35].
In particular, in spatial approximation, central finite difference will be employed to
discretize the nonhomogeneous diffusion operator, which yields tridiagonal matri-
ces in all dimension-splitting schemes. In temporal approximation, the analytical
integration will be carried out for the split nonlinear subsystem. The ultimate goal
of this work is to eventually construct unconditionally stable operator splitting
methods for solving the NPB equation in practical biomolecular applications.

In the existing fully-implicit operator splitting NPB solvers [11, 35], the ADI
schemes are constructed based on the classical ADI schemes [8, 7, 22]. In the lit-
erature, there exists another family of multiplicative operator splitting methods,
i.e., the fractional step methods or locally one-dimensional (LOD) methods, orig-
inally introduced by Russian mathematicians [9, 31, 32]. In the present setup,
the ADI discretizations can be written as some perturbations of multidimensional
discretizations of the implicit methods, such as the Crank-Nicolson and backward
Euler. In the proposed LOD methods, the similar splitting in alternating directions
will be considered, but before the time discretization. In other words, the Crank-
Nicolson and backward Euler discretizations will be conducted after the differential
equations are split. Thus, the discretizations of the LOD methods are truly one-
dimensional. This is different from the ADI methods, in which the right-hand side
of the discretized equations contains derivatives from the other directions. Com-
paring with the ADI methods, the LOD methods tend to be more stable, but have
a larger splitting error [21]. Moreover, a previous work on the application of ADI
and LOD schemes to Maxwell’s equations in isotropic and lossless media found that
the LOD schemes were approximately 20% computationally less expensive than the
ADI schemes [1]. Other comparisons of LOD schemes and traditional ADI schemes
as applied to Maxwell’s equations have also found lower computational costs for
the LOD methods over ADI methods [10, 33]. This motivates us to develop several
LOD schemes for solving the time dependent NPB equation in this work.

Besides the ADI and LOD methods, there exists another family of operator split-
ting methods, i.e., the additive operator splitting (AOS) methods [18, 19, 29]. In the
AOS methods, the time integration of each split subsystem can be independently
carried out, while in the multiplicative operator splitting methods, the integration
of the present fractional step needs the solution from the previous fractional steps.
Thus, the AOS methods are well suited to be implemented in parallel processors.
The stability and accuracy of the AOS methods have been analyzed in [5]. The
application of AOS schemes has proved popular for the purposes of nonlinear dif-
fusion filtering for image processing [2, 30]. The AOS schemes are usually efficient
and stable for relatively large ∆t values, although potentially less accurate than
the LOD schemes. However, their overall efficiency and simplicity merit further
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exploration. In the present paper, different formulations and discretizations of the
AOS methods for solving time dependent NPB equation will be considered. Previ-
ous work in image processing has also explored the properties of schemes combining
multiplicative and additive operator splitting, finding higher levels of accuracy with
such schemes than with simpler AOS methods [2]. We thus will also explore the
construction and application of a multiplicative-additive operator splitting (MAOS)
scheme for our current problem.

The rest of this paper is organized as follows. In Section 2, we first introduce the
physical background of the problem. The pseudo-transient PB model will then be
presented. The existing ADI schemes will be described and the remaining difficulties
are discussed. The proposed operator splitting schemes will then be formulated for
solving the time dependent NPB equation in Section 3. Numerical validations of
the proposed schemes through benchmark examples with analytical solutions are
considered in Section 4, while various benchmark biological systems and subsequent
free energy of solvation calculations are presented in Section 5. Finally, this paper
ends with a conclusion.

2. Mathematical models and existing algorithms

2.1. Governing equation. Consider a solute macromolecule in space surrounded
by a solvent aqueous solution. As defined in [23], the molecular surface, or solute-
solvent boundary Γ, of the macromolecule divides R3 into the closed domain of the
solute molecule Ωm and solvent domain Ωs. The electrostatic interaction of such
a solute-solvent system is governed by the nonlinear Poisson-Boltzmann (NPB)
equation

(1) −∇ · (ǫ(r)∇u(r)) + κ̄2(r) sinh(u(r)) = ρm(r),

where u is the electrostatic potential and the source term ρm is defined as

(2) ρm(r) =
4πe2c
kbT

Nm
∑

j=1

qjδ(r− rj).

The dielectric constant ǫ is piecewise such that ǫ(r) = ǫm for r ∈ Ωm and ǫ(r) = ǫs
for r ∈ Ωs. Here kb is the Boltzmann constant, ec is the fundamental charge, and
qj , in the same units as ec, is the partial charge on the jth atom of the solute
macromolecule locate at position rj . The modified Debye-Huckel parameter κ̄ is

defined as κ̄2(r) =
(

2NAe2
c

1000kbT

)

Is, for r ∈ Ωs and κ̄ = 0 for r ∈ Ωm, where NA

is Avogadro’s Number and Is is the molar ionic strength. At room temperature
(T = 298K), κ̄2 = 8.486902807Å−2Is from [12]. The NPB equation varies on
the choice of units, and in the present setting we utilize the dimensionless form
presented in [13]. We may convert the dimensionless electrostatic potential u to
units kcal/mol/ec at room temperature (T = 298K) through simply multiplying
the potentials by 0.592183 [12]. Our numerical computations must take place on
a finite domain Ω. We may assign values along the boundary ∂Ω according to the
approximate analytical condition

(3) u(r) =
e2c
kbT

Nm
∑

i=1

qi
ǫs|r− ri|

e
−κ̄

|r−ri|√
ǫs .

When ∂Ω is of sufficient distance from the macromolecule subdomain Ωm, Eq. (3)
can be utilized to approximate the results for potentials found from Eq. (1). We
note here that Eq. (3), for a collection of Nm partial charges qi at positions ri, is
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simply a linear superposition of Coulomb’s Law. For simplicity, the boundary ∂Ω
is assumed to be of a cubic shape.

2.2. Pseudo-time dependent NPB equation. The computational simulation
of the NPB equation is of great importance for biomolecular modeling, but is quite
challenging. Numerous approaches have been developed in the literature; see for
example recent reviews [20, 17] and references therein. What are related to the
present study is the pseudo-transient continuation approach for solving the NPB
equation [27, 28, 34]. In this approach, the NPB equation (1) will be converted
from its time independent form to a time dependent form by introducing a pseudo-
transient variation, thus producing the time dependent NPB:

(4) α
∂u

∂t
(r, t) = ∇ · (ǫ(r)∇u(r, t)) − κ̄2(r) sinh(u(r, t)) + ρm(r).

where α is a scaling parameter. To solve this initial boundary value problem, we
must first specify an initial solution for our potential values, which may be either
the trivial solution u = 0, or the electrostatic potential solved from the linear
Poisson-Boltzmann equation [34]. Equation (4) is then numerically integrated over
a sufficiently large time period to reach a steady state solution, thus essentially
recovering the solution to the original NPB equation (1).

2.3. Previous schemes and remaining difficulties. Several time integration
methods have been developed for solving the time dependent NPB equation (4).
A very small time increment ∆t is usually required in the explicit Euler solution
[34], which is inefficient for practical use. However, the construction of a fully
implicit integration of the NPB equation is hindered by the presence of the nonlinear
hyperbolic sine term in the NPB equation. By evaluating the nonlinear term at
the previous time step, the regular implementation of the implicit schemes usually
gives rise to a semi-implicit integration [27, 28].

A breakthrough has been made in our recent study [35], in which fully implicit
alternating direction implicit (ADI) methods were developed for the first time in
the literature. A generalized NPB equation was considered in [35], while the similar
ADI schemes for the classical NPB equation (1) were introduced later in [11]. The
success of these ADI schemes lies in an analytical integration of the nonlinear term
in a time splitting framework. With this analytical treatment of the nonlinear term,
unconditionally stable results are obtained in benchmark problems with smooth so-
lutions. Unfortunately, these operator splitting ADI schemes are still conditionally
stable when they are applied to real protein systems, because of various complex
features of the biomolecular solvation analysis, including complicated molecular sur-
faces, singular source charges, discontinuous dielectric coefficients, and nonsmooth
electrostatic potentials [11, 35]. We thus are motivated to develop novel numerical
schemes which may be both computationally less expensive as well as more stable
for significantly larger ∆t values than the previously presented ADI schemes.

