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A SEMI DISCRETE MODEL FOR MORTGAGE VALUATION

AND ITS COMPUTATION BY

AN ADAPTIVE FINITE ELEMENT METHOD

DEJUN XIE AND SHANGYOU ZHANG

Abstract. In traditional models for valuation of mortgages with a stochastic interest rate, one

parabolic equation starting from the maturity is assumed to govern the whole life of a mortgage.
Following the valuation of zero-coupon bond, a new model is proposed, where an initial value
problem is restarted after a mortgage payment each month. In addition, the low and high limits
on the interest rate are incorporated into the initial-boundary value problems, so that the partial

differential equation remains regular and the solution better approximates the real value. We
show the existence and uniqueness of the solution and the free boundary (which determines early
prepayment). A finite element method is introduced with a convergence analysis. Numerical tests
are presented and the results are interpreted for guiding mortgage practice.

Key words. Finite element method, parabolic equation, free boundary problem, mortgage val-
uation.

1. Model

We consider the standard fixed rate mortgage, where the loan borrower pays an
equal amount of money to the lender for the duration of the contract. Typically the
borrower has a choice of early settlement, for example, by refinance if a much lower
fixed-rate mortgage is available, or by the fund from his or her other investment
where the return is too low. The free boundary computed by a mortgage model
would help such a borrower to determine if and when to pay off a loan. On the
other hand, the mortgage valuation would help financial institutions to assess their
loan equity, for example, in issuing mortgage backed security or bond.

The mortgage securities constitute one of the world’s largest fixed income mar-
ket. An adequate and efficient model for pricing mortgage contracts is not only
useful for bankers and home owners to make financial decisions, but also critical
for the sustainable development of mortgage market. For this reason, there exist
considerable literature dealing with mortgage valuation and relevant topics. Most
researchers have studied the problem from theoretical option pricing viewpoint,
where the mortgage contracts are treated as an American style financial option
[9, 1, 4]. A survey in this regard can be found in [10]. Since financial option val-
uation rarely assumes closed form solutions, efforts have been made to solve such
problems numerically. For instance, a binomial iteration scheme is proposed in [12].
A projected successive over-relaxation iterative method is applied in [14]. A Monte-
Carlo simulation method is tried in [8]. One notices (see [17, 7, 16], for instance)
that usual numerical techniques such as binomial method typically provide poor
accuracy and stability, which are mainly attributed to the difficulty in handling
free boundary conditions, in addition to low convergence rate. In this manuscript,
we propose a new model simplifying the free boundary setting while reflecting the
real market practice.
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Assuming the interest rate follows the CIR [3] brownian motion, a mortgage
valuation V (x, t) either grows at the loan rate or decays at the higher market
interest rate, cf. [11],

max
{∂V
∂t

− σ2

2
x
∂2V

∂x2
− k(θ − x)

∂V

∂x
+ xV −m,

V − m

c
(1− e−ct)

}
= 0, −∞ < x <∞, 0 ≤ t ≤ T,

V (x, 0) = 0.

(1)

(Details and notations are provided next section.) This model is not well posed
(may have multiple solutions) and is not computable. Assume there is only one
free boundary (h(t) one point separating PDE and ODE regions) and assume the
two pieces of solution of (1) join smoothly, then the model is equivalent to an over-
constrained system of differential equations, as commonly done in the American
option models and in the zero-coupon bond models: Find h(t) and V (x, t) such
that

∂V

∂t
=
σ2

2
x
∂2V

∂x2
+ k(θ − x)

∂V

∂x
− xV +m, h(t) <x <∞, 0 < t < T,

V (h(t), t) =
m

c
(1− e−ct), 0 <t < T,

∂

∂x
V (h(t), t) = 0, 0 <t < T,

V (x, 0) = 0, x ≥ c,

h(0) = c.

(2)

Like the solutions to the American option problems, or to the zero-coupon bond
problems, the mortgage valuation model (2) is not well posed either. By the
free-boundary condition Vx(h(t), t) = 0, the PDE provides a solution V (x, t) >

V (h(t), t) for some x > h(t). That is, a second free-boundary h̃(t)(> h(t)) would

be created at which V (h̃(t), t) = (m/c)(1− e−ct) and Vx(h̃(t), t) < 0. This violates
the refinance principle.

As both models are not well posed, we propose a new model where the free
boundary is converted to an initial condition of one parabolic PDE: in (x, t) ∈
(cmin, cmax)× (0, 1

12 )

∂V (n)

∂t
− σ2

2
x
∂2V (n)

∂x2
−k(θ − x)

∂V (n)

∂x
+ xV (n) = 0,(3)

for n = 1, 2, . . . , with initial and boundary conditions

V (n)(x, 0) = me−
max{c,x}

12 +min

{
V (n−1)(x,

1

12
), V (n−1)(cmin, 0)e

− c
12

}
,

V (n)(cmin, t) = V (n)(cmin, 0)e
−cmint,

V (n)(cmax, t) = V (n)(cmax, 0)e
−cmaxt,

V (0)(x, 0) = 0.