For a comparison, two ADI schemes presented [11] will also be examined in
this work. We thus briefly review these two methods here. In the first order ADI
scheme (ADI1 ) [11], at each time step from tn to tn+1, the time dependent NPB
equation (4) is solved by a first order time splitting method in two stages. An
analytical integration of the nonlinear term is conducted in the first stage. The
nonhomogeneous diffusion equation of the second stage is first discretized by the
implicit Euler scheme in time and the finite difference method in space. The mul-
tidimensional system is then solved by a classical Douglas-Rachford ADI scheme,
by splitting the system into many one-dimensional (1D) systems of a tridiagonal
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structure. Similarly, in the second order ADI scheme (ADI2 ) [11], a second order
time splitting with three stages is considered with analytical treatments in the first
and last stages. The Crank-Nicolson scheme is considered in the second stage, and
is realized via a Douglas ADI implementation. The ADI2 scheme is generally more
accurate than the ADI1 scheme, though it is computationally more expensive [11].

We finally note that the direct treatment of the nonlinear term is one of the
major difficulties in numerical solution of the NPB equation, especially when the
underlying electrostatic potential is strong [20, 17]. By using an analytical treat-
ment, the pseudo-transient continuation approach avoids such a difficulty so that
the ADI NPB solvers become viable methods for electrostatic analysis.

3. Towards the development of unconditionally stable schemes

The time splitting or operator splitting methods are powerful tools for solving
time dependent partial differential equations. Besides the ADI schemes, there exist
many other operator splitting methods in the literature that can reduce a multidi-
mensional problem to sets of independent 1D problems. With the central difference
approximation in space, these 1D systems will have tridiagonal structures, so that
they can be efficiently solved using the Thomas algorithm [21]. Several commonly
used operator splitting methods will be explored in this paper, for the purpose of
eventually developing unconditionally stable schemes.

We adopt the following notations in this work. Following the tradition of the
biomolecular simulation, we consider a uniform mesh with grid spacing h in the
x, y, and z directions, with Nx, Ny, Nz being the number of grip points in each
direction, respectively. The time increment is denoted as ∆t. The notation un

i,j,k =

u(xi, yj, zk, tn) denotes the electrostatic potential at a node (xi, yj, zk) and a time
level t = tn. Thus, the vector Un = {un

i,j,k} for i = 1, ..., Nx, j = 1, ..., Ny,
and k = 1, ..., Nz denotes all nodal values of u at tn. All proposed schemes will be
focused on updatingUn at a time level tn toUn+1 at next time level tn+1 = tn+∆t.

3.1. Locally-one-dimensional (LOD) schemes. The fractional step methods
or locally one-dimensional (LOD) methods were first developed by Russian math-
ematicians [9, 31, 32]. Being multiplicative operator splitting methods too, the
LOD methods adopt the similar splitting in alternating directions as in the ADI
methods, but before the numerical discretization.

In the present study, we propose several LOD schemes to solve the time depen-
dent NPB equation (4). The spatial and temporal discretization will be detailed
for one LOD scheme, while the discretization of other schemes can be similarly
constructed. In particular, in the first LOD scheme, at each time step from tn to
tn+1, the time dependent NPB equation will be solved by a multiplicative operator
splitting procedure consisting of five stages:

α
∂w

∂t
= −κ̄2 sinh(w), with Wn = Un, t ∈ [tn, tn+1],(5)

α
∂v

∂t
=

∂

∂x

(

ǫ
∂v

∂x

)

, with Vn = Wn+1, t ∈ [tn, tn+1],(6)

α
∂p

∂t
=

∂

∂y

(

ǫ
∂p

∂y

)

, with Pn = Vn+1, t ∈ [tn, tn+1],(7)

α
∂q

∂t
=

∂

∂z

(

ǫ
∂q

∂z

)

, with Qn = Pn+1, t ∈ [tn, tn+1],(8)

α
∂r

∂t
= ρm, with Rn = Qn+1, t ∈ [tn, tn+1],(9)
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We finally have Un+1 = Rn+1. The global splitting error of the present LOD
scheme is of order one, i.e., O(∆t). Obviously, no discretization is involved in the
present splitting, which is different from the previous ADI methods [11, 35].

In the LOD schemes, the numerical approximation is introduced after the split-
ting. Here an analytical integration can be conducted for the nonlinear equation
(5), as in our previous studies [11, 35]. In particular, Eq. (5) is simply a separable
ordinary differential equation in this context:

dw

sinh(w)
= −κ̄2dt

α
.

Thus, the integration can be carried out analytically:

(10) −2 tanh−1(ew) = −κ̄2 t

α
+ C

Evaluating Eq. (10) at both tn and tn+1, we have

tanh−1(exp(Wn+1))− tanh−1(exp(Wn)) =
1

2α
κ̄2∆t

Taking tanh(·) of both sides and re-arranging the terms, we have

(11) exp(Wn+1) = tanh(tanh−1(exp(Wn)) +
1

2α
κ̄2∆t)

Equation (11) can then be simplified to be

(12) Wn+1 = ln

(

cosh( 1
2α κ̄

2∆t) + exp(−Wn) sinh( 1
2α κ̄

2∆t)

exp(−Wn) cosh( 1
2α κ̄

2∆t) + sinh( 1
2α κ̄

2∆t)

)

Therefore, givenWn at tn, W
n+1 can be calculated analytically according to (12) so

that the difficulties associated with the sinh(·) nonlinear term of the NPB equation
may be bypassed.

Different LOD schemes can be obtained if we consider different time stepping
procedures. We first propose the use of implicit Euler integration in time and
central differencing in space to discretize Equations (6) through (8). Combining
with our analytical solution for the sinh(·) term (12), we formulate our first scheme,
LODIE1 :

wi,j,k = ln

(

cosh( 1
2α κ̄

2∆t) + exp(−un
i,j,k) sinh(

1
2α κ̄

2∆t)

exp(−un
i,j,k) cosh(

1
2α κ̄

2∆t) + sinh( 1
2α κ̄

2∆t)

)

,(13)

(1 −
∆t

α
δ2x)vi,j,k = wi,j,k,(14)

(1−
∆t

α
δ2y)pi,j,k = vi,j,k,(15)

(1−
∆t

α
δ2z)qi,j,k = pi,j,k,(16)

un+1
i,j,k = qi,j,k +

∆t

α
Q(xi, yj , zk),(17)

where δ2x, δ
2
y , and δ2z are the central difference operators in the x, y, and z directions,

respectively:

δ2xv
n
i,j,k =

1

h2

(

ǫ(xi+ 1

2

, yj , zk)(v
n
i+1,j,k − vni,j,k) + ǫ(xi− 1

2

, yj, zk)(v
n
i−1,j,k − vni,j,k)

)

,

δ2yv
n
i,j,k =

1

h2

(

ǫ(xi, yj+ 1

2

, zk)(v
n
i,j+1,k − vni,j,k) + ǫ(xi, yj− 1

2

, zk)(v
n
i,j−1,k − vni,j,k)

)

,

δ2zv
n
i,j,k =

1

h2

(

ǫ(xi, yj , zk+ 1

2

)(vni,j,k+1 − vni,j,k) + ǫ(xi, yj, zk− 1

2

)(vni,j,k−1 − vni,j,k)
)

.
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Furthermore, Q(xi, yj, zk) is the distribution of all source charges in the source term
ρm from Equation (2), distributed by a trilinear interpolation. The value of ǫ is
determined by its location which is either on/inside or outside the molecular surface
Γ. Specifically, ǫ(x, y, z) = ǫm if (x, y, z) ∈ Ωm, and ǫ(x, y, z) = ǫs if (x, y, z) ∈ Ωs,
where the molecular surface Γ is determined by a commonly used software package:
MSMS [25]. Both Q(xi, yj, zk) and ǫ(xi, yj, zk) are time independent and need to
be calculated only once at the beginning. Since the boundary condition of the
steady state solution u, i.e., Eq. (3), is time independent, the split components w,
v, p, and q are assumed to attain the same Dirichlet boundary values as u. The
initial solution will be chosen as either a trivial solution u = 0, or the electrostatic
potential solved from the linear Poisson-Boltzmann equation [34]. We utilize similar
assumptions for our numerical simulations with all following methods.

We further formulate a second scheme based on the LOD1 scheme that utilizes
Crank-Nicolson integration in time and central differencing in space. This scheme,
LODCN1, replaces Equations (14) through (16) from LODIE1 with the following:

(1−
1

2α
∆tδ2x)vi,j,k = (1 +

1

2α
∆tδ2x)wi,j,k,(18)

(1−
1

2α
∆tδ2y)pi,j,k = (1 +

1

2α
∆tδ2y)vi,j,k,(19)

(1−
1

2α
∆tδ2z)qi,j,k = (1 +

1

2α
∆tδ2z)pi,j,k(20)

Minor changes can be resulted if we alter the order of the subsystems in the LOD
splitting. To illustrate this, we also propose a second set of LOD schemes that solve
the five stages presented in (5) through (9) in a modified order: the source term
equation in (9) is treated first, while the nonlinear equation in (5) is treated last.
This LOD method, similar to the first one, has a form utilizing implicit Euler
integration in time and another form utilizing Crank-Nicolson integration in time.
LODIE2, then, simply consists of equations (17), (14), (15), (16), (13), respectively.
LODCN2 consists of (17), (18), (19), (20), (13), respectively.

We conclude this subsection by presenting some theoretical results of the pro-
posed LOD schemes.

Remark 3.1. The proposed LODIE1, LODIE2, LODCN1, and LODCN2 schemes

are of first order accuracy in time, because the underlying LOD splittings are first

order and the discretization error of the implicit Euler or Crank-Nicolson integration

is at least first order.

Remark 3.2. If the solution u is sufficiently smooth, the proposed LODIE1, LODIE2,

LODCN1, and LODCN2 schemes are unconditionally stable, because each individ-

ual implicit Euler or Crank-Nicolson time integration with central difference ap-

proximation is unconditionally stable.

3.2. Additive operator splitting (AOS) schemes. We next propose a series
of schemes utilizing an additive operator splitting (AOS) formulation [18, 19, 29].
Unlike the ADI and LOD schemes, in which the subsystems have to be solved
sequentially, the split equations can be solved concurrently in the AOS schemes.
Thus, the AOS methods are well suited to be implemented in parallel processors.
Since the present work focuses on the stability investigation, a simple series imple-
mentation is still conducted for the AOS schemes.
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In the first AOS scheme, at each time step from tn to tn+1, we solve the time
dependent NPB equation in the following stages:

α
∂w

∂t
= −4κ̄2 sinh(w), with Wn = Un, t ∈ [tn, tn+1],(21)

α
∂v

∂t
= 4

∂

∂x

(

ǫ
∂v

∂x

)

+ 4ρm, with Vn = Un, t ∈ [tn, tn+1],(22)

α
∂p

∂t
= 4

∂

∂y

(

ǫ
∂p

∂y

)

, with Pn = Un, t ∈ [tn, tn+1],(23)

α
∂q

∂t
= 4

∂

∂z

(

ǫ
∂q

∂z

)

, with Qn = Un, t ∈ [tn, tn+1],(24)

Un+1 =
1

4

(

Wn+1 +Vn+1 +Pn+1 +Qn+1
)

.(25)

In other words, the NPB system is split into four parts, i.e., one nonlinear subsystem
and three subsystems along Cartesian directions. The time independent source term
is assigned to the x-direction subsystem. Then an arithmetic average is carried out
to advance Un to Un+1.

Similar to our LOD schemes, we will formulate two types of time discretiza-
tions. Using implicit Euler integration in time and central differencing in space to
discretize Equations (22) through (24), we propose first the scheme AOSIE1 :

wi,j,k = 4 ln

(

cosh( 1
2α κ̄

2∆t) + exp(−un
i,j,k) sinh(

1
2α κ̄

2∆t)

exp(−un
i,j,k) cosh(

1
2α κ̄

2∆t) + sinh( 1
2α κ̄

2∆t)

)

,(26)

(1−
4

α
∆tδ2x)vi,j,k = un

i,j,k +
4

α
∆tρm,(27)

(1 −
4

α
∆tδ2y)pi,j,k = un

i,j,k,(28)

(1−
4

α
∆tδ2z)qi,j,k = un

i,j,k,(29)

un+1
i,j,k =

1

4
(wi,j,k + vi,j,k + pi,j,k + qi,j,k)(30)

We also formulate a second scheme based on the AOS1 scheme that utilizes Crank-
Nicolson integration in time and central differencing in space. This scheme, AOSCN1,
replaces Equations (27) through (29) from AOSIE1 with the following:

(1−
2

α
∆tδ2x)vi,j,k = (1 +

2

α
∆tδ2x)u

n
i,j,k +

4

α
∆tρm,(31)

(1−
2

α
∆tδ2y)pi,j,k = (1 +

2

α
∆tδ2y)u

n
i,j,k,(32)

(1−
2

α
∆tδ2z)qi,j,k = (1 +

2

α
∆tδ2z)u

n
i,j,k(33)

For the AOS schemes, since each subsystem is solved independently, any change
in their order will not alter the numerical outcome. In the present study, we consider
a different variation for the proposed AOS schemes. In the AOSCN1 scheme, the
source term is imposed only along the x direction. We are interested in a more
symmetric splitting by introducing a second set of AOS schemes. At each time step
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from tn to tn+1, we solve the time dependent NPB equation in the following stages:

α
∂w

∂t
= −4κ̄2 sinh(w), with Wn = Un, t ∈ [tn, tn+1],(34)

α
∂v

∂t
= 4

∂

∂x

(

ǫ
∂v

∂x

)

+
4

3
ρm, with Vn = Un, t ∈ [tn, tn+1],(35)

α
∂p

∂t
= 4

∂

∂y

(

ǫ
∂p

∂y

)

+
4

3
ρm, with Pn = Un, t ∈ [tn, tn+1],(36)

α
∂q

∂t
= 4

∂

∂z

(

ǫ
∂q

∂z

)

+
4

3
ρm, with Qn = Un, t ∈ [tn, tn+1],(37)

Un+1 =
1

4

(

Wn+1 +Vn+1 +Pn+1 +Qn+1
)

(38)

It is obvious that we split the source term into three Cartesian subsystems so
that certain symmetry is maintained in three directions. It is noted that we do
not distribute the source term into the nonlinear subsystem, because the time
integration of the resulting nonlinear process becomes quite involved.

We similarly formulate two schemes based on the AOS2 method, one utilizing
implicit Euler integration in time and another utilizing Crank-Nicolson integration
in time. Both of these schemes largely take a similar form as the AOSIE1 scheme;
for AOSIE2, Equations (27) through (29) are replaced with the following:

(1 −
4

α
∆tδ2x)vi,j,k = un

i,j,k +
4

3α
∆tρm,(39)

(1−
4

α
∆tδ2y)pi,j,k = un

i,j,k +
4

3α
∆tρm,(40)

(1−
4

α
∆tδ2z)qi,j,k = un

i,j,k +
4

3α
∆tρm,(41)

and similarly for the AOSCN2 scheme, we utilize the following series of equations:

(1−
2

α
∆tδ2x)vi,j,k = (1 +

2

α
∆tδ2x)u

n
i,j,k +

4

3α
∆tρm,(42)

(1−
2

α
∆tδ2y)pi,j,k = (1 +

2

α
∆tδ2y)u

n
i,j,k +

4

3α
∆tρm,(43)

(1 −
2

α
∆tδ2z)qi,j,k = (1 +

2

α
∆tδ2z)u

n
i,j,k +

4

3α
∆tρm.(44)

The error and stability analysis of the general AOS schemes can be found in [5].
For the present AOS schemes, we have the following results.

Remark 3.3. The proposed AOSIE1, AOSIE2, AOSCN1, and AOSCN2 schemes

are of first order accuracy in time, because the underlying AOS splittings are first

order and the discretization error of the implicit Euler or Crank-Nicolson integration

is at least first order.

Remark 3.4. If the solution u is sufficiently smooth, the proposed AOSIE1, AOSIE2,

AOSCN1, and AOSCN2 schemes are unconditionally stable, because each individual

implicit Euler or Crank-Nicolson time integration with central difference approxi-

mation is unconditionally stable.