(Details are given in the next section.) That is, we limit the time of refinance to the
time of monthly mortgage payment. This way we avoid mathematical problems in
the other two models and provide a practical and computable model. A significance
of the new model is its avoidance of numerical computation of the exponential
growth of the old model (1), by entering the exponential growth term as an exact
initial condition. We will show the uniqueness and well-posedness of the model (3)
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in section 3. In section 4, we present a finite element method for the parabolic
problem. We show the stability and convergence for the discrete approximation. In
section 5, we present some numerical examples and interpret the numerical results
for guiding mortgage practice for loaners and borrowers. In an appendix, section
6, we present the proof of some theorems in sections 3 and 4.

2. A model based on the monthly payment and refinance

Let c be the fixed mortgage rate written in a contract, t the time to maturity
of the contract, and M(t) the loan balance that the borrower owes to the lender.
M(t) is determined by the ordinary differential equation

dM(t)

dt
= m− cM(t),(4)

where m is the continuous payment equivalent to the monthly payment in the
contract, depending on c. When the contract expires, we have M(0) = 0. So the
above ODE has a unique solution

M(t) =
m

c
(1− e−ct).(5)

Since the borrower always has the choice of prepayment, the market value of the
contract is always bounded above by M(t). Assume that market interest rate
follows the CIR [3] model, which says

(6) dx = k(θ − x)dt+ σ
√
xdB,

where x is the market interest rate, k is the speed of adjustment, θ is the mean
of interest rate, σ is the volatility, and B is the standardized Wiener process for
interest rate. By Ito’s lemma, the value V (x, t) of mortgage loan, at time t and the
corresponding interest rate x at t, is modeled by the partial differential equation
[9, 11, 14, 17]

(7)
∂V

∂t
− σ2

2
x
∂2V

∂x2
− k(θ − x)

∂V

∂x
+ xV −m = 0,

where m is, again, the continuous payment and the time t is measured from the
future expiry of the mortgage contract. However, as assumed above, when the
interest rate x (at time t) is lower enough than the fixed mortgage rate c, the
borrower would terminate the mortgage contract by refinancing, i.e., obtaining a
new loan from the same or different bank to pay off the existing loan. So the value
of the mortgage cannot be calculated based on the observed low interest rate. This
leads to a free boundary problem that (7) holds for x > h(t) for some unknown
function h(t), while the mortgage value remains M(t):

(8) V (x, t) =M(t) =
m

c
(1− e−ct) ∀x ≤ h(t).

Nevertheless, to stablize the problem, we do not allow refinance all the time, but
only at some discrete times, for example, once a month. This is, however, what
happens in practice that the refinance takes place mostly at a monthly payment
due time. Thus, we propose a new model where the free boundary condition (8)
holds at some discrete times only. That is, it is converted in to an initial condition
to a parabolic partial differential equation.
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We propose a new model for the mortgage evaluation: for n = 1, 2, 3, ..., find
V n(x, t) such that

∂V (n)

∂t
− σ2

2
x
∂2V (n)

∂x2
− k(θ − x)

∂V (n)

∂x
+ xV (n) = 0,

cmin < x < cmax, 0 < t <
1

12
,(9)

with the initial condition

V (n)(x, 0) = me−
max{c,x}

12 +

{
0, n = 0,

min
{
V (n−1)(x, 1

12 ), V
(n−1)(cmin, 0)e

− c
12

}
, n > 0,

cmin < x < cmax,(10)

and the boundary conditions

V (n)(cmin, t) = V (n)(cmin, 0)e
−cmint,

V (n)(cmax, t) = V (n)(cmax, 0)e
−cmaxt, 0 < t <

1

12
.(11)

Remark 2.1. In the new model, an initial value problem is restarted after each
mortgage payment. We call it semi discrete model where the time range of the
partial differential equation (7) is separated into discrete segments, by the time of
monthly payment. It seems that in real-life simulation people always use a discrete
payment m ([4, 9]) instead of a continuous payment. Here in (10) we convert the
continuous payment m to an equivalent monthly payment. In (9), n is the number
of months from the mortgage expiration. So when t = 1/12 (one month of time),
a new payment is made and the mortgage value is jumped from V n−1(x, 1/12) to
V n(x, 0).

Remark 2.2. In the new model, the free boundary is no longer sought continuously
for all time t, but only for the time of each payment. This means, early pay-off
occurs only at a monthly payment due date. Of course, the model remains the
same mathematically if pay-off is limited to the end of each day, or the end of each
hour. But we avoid the challenge of continuous free-boundary in mathematics and
in computation. The free boundary x = h(t) at the end of each month is defined
by the contract rate c and the unique (to be shown in the manuscript) intersection
point x = hn:

(12) h(
n

12
) = min{c, hn},

where hn is determined by, cf. (10),

(13) V (n)(hn,
1

12
) = V (n)(cmin, 0)e

− c
12 .