3.3. Multiplicative-additive operator splitting (MAOS) schemes. Finally,
we propose two hybrid schemes combining multiplicative and additive operator
splitting stages. Our intention is to treat the nonlinear subsystem separately from
the three linear Cartesian subsystems. So, at each time step from tn to tn+1, the
time dependent NPB equation will be solved by a two-stage multiplicative operator
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splitting scheme, the second of which is solved with an additive operator splitting
scheme:

α
∂w

∂t
= −κ̄2 sinh(w), with Wn = Un, t ∈ [tn, tn+1],(45)

α
∂v

∂t
= 3

∂

∂x

(

ǫ
∂v

∂x

)

+ ρm, with Vn = Wn, t ∈ [tn, tn+1],(46)

α
∂p

∂t
= 3

∂

∂y

(

ǫ
∂p

∂y

)

+ ρm, with Pn = Wn, t ∈ [tn, tn+1],(47)

α
∂q

∂t
= 3

∂

∂z

(

ǫ
∂q

∂z

)

+ ρm, with Qn = Wn, t ∈ [tn, tn+1],(48)

Un+1 =
1

3

(

Vn+1 +Pn+1 +Qn+1
)

(49)

Again, just as with the previous schemes, this MAOSmethod is discretized using im-
plicit Euler integration in time, forming the MAOSIE scheme, and also discretized
using Crank-Nicolson integration in time, forming the MAOSCN scheme.

By combining the previous studies, we have the following results for the MAOS
schemes.

Remark 3.5. The proposed MAOSIE and MAOSCN schemes are of first order

accuracy in time, because the underlying MAOS splitting is first order and the

discretization error of the implicit Euler or Crank-Nicolson integration is at least

first order.

Remark 3.6. If the solution u is sufficiently smooth, MAOSIE and MAOSCN

schemes are unconditionally stable, because each individual implicit Euler or Crank-

Nicolson time integration with central difference approximation is unconditionally

stable.

4. Numerical validation

In this section, we validate the proposed schemes numerically by solving the
NPB equation on a sphere – a case with an analytical solution. We will explore the
stability as well as spatial and temporal convergence of the proposed time splitting
schemes and compare these results to our previous ADI methods. Such studies
will help us to identify well-performed NPB solvers to be used in real biomolecular
simulations. All simulations are compiled with the Intel Fortran Compiler and run
on an early-2011 MacBook Pro with an i7-2820QM 2.3GHz GPU and 8GB memory.

4.1. Benchmark problem. The NPB equation only possesses analytical solu-
tions for certain simple geometries, such as a sphere. For verification of our schemes,
we introduce the following solution for the case of a spherical cavity, based on a
case from [26]:

(50) u(r) =

{

1
ǫR − 1

R + 1
‖r‖ , ‖r‖ < R

1
ǫ‖r‖ , ‖r‖ > R

ρm(r) =

{

4πǫmδ(r), ‖r‖ < R

κ̄2 sinh
(

1
ǫ‖r‖

)

, ‖r‖ > R

where ǫ = ǫs/ǫm and R is the radius of the spherical cavity. We note here that
because of the singularity in the source term defined by (50) and the non-smoothness
due to the interface jump conditions, the accuracy of the finite difference spatial
discretization is normally reduced and additional instability may be introduced in
the time-stepping. In our numerical validations, we choose R = 1Å with a single
centered charge of 1 ec. Our dielectric constants are ǫs = 80 and ǫm = 1, and we



UNCONDITIONALLY STABLE POISSON-BOLTZMANN SOLVER 863

set our nonlinear constant κ̄ = 1. Furthermore, for our scaling parameter, we select
the standard value α = 1.

A cubic domain [−3, 3] × [−3, 3] × [−3, 3] with the same spacing in all three
directions h = ∆x = ∆y = ∆z is used in our computations. A Dirichlet boundary
condition is assumed on all boundaries with the boundary data being given by the
analytical solution. For the purpose of investigating the convergence and stability
of our new schemes, we will examine the sensitivity of the methods to different
initial conditions. To this end, we construct a family of nontrivial initial solutions,
which satisfy the Dirichlet boundary condition

(51) u(r, 0) = H cos(
π

6
x) cos(

π

6
y) cos(

π

6
z) +

1

ǫ
√

x2 + y2 + z2
.

Different magnitudes of H will be employed. Note when H is large, like H = 20,
the value of the nonlinear term sinh(u) is on the order of 108. This imposes a
great difficulty to explicit and semi-implicit time integration schemes. With such
an initial solution at t = 0, the time-stepping will be carried out until a stopping
time t = T with a time increment ∆t. Denoting uh as the numerical solution, the
following measures are used to estimate relative errors:

(52) L∞ =
max |u− uh|

max |u|
, L2 =

√

Σi,j,k|u− uh|2

Σi,j,k|u|2
.

4.2. Stability. We first investigate the stability. For smooth solutions, the pro-
posed time splitting methods are unconditionally stable. Nevertheless, the present
analytical solution u is just C0 continuous across the circular interface. It is thus
of interest to test the stability of our newly constructed schemes for nonsmooth
solutions.

Previously, the stability of several explicit and implicit schemes has been ex-
amined for solving the time dependent NPB equation, by using this benchmark
example [11]. All tested schemes in that paper were found to be stable with a con-

straint ∆t ≤ h2

m for some m. However, when the parameter H changes from 1 to
20, which greatly amplifies the nonlinear effect, all explicit and semi-implicit time
schemes become unconditionally unstable, while the fully implicit ADI schemes still
remain to be stable with a similar m value bounded by m < 20 [11].

In the present study, it is found numerically that the proposed time splitting
methods are all unconditionally stable for all tested H values in the range of
H ∈ [1, 20]. To illustrate this, we consider the following ∆t samplings: ∆t ∈
{0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}. In our tests, the stopping
time T is chosen as T = 104∆t so that enough accumulations are experienced, and
the L2 errors will be reported. Of course, when ∆t is as large as ∆t = 5, the
numerical error is meaningless. But as long as this error remains to be finite, this
demonstrates the stability of the underlying time integration.

By considering two mesh sizes (h = 0.5 or h = 0.25), and two H values (H = 1
or H = 20), the numerical results of the proposed LOD, AOS, and MAOS schemes
are depicted in Fig. 1 and Fig. 2. By producing finite error values for all tested ∆t
and h values, all new schemes are demonstrated to be unconditionally stable for the
present example. Moreover, such an unconditional stability is not affected by the
strong nonlinearity with H = 20. For a comparison, the results of the ADI schemes
[11] are also shown in Fig. 1 and Fig. 2. The missing points in both figures denote
∆t values for which the ADI methods were unstable. The present stability results
of the ADI schemes are consistent with those reported in [11].
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Figure 1. Stability verification with H = 1. (a) The LOD
schemes with h = 0.5; (b) The AOS schemes with h = 0.5; (c)
The MAOS and ADI schemes with h = 0.5; (d) The LOD schemes
with h = 0.25; (e) The AOS schemes with h = 0.25; (f) The MAOS
and ADI schemes with h = 0.25.
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Figure 2. Stability verification with H = 20. (a) The LOD
schemes with h = 0.5; (b) The AOS schemes with h = 0.5; (c)
The MAOS and ADI schemes with h = 0.5; (d) The LOD schemes
with h = 0.25; (e) The AOS schemes with h = 0.25; (f) The MAOS
and ADI schemes with h = 0.25.

We summarize the stability results shown in Fig. 1 and Fig. 2 by reporting the
stability ranges of all tested methods in Table 2. For the LOD, AOS, and MAOS
schemes, the range is always [0.001, 5], because they are stable for all sampled ∆t
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Table 2. Stability range of all methods for the sampled ∆t values.

H = 1 H = 20
Method h = 0.5 h = 0.25 h = 0.5 h = 0.25
LOD [0.001, 5] [0.001, 5] [0.001, 5] [0.001, 5]
AOS [0.001, 5] [0.001, 5] [0.001, 5] [0.001, 5]
MAOS [0.001, 5] [0.001, 5] [0.001, 5] [0.001, 5]
ADI1 [0.001, 0.05] [0.001, 0.005] [0.001, 0.01] [0.001, 0.002]
ADI2 [0.001, 0.02] [0.001, 0.002] [0.001, 0.02] [0.001, 0.002]

values. The upbounds of stability ranges of the ADI schemes are all significantly less
than 5, indicating that the ADI schemes are unstable for large ∆t values. We note
that the reported stability range in Table 2 is just a subset of the actual stability
interval of each scheme, because such a range is concluded based on selected ∆t
values. For example, all reported schemes are stable for ∆t < 0.001. But the
interval (0, 0.001) is not included in our ranges. Similarly, the proposed LOD,
AOS, and MAOS schemes could be stable for some ∆t > 5. But such large ∆t
values are of little numerical interest.

4.3. Spatial Convergence. We next study the spatial convergence of the pro-
posed time splitting schemes. For this purpose, we vary the spatial mesh size N
from 13 to 109, and take the time increment to be sufficiently small in all cases, i.e.,

∆t = h2

20
. We take the magnitude H = 1 in the initial solution and the stopping

time to be T = 10 for the rest of the studies in this section.
The L2 and L∞ errors of the LOD, AOS, and MAOS schemes are reported in

Fig. 3 in logarithmic scales. A similar pattern can be seen for all tested schemes. In
particular, the numerical convergences become slower whenN increases. The orders
in L2 norms are higher than those in L∞ norms and the L2 errors are also smaller
than the L∞ errors. To calculate an overall order of accuracy, a linear least-squares
fitting is conducted in all cases. The fitted linear functions are also shown as the
solid lines in Fig. 3. The slope r of these lines reflects the average convergence
rate. It can be seen that L∞ orders are all below one. As pointed out in [11], such
accuracy reduction is due to the singular solution at the center of the sphere and
the non-smoothness of the solution across the interface Γ, which is treated in an
approximate sense in the present finite difference discretization. The non-uniform
convergence in the L∞ norm is particularly affected by the charge singularity at
the center, because large errors exist in the calculation of potential near the center.
However, the overall L2 orders of all schemes are found to be within 0.7 to 1.2.
This suggests that these schemes display approximately first-order convergence in
the L2 norm.

We are also interested in a comparison among these schemes. Interestingly, both
LODIE schemes produce the exact same errors for this simple spherical case, as do
the LODCN schemes. For other schemes, some minor changes will affect the orders
slightly. In general, the orders of the AOS and MAOS schemes appear significantly
worse than those exhibited by the LOD schemes.

4.4. Temporal Convergence. We finally investigate the temporal convergence
of our schemes, displayed in Table 3. Because we should expect the spatial dis-
cretization error to be much larger than the temporal discretization error, due to
the charge singularity and non-smooth interface previously mentioned, we may not
be able to determine temporal order of convergence by comparing errors calculated
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Figure 3. Spatial convergence in solving the sphere benchmark
problem. (a) The LODIE schemes; (b) The LODCN schemes; (c)
The AOSIE schemes; (d) The AOSCN schemes; (e) The MAOSIE
schemes; (f) The MAOSCN schemes. In all charts, the dashed lines
are error plots and the solid lines are linear least square fittings.

at various time increments ∆t to the analytical solution. In fact, with a given h,
the same error is yielded in our computations with different time increment ∆t.

Thus, we choose a fixed spacing h = 0.125, and use the potentials calculated
at the time increment ∆t = 2.5e-05 as the reference solution. We then proceed
to calculate the L2 and L∞ norms, and their respective orders of convergence, in
the same manner as the previous subsection. The temporal order of convergence
for all schemes in L2 and L∞ norms appears to be slightly higher than first-order,
and the orders for the MAOS schemes in Table 3 appear to be the lowest. We also
note that two versions of the LODIE and LODCN schemes yield exactly the same
results.
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Table 3. Temporal convergences in solving the benchmark problem.

dt L2 Order L∞ Order L2 Order L∞ Order
LODIE1 and LODIE2 LODCN1 and LODCN2

8e-4 8.04e-2 1.06 1.55e-1 1.06 5.46e-2 1.07 1.06e-1 1.07
4e-4 3.85e-2 1.11 7.44e-2 1.11 2.59e-2 1.11 5.03e-2 1.11
2e-4 1.79e-2 1.23 3.45e-2 1.23 1.20e-2 1.23 2.32e-2 1.23
1e-4 7.65e-3 1.59 1.48e-2 1.59 5.11e-3 1.59 9.91e-3 1.59
5e-5 2.55e-3 4.91e-3 1.70e-3 3.30e-3

AOSIE1 AOSIE2
8.0e-4 1.20e-1 0.98 1.16e-1 0.97 8.36e-2 0.99 1.16e-1 0.97
4.0e-4 6.09e-2 1.06 5.94e-2 1.06 4.22e-2 1.06 5.94e-2 1.06
2.0e-4 2.92e-2 1.20 2.86e-2 1.20 2.02e-2 1.20 2.86e-2 1.20
1.0e-4 1.27e-2 1.57 1.25e-2 1.57 8.77e-3 1.57 1.25e-2 1.57
5.0e-5 4.27e-3 4.19e-3 2.95e-3 4.19e-3

AOSCN1 AOSCN2
8.0e-4 6.31e-2 1.01 6.16e-2 1.00 4.36e-2 1.01 6.16e-2 1.00
4.0e-4 3.13e-2 1.08 3.07e-2 1.08 2.16e-2 1.08 3.07e-2 1.08
2.0e-4 1.49e-2 1.21 1.46e-2 1.21 1.02e-2 1.21 1.46e-2 1.21
1.0e-4 6.42e-3 1.58 6.31e-3 1.58 4.43e-3 1.58 6.31e-3 1.58
5.0e-5 2.15e-3 2.11e-3 1.48e-3 2.11e-3

MAOSIE1 MAOSCN1
8.0e-4 6.40e-2 1.00 8.96e-2 0.99 3.31e-2 1.02 4.69e-2 1.01
4.0e-4 3.20e-2 1.07 4.53e-2 1.06 1.64e-2 1.08 2.33e-2 1.08
2.0e-4 1.53e-2 1.21 2.16e-2 1.20 7.73e-3 1.21 1.10e-2 1.21
1.0e-4 6.61e-3 1.43 9.40e-3 1.43 3.33e-3 1.43 4.75e-3 1.43
5.0e-5 2.45e-3 3.48e-3 1.24e-3 1.76e-3

5. Biological applications

In this section, we further explore the stability and accuracy of the LOD, AOS,
andMAOS schemes by considering the solvation analysis of real proteins. A detailed
comparison among different time splitting schemes will be conducted for a particular
protein system. Some corrections will be introduced to improve the accuracy of the
time splitting. After identifying an optimum NPB solver, its usage on various
protein systems will be considered. The CPU acceleration with respect to the
existing operator splitting schemes will be examined.

5.1. Solvation energy and numerical setup. To quantitatively verify and com-
pare the accuracy and efficiency of our new schemes, we compute solvation free
energy based on the electrostatic potential calculated from the NPB equation. The
energy released when the solute macromolecule is dissolved in solvent is known as
the free energy of solvation, or solvation free energy. This solvation free energy may
be calculated in our setting by computing the difference between total free energy
of the macromolecule in a vacuum and in the solvent. Because we consider here
only electrostatic effects, we may define the solvation energy as

(53) ∆G = Gs −G0 =
1

2

∫

Ω

ρm(φm(r) − φ0(r)) dr

where φm is the electrostatic potential, in units of kcal/mol/ec, in solvent, and φ0 is
the electrostatic potential in vacuum. These potential values are obtained by scaling
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Figure 4. Stability verification for the protein 1ajj. (a) The LOD
schemes; (b) The AOS schemes; (c) The MAOS and ADI schemes.

Table 4. Stability range of all methods on 1ajj for the sampled ∆t values.

Method Stability Range Method Stability Range
LODIE1 [0.0005, 5] AOSIE1 [0.0005, 0.5]
LODIE2 [0.0005, 5] AOSIE2 [0.0005, 1]
LODCN1 [0.0005, 0.5] AOSCN1 [0.0005, 0.5]
LODCN2 [0.0005, 0.5] AOSCN2 [0.0005, 2]
MAOSIE1 [0.0005, 1] ADI1 [0.0005, 0.005]
MAOSCN1 [0.0005, 1] ADI2 [0.0005, 0.01]

our calculated dimensionless potentials with the constant 0.592183, corresponding
to room temperature (298K). In a discrete setting, we may calculate the solvation
energy as

(54) ∆G =
1

2

∑

i

∑

j

∑

k

Q(xi, yj , zk)(φm(xi, yj , zk)− φ0(xi, yj, zk))

where Q is the trilinear interpolation of the singular charges in ρm. The scaled
potential φm is calculated based on the time dependent NPB equation, while φ0 is
computed by solving a simple Poisson equation with a constant dielectric coefficient.
As in the literature [20, 17], the Fast Fourier Transform (FFT) can be used to
efficiently determine φ0.

In all cases, a uniform mesh size h = 0.5 is used along all three dimensions and
a large enough computational domain is chosen. In our calculations, we set the
dielectric constants ǫs = 80, and ǫm = 1. The ionic strength I is set to 9.48955M,
so the nonlinear constant κ̄ is 8.9743. The scaling parameter is chosen as α = 1,
unless specified otherwise. A sufficiently large stopping time T will be used in each
case to ensure that the steady state solution is reached. The molecular surface Γ
underlying our computations is calculated based on the MSMS package [25]. In
the MSMS surface generation, the probe radius is set to 1.4, and the density is
chosen as 10. A Lagrangian to Eulerian conversion [36] is conducted to convert
the triangular surface mesh of the MSMS package into 3D Cartesian grid values for
determining ǫ(xi, yj , zk).

5.2. Stability analysis. In the previous section, all of the proposed time splitting
schemes are found to be unconditionally stable for a single atom case. It is of great
interest to see if these schemes are still stable for real protein systems. We carry out
this stability study by considering a protein 1ajj, a low-density lipoprotein receptor.
As in the previous studies, we set T = 104∆t and consider a set of sampled ∆t
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values, ∆t ∈ {0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}. For a
reference, an Euler solution is produced from the explicit Euler method with a very
small time increment ∆t = 1e-05 and a large enough T = 10. The solvation energy
of the Euler solution is calculated to be ∆G = −1209.7, which will be taken as the
reference energy value in studying pseudo-time NPB solvers.

The stability results in terms of the solvation energy errors of the proposed
time splitting schemes are depicted in Fig. 4. We note that for the LODIE1 and
LODIE2 methods, the finite error at each ∆t implies stability of these two methods
at every tested time step value. In fact, the LODIE methods are also found to
be unconditionally stable for solving other protein systems, while all other time
splitting schemes are conditionally stable for real proteins. In particular, as shown
in Table 4, the LODCN, AOSIE1, and AOSCN1 methods were only unstable for
∆t = 1, 2, 5. The AOSIE2 andMAOS methods were only unstable for ∆t = 2, 5. The
AOSCN2 method was only unstable for ∆t = 5. The ADI methods, however, showed
much reduced stability, with ADI1 only stable for ∆t = 0.0005, 0.001, 0.002, 0.005,
and ADI2 only stable for ∆t = 0.0005, 0.001, 0.002, 0.005, 0.01. We note again that
the stability range of Table 4 is simply based on a set of discrete ∆t values being
sampled. Such a range does not give a sharp estimate to the upper bound of the
actual stability interval. For example, the LODCN methods are unstable at ∆t = 1
and stable at ∆t = 0.5. So only ∆t = 0.5 is included in the stability range in Table
4. The real critical ∆t is in between 0.5 and 1, and has to be detected separately.
In this case, such a critical value is about 0.93. In summary, the newly created
schemes, particularly the LODIE schemes, exhibit much improved stability over
the existing ADI schemes.

5.3. Accuracy improvements. We next examine the accuracy by also consid-
ering the protein 1ajj. Table 5 shows calculated solvation energies of various time
splitting schemes based on T = 10 and different ∆t values. For each case, the
CPU time and the percentage error with respect to the reference value generated
by the Euler solution are also reported. For each scheme, it can be observed that
the accuracy improves when ∆t becomes smaller, while the CPU time increases lin-
early. Unfortunately, to produce a reasonable solvation energy value, a very small
∆t = 0.0005 is typically required in these time splitting schemes, which implies
a very slow computation. The superior stability of the proposed time splitting
schemes cannot be taken advantage of, due to such a poor accuracy. On the other
hand, we note that the LODIE2 scheme clearly produced the smallest error, while
also requiring the least CPU time for all ∆t. Based on these observations, and the
unconditional stability of the LODIE2 method, we will focus only on the LODIE2
scheme in the following studies. Several remedies will be proposed to improve the
accuracy of the LODIE2 scheme.

Our main goal here is to produce a reliable, albeit not highly accurate, estimate
of the solvation energy based on some ultra large ∆t values, so that the efficiency
of the LODIE2 scheme can be significantly enhanced. Given the nearly first order
convergence of the LODIE2 scheme shown in Table 5, we first investigate the use
of the Richardson extrapolation technique to accelerate the convergence. With this
process, we may cancel out high order error terms in our calculated electrostatic
potentials by taking a linear combination of two results, calculated with different
∆t time increments. In particular, we propose the following pointwise Richardson
approximation

(55) φm(xi, yj , zk) = 2φ∆t/2
m (xi, yj , zk)− φ∆t

m (xi, yj, zk)
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Table 5. Electrostatic solvation free energies (kcal/mol) and the
corresponding CPU time in seconds for protein 1ajj by using op-
erator splitting schemes.

∆t ∆G % Error CPU ∆t ∆G % Error CPU
LODIE1 LODCN1

0.0050 − 80.2 93.37% 150 0.0050 − 477.2 60.55% 165
0.0020 − 759.8 37.19% 369 0.0020 − 919.3 24.00% 383
0.0010 −1203.8 18.57% 706 0.0010 −1065.0 11.96% 772
0.0005 −1097.5 9.28% 1463 0.0005 −1137.5 5.97% 1535

LODIE2 LODCN2
0.0050 −1521.2 25.75% 142 0.0050 −1918.2 58.57% 159
0.0020 −1336.1 10.46% 335 0.0020 −1495.7 23.64% 372
0.0010 −1273.3 5.26% 648 0.0010 −1353.2 11.86% 739
0.0005 −1241.6 2.64% 1452 0.0005 −1281.6 5.94% 1476

AOSIE1 AOSCN1
0.005 1.1 100.09% 169 0.005 − 305.6 74.74% 179
0.0020 − 705.4 41.69% 399 0.0020 − 947.1 21.70% 481
0.0010 − 953.3 21.19% 802 0.0010 −1076.9 10.97% 901
0.0005 −1080.4 10.69% 1688 0.0005 −1143.0 5.51% 1883

AOSIE2 AOSCN2
0.005 4.6 100.38% 185 0.005 − 572.6 52.66% 205
0.0020 − 704.1 41.79% 410 0.0020 − 946.5 21.75% 451
0.0010 − 952.7 21.24% 819 0.0010 −1076.6 11.00% 872
0.0005 −1080.1 10.71% 1681 0.0005 −1142.8 5.52% 1792

MAOSIE1 MAOSCN1
0.005 − 571.0 52.80% 199 0.005 − 748.8 38.10% 197
0.0020 − 838.4 30.69% 394 0.0020 −1022.9 15.44% 418
0.0010 −1022.0 15.51% 781 0.0010 −1115.7 7.77% 887
0.0005 −1115.2 7.81% 1556 0.0005 −1162.5 3.90% 1751

Table 6. Electrostatic solvation free energies (kcal/mol) and the
corresponding CPU time in seconds for protein 1ajj by using the
improved LODIE2 and ADI methods.

Scheme ∆t ∆G % Error CPU
LODIE2 RE 0.0050, 0.0025 −1212.8 0.25% 376
LODIE2 RE 0.0150, 0.0075 −1234.7 2.07% 133
LODIE2 RE 0.0500, 0.0250 −1435.5 18.67% 48
LODIE2 RE+V 0.4000, 0.2000 −1122.4 5.27% 27
ADI1 0.005 −1190.1 1.62% 165
ADI2 0.005 −1203.8 0.49% 202

where φ∆t
m (xi, yj, zk) represents the steady state electrostatic potential at a point

(xi, yj , zk) calculated with a time increment ∆t. Essentially, a linear combination
of our vectors of potentials calculated with time increment ∆t and ∆t/2 is taken.

The results of the LODIE2 scheme after applying the Richardson extrapolation
are given in Table 6. Such a new LODIE2 method is labeled as the LODIE2 RE
method. The reported CPU time of the LODIE2 RE scheme includes calculations
of ∆t, ∆t/2, and Eq. (55). Typically, such a CPU time is about 3 times larger than
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that of the LODIE method with the same ∆t. Nevertheless, as can be seen from
Table 6, the LODIE2 RE scheme becomes about 100 times more accurate. For a
comparison, the results of the ADI1 and ADI2 methods [11] are also listed in Table
6. It can be seen that by using the same ∆t = 0.005, the LODIE2 RE scheme is
more accurate than the ADI methods, although it is also more expensive. We note
that, being unconditionally stable, the LODIE2 RE method could be more efficient
by using a larger ∆t. On the other hand, the ADI methods will be unstable when
∆t > 0.01.

To further improve the energy estimate of the LODIE2 scheme, we propose to ap-
ply the LODIE method to calculate both φm and φ0 in Eq. (54). To our knowledge,
such a treatment has never been explored in the existing pseudo-transient contin-
uation approaches for solving the NPB equation [34, 11, 35]. In the literature, the
pseudo-time methods are only applied to solve φm, while φ0 is still obtained via
the FFT fast Poisson solver. Symbolically, we can rewrite Eq. (54) as

(56) ∆G =
1

2

∑

i

∑

j

∑

k

Q(xi, yj , zk)(φ
LOD
m (xi, yj, zk)− φFFT

0 (xi, yj, zk)),

in which φLOD
m (xi, yj, zk) is calculated by the LODIE2 method, while φFFT

0 (xi, yj, zk)
is calculated by the FFT method. In this work, we propose to solve the Poisson
equation in vacuum by using the LODIE2 method and denote the corresponding
potential as φLOD

0 (xi, yj , zk). The electrostatic free energy is then calculated as

(57) ∆G =
1

2

∑

i

∑

j

∑

k

Q(xi, yj, zk)(φ
LOD
m (xi, yj , zk)− φLOD

0 (xi, yj , zk)).

Even though the application of the LODIE2 scheme to the vacuum case would
produce greater error in calculating φ0 than the application of the FFT, we should
expect the cancellation of some spatial-temporal discretization error between the
vacuum and solvent cases. Thus, we should expect a potentially more accurate free
energy of solvation value.

By applying the LODIE2 RE method to both solvent and vacuum cases, the
new method is labeled as LODIE2 RE+V. Furthermore, to achieve the best bal-
ance between the accuracy and efficiency, we have studied various combinations of
time increment ∆t and the model scaling parameter α. In practical testing of the
LODIE2 RE+V method implementation, we find temporal convergence to be slow
for the vacuum case. Thus, we shall choose the scaling parameter α other than one.
The optimal practical scaling parameter through empirical testing was determined
to be α = 1

25
. We find that the resulting method produces superior results with

T = 10 and ∆t = 0.4. The results of such a LODIE2 RE+V method are also given
in Table 6. It can be seen that the relative error of the LODIE2 RE+V method
with ∆t = 0.4 is about 5%, which is acceptable in common biological simulations.
However, the CPU time is roughly 15% of that of the ADI methods.

5.4. Solvation energies of proteins. We finally validate the proposed uncondi-
tionally stable LODIE2 RE and LODIE2 RE+V methods by considering a series
of proteins with different size and geometric structures. The conditionally stable
ADI methods [11] will also be tested for a comparison. In the following studies, the
same stopping time T = 10 is used in all methods. For the ADI, LODIE2 RE and
LODIE2 RE+V methods, the time increment is chosen as ∆t = 0.005, ∆t = 0.05,
and ∆t = 0.4, respectively. We note that the ADI results in the present study are
different from those in [11], because a stronger nonlinearity is considered here with
the ionic strength I = 9.48955M, while I = 0.15M in [11].
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Table 7. Electrostatic solvation free energies (kcal/mol) for 23
proteins. All proteins use a density parameter of 10 except for
451c and 1a7m, which use 58 and 40, respectively.

PDB #atoms Euler ADI1 ADI2 LODIE2 RE LODIE2 RE+V
1ajj 519 −1209.7 −1190.1 −1203.8 −1435.5 −1122.4
1bbl 576 −1269.8 −1246.6 −1263.6 −1517.1 −1221.5
1bor 832 −1043.0 −1029.7 −1039.2 −1351.2 −1048.5
1bpi 898 −1440.6 −1415.9 −1432.4 −1799.9 −1300.3
1cbn 648 −458.3 −449.9 −455.7 −717.1 −489.7
1fca 729 −1109.9 −1098.4 −1106.7 −1407.3 −1157.0
1frd 1478 −2645.1 −2611.9 −2634.9 −3252.5 −2530.3
1fxd 824 −2235.8 −2220.6 −2231.5 −2599.0 −2342.6
1hpt 858 −1139.0 −1116.8 −1132.3 −1512.4 −1096.1
1mbg 903 −1401.7 −1383.2 −1395.8 −1763.6 −1347.0
1neq 1187 −2092.9 −2064.6 −2083.9 −2577.5 −1974.9
1ptq 795 −1098.5 −1079.2 −1092.0 −1389.9 −985.6
1r69 997 −1302.1 −1283.4 −1296.1 −1701.6 −1230.6
1sh1 702 −994.6 −981.1 −990.8 −1279.3 −970.1
1svr 1435 −2236.3 −2205.7 −2226.5 −2812.2 −2080.8
1uxc 809 −1363.8 −1345.7 −1357.9 −1671.3 −1275.4
1vii 596 −1109.7 −1097.0 −1105.7 −1307.4 −1046.5
2erl 573 −925.5 −961.6 −922.2 −1163.1 −942.7
2pde 667 −974.4 −962.5 −970.9 −1243.0 −897.2
451c 1216 −1326.7 −1845.8 −1341.8 −1800.2 −1295.0
1a2s 1272 −1814.0 −1794.1 −1808.1 −2320.2 −1898.3
1a63 2065 −3117.2 −3072.2 −3102.4 −3937.5 −2931.3
1a7m 2809 −2545.6 −1845.8 −1847.4 −2950.0 −1921.9

We first consider a set of 23 proteins, which have been used for testing the
previous solvation models [34, 11, 35]. For a reference, the explicit Euler method
with T = 10 and ∆t = 1.0e-05 is also employed. The electrostatic solvation free
energies calculated by the tested methods are given in Table 7. As in the previous
studies, the Euler solution can be regarded as the reference energy value, to which
all tested time splitting methods should converge. It can be observed from Table 7
that the LODIE2 RE method with ∆t = 0.05 yields a poor accuracy, even though
it is much faster than the ADI methods. On the other hand, being even faster, the
LODIE2 RE+V method produces energy estimates which are in good agreement
with those of the Euler method. We note that the results of two proteins, i.e., 451c
and 1a7m, appear to be inconsistent. In generating the molecular surface of the
tested proteins, a density value of 10 is used in the MSMS software [25]. However,
the ADI1 method with ∆t = 0.005 turns out to be unstable for these two proteins,
while such an instability was not encountered in our previous study [11], because
a strong nonlinearity with I = 9.48955M is considered here. To fix the problem
while still using ∆t = 0.005 for the ADI1, we have chosen the density parameters
to be 58 and 40, respectively, for 451c and 1a7m in the MSMS package. Due to
this change, the differences in energy results of the tested methods are quite large
for these two proteins.

We next study a set of 26 proteins with larger atom numbers. The electrostatic
solvation free energies produced by the ADI1, ADI2, and LODIE2 RE+V methods
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Table 8. Electrostatic solvation free energies (kcal/mol) for ad-
ditional proteins.

PDB #atoms ADI1 ADI2 LODIE2 RE+V
2lzj 1687 – −1983.2 −1922.6
2l6n 2093 – −2593.5 −2533.8
1hd2 2414 −2203.6 −2237.6 −2121.8
1urm 2425 – −2261.0 −2155.7
1qah 3954 – −3853.4 −3513.6
3lup 4363 −6090.9 −6147.5 −5730.8
1eri 4522 −5482.5 −5549.4 −5134.9
1beb 4972 – −6701.7 −6208.2
2a33 5182 −5074.6 −5131.9 −4914.5
1wkd 5755 – −5335.5 −5069.4
1e5m 6060 – −4863.0 −4528.6
2w2o 6246 – −6481.0 −5940.6
2w2q 6253 −6331.0 −6399.2 −5795.5
2w2p 6263 – −6369.8 −5742.3
2w2m 6288 – −6804.7 −6042.3
4dn3 6344 −3718.5 −3721.7 −3789.8
3r79 6737 −8065.4 −8146.4 −7525.4
1bif 6974 −7137.7 −7050.5 −6381.2
1gsu 7164 −5906.5 −5964.6 −5531.7
4dn4 7390 −5947.1 −5970.1 −5826.7
3loq 8136 −12060.4 −11494.7 −10466.5
3gcw 8505 −8594.8 −8568.3 −7514.3
3bps 8513 – −8389.9 −7517.9
1rva 8726 – −9007.5 −7892.4
1vng 8808 −7735.6 −7798.1 −6596.6
1vns 8815 – −7908.3 −6976.1

are shown in Table 8. A density parameter of 10 is used in the MSMS package
for all calculations. The proteins for which the ADI1 method was unstable for this
parameter are marked with a dash in the ADI1 column. No reference solutions
are computed for these proteins, because the computation of the Euler solution is
too time consuming for large proteins. In comparing the LODIE2 RE+V results
with those of ADI1 and ADI2, the present results suggest that the proposed time
splitting method provides reliable and fairly accurate energy estimates.

To quantitatively analyze the efficiency of the LODIE2 RE+Vmethod, we report
the CPU time in seconds of the ADI1, ADI2, and LODIE2 RE+V methods for the
proteins reported in Tables 7 and 8 in Fig. 5. Note that only the CPU time
consumed in solving the NPB and Poisson equations is reported here. The CPU
times used for the initial numerical setup, including the trilinear interpolation of
the source term, the Lagrangian to Eulerian conversion for computing the dielectric
coefficient, etc., are not considered here, because they are the same in all time
splitting schemes. To achieve a better understanding, we plot the CPU time against
the number of atoms Na in Fig. 5. It is clear that the CPU time is roughly a linear
function of Na. A least square linear fitting can be conducted to represent CPU
time in seconds as a function of Na: CPU= mNa + b. Here, we have (m, b) =
(0.253, 66.9), (0.224, 16.0), and (0.011, 6.8), respectively, for the ADI1, ADI2, and
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Figure 5. The CPU time in seconds consumed by the ADI1,
ADI2, and LODIE2 RE+V methods for solving the time depen-
dent NPB equation. (a) ADI1; (b) ADI2; (c) LODIE2 RE+V; (d)
A comparison of three methods.

LODIE2 RE+V methods. It is clear from Fig. 5 that the time required for the
modified LODIE2 method grows much less slowly as the number of atoms increases.
On average, the modified LODIE2 method is over 20 times more efficient than the
ADI methods for large proteins.

Finally, we plot the surface potentials of a protein (PDB ID: 4DN4) in Fig. 6.
Since no reference solution is offered in Table 8, it is of interest to further study
the reliability of the LODIE2 RE+V method for processing the proteins listed
in that table, such as the 4DN4. The electrostatic potentials generated by the
ADI1, ADI2, and LODIE2 RE+V methods are depicted in parts (a), (b), and (c),
respectively. Recall that the energies of the LODIE2 RE+V method in Table 8
are after recovery. But the original potential φLOD

m (xi, yj , zk) is used to generate
the surface plot in (c). Hence, the part (c) is significantly different from those of
the ADI methods. The colors of this picture are much lighter, which stands for
much weaker projected potentials. Just like in calculating the free energy, we can
improve the result by considering the vacuum potentials generated by the FFT and
LOD methods. In part (d), the recovered solution defined as φLOD

m (xi, yj, zk) +
φLOD
0 (xi, yj, zk) − φFFT

0 (xi, yj, zk) is utilized. Visually, this new result is close to
those of the ADI methods. Hence, the recovered LODIE2 RE+V potential can
also be similarly used in analyzing the fast/slow electrostatic potential changing
region on the solute-solvent boundary for biomolecular studies. The present study
demonstrates that besides providing a reliable free energy estimation, the proposed
LODIE method can also generate a usable pointwise potential.
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(a) (b)

(c) (d)

Figure 6. Plots of the surface potential (kcal/mol/ec) of the pro-
tein 4DN4 using different potential solutions. (a) ADI1; (b) ADI2;
(c) LODIE2 RE+V; (d) LODIE2 RE+V with recovery.

6. Conclusion

This paper presents the first unconditionally stable numerical scheme for solving
the nonlinear Poisson-Boltzmann (NPB) equation in a pseudo-transient approach.
Using this approach, the solution to the NPB equation is recovered from the steady
state solution to the time dependent pseudo-transient form. However, due to the
long time integration of the process, it is necessary to develop numerical schemes
that are stable and accurate for large time increments. The alternating direction
implicit (ADI) methods previously developed for solving the time dependent NPB
equation [11, 35] are fully implicit, but are still conditionally stable. To construct
unconditionally stable NPB solution methods, we consider various operator split-
ting procedures to all five terms of the NPB equation, in both multiplicative and
additive styles. This gives rise to locally one-dimensional (LOD) schemes, additive
operator splitting (AOS) schemes, and multiplicative-additive operator splitting
(MAOS) scheme. In these schemes, the nonlinear term is analytically integrated,
and both implicit Euler and Crank-Nicolson time integrations are formulated. A
standard finite difference scheme is utilized for spatial discretization in all schemes.
Extensive numerical experiments are conducted to verify the unconditional stability
and accuracy of the proposed time splitting schemes. One LOD scheme is found
to outperform other schemes in terms of both stability and accuracy, and is recom-
mended for electrostatic free energy analysis of real proteins. Further improvements
are introduced to enhance the accuracy and efficiency of this LOD scheme for a fast
biomolecular simulation.

In the following list, we summarize the major numerical features of the proposed
operator splitting schemes:
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• Stability. For a smooth solution, all proposed time splitting methods
should be unconditionally stable, because each individual implicit Euler
or Crank-Nicolson time integration with central difference approximation
is unconditionally stable. A major task in our numerical experiments is
to verify the stability for non-smooth solutions. In the case of a simple
spherical cavity test, these methods remain unconditionally stable. For
real protein systems, only the LODIE methods are stable for any ∆t. Some
proposed methods, such as AOSIE1, AOSCN1, and LODCN methods, be-
come conditionally stable, while other methods, such as AOSIE2, AOSCN2,
MAOS methods, are stable for all ∆t < 1. Overall, the stability constraints
of the proposed time splitting methods are much improved in comparing
with the existing ADI methods. The LODIE method is the most stable
method.

• Accuracy. Because the charge singularities (the delta functions) and the
non-smoothness of the solution across the interface Γ are treated in an
approximate sense in the present central difference discretization, all nu-
merical schemes achieve roughly the first-order convergence in space. All
proposed time splitting methods are of first order accuracy in time, because
the underlying time splitting is first order and the discretization error of the
implicit Euler or Crank-Nicolson integration is at least first order. How-
ever, as shown in protein tests, a very small ∆t has to be used in order
to produce an accurate estimate of electrostatic free energy. A Richardson
extrapolation technique and a recovery based on the replacement of the fast
Fourier transform method by the operator splitting method are proposed to
significantly improve the precision in energy calculations. The accelerated
LODIE method becomes biologically useful, with a large ∆t = 0.4 and a
stopping time T = 10.

• Efficiency. By using central difference discretization, the resulting linear
systems in each alternating direction are tridiagonal, and can be efficiently
solved via the Thomas algorithm [21]. Without the loss of generality, we
can assume that the numbers of grid nodes along x, y and z directions are
all on the order N . Then, the linear system in each subsystem of the time
splitting procedure has the dimensions N × N . The Thomas algorithm
solution of such a system has a complexity on the order of O(N), so that
the operations for calculating one time step in the proposed time splitting
methods are on the order of O(N3). Since a fixed number of total time
steps is used in the LODIE solution, the overall complexity of the proposed
LODIE method is still O(N3), making this method very attractive to large
protein systems. As demonstrated in our CPU tests, the LODIE method
scales linearly with respect to the number of atoms of the protein. On
average, the unconditionally stable LODIE method is over 20 times more
efficient than the conditionally stable ADI methods for large proteins.

When the nonlinearity effect of the NPB equation is strong, the efficient alge-
braic solution of a large scale nonlinear system remains a challenge in biomolecular
simulations [20, 17]. Such a difficulty is simply bypassed in a pseudo-transient con-
tinuation approach through an analytical integration. Moreover, the present study
reveals that an unconditionally stable computation is feasible through the proposed
schemes, so that the efficiency of the pseudo-time NPB solution is significantly im-
proved. Consequently, the pseudo-time NPB solver becomes quite promising for
solving strong nonlinear protein systems.
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It is of great interest to further generalize the proposed time splitting methods
by considering other numerical difficulties associated with the NPB equation. A
regularization procedure to treat the source singularities is under our investigation.
The use of a different molecular surface definition will also be examined. The
stability proof of the proposed operator splitting methods remains an open question,
mainly due to the nonlinear hyperbolic sine term.
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