The reason for using the minimum value in (12) is that the value a mortgage can
never be higher than its principal value.

Remark 2.3. (9) is a typical model for zero-coupon bond. With discrete coupon
payments, a jump condition such as (10) should be added to the initial condition,
as pointed out by [17] on Page 272. Further, the early-settlement (not partial pre-
payment) option makes mortgage similar to convertible bond. Nevertheless, a con-
vertible bond can be much higher than its face value while a mortgage loan cannot
be higher than its face value — the principal. Such a difference makes the bond
value function differentiable at free-boundary while that of mortgage in (2) may not
be differentiable. If the interest rate is introduced to convertible bond computation,
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in addition to the security price, the non-smoothness problem would arise at the
high interest rate portion of boundary where the bond discount and the underlying
security are both very low (i.e., one puts money in bank, not in the bond.) This is
then similar to our mortgage model. However, to our knowledge, there is no study
on such a model yet. This is understandable from practical point of view where,
due to short life of convert bond, the interest rate plays much less significant role
in convertible bond.

Remark 2.4. Another change in the new model is a limit of range for the Brownian
motion x(t) in (6), i.e., the x range in (2) is no longer from 0 to ∞, but from cmin

to cmax. Here we propose a range such as

(14) cmin =
c

40
, cmax = 40c,

i.e., from 0.25% to 400% if the contract interest rate is 10%. This limit would
lead to a more realistic valuation. On the other hand, the singular points x = 0 and
x = ∞ for the parabolic equation (7) are avoided. This is also crucial for numerical
computation. At a very high interest rate or a very low interest rate, the short term
valuation V is closely determined by the local rate within the month. We therefore
propose boundary conditions at x = cmin and x = cmax as in (11).

We note that the lower bound in (14) would be implied by more sophisticated
interest model by Hull-White (cf. [17]) than CIR model (6). For the upper limit
in (14), the Hull-White model can be further extended so that the random interest
rate x has an upper limit as well. This would complicate the analysis, but not the
computation if truncated boundary conditions are defined similarly. We note further
that the upper interest limit in (14) would not affect the solution much, as indicated
by the numerical computation late in the manuscript.

Remark 2.5. Again, we use a discrete (monthly, to be specific) mortgage payment.
In the traditional finance computation, m is a constant denoting a continuous pay-
ment equivalent to the monthly payment. The equivalence is based on a fixed interest
rate, in this case, c, the mortgage rate at signing the contract. But the future in-
terest rate x determined by a Brownian motion (6) can be both much higher and
much lower than c. Furthermore, the value of a monthly payment m is discounted
according to the actual interest rate within the month, cf. (10). This adjustment
would make the solution smoother and more accurate in short term. From practical
point of view, this method values a mortgage one month ahead so that the mortgage
is terminated one month after the last mortgage payment.

Remark 2.6. We should point out that this mortgage valuation is done by an
investor when comparing investments in mortgage market or in saving, i.e., buying
a package of mortgage loans/mortgage-backed bonds or securities, or saving the fund
in a return-guaranteed bank account. For example, when θ = 9%, if the current
interest rate is 3.3%, a 30-year home mortgage loan at a rate higher than 6% would
be less than its principal, but more than its principal if the loan rate is less than 6%,
shown in Figure 1. This computation is conservative as we assume that a borrower
could refinance at the right time when the market interest rate is lower than the
contract rate. But as we point out, all banks would offer mortgages a point or more
higher than the market rate at any time, computed by models similar to ours. That
is, there is a gap between the saving rate and mortgage rate. If we modify the
model further accordingly, i.e., allowing a mortgage value slightly higher than its
principal, then the break-even point would be lower in the above example. That is, a
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Figure 1. The computed free boundary x = h(t), cf. (40), (41)
and (42).

30-year home mortgage loan of, say, 5.5% would make money when the market rate
is 3.3% (see more discussion in Section 5.) To be exact, this is a nonlinear problem
that the mortgage valuation depends on the free-boundary, while the free-boundary
depends on the refinance rate, and the refinance rate depends back on the mortgage
valuation.

Remark 2.7. A final remark is that the model (9) does not include mortgage
defaults, i.e., if a house-backed mortgage is higher than the value of the house and
the borrower returns the house instead of the mortgage. It is standard to extend
(9) to two random variables, interest rate and house price, as in [11]. This would
slightly decrease the mortgage value V (x, t). The computation method proposed
here, an implicit in time with space-adaptive finite element method, would remain
the same, but the analysis would require somewhat more. We leave it to a further
study.

3. Existence and uniqueness

We will show the existence and uniqueness of solution to the initial value problem
(9)–(11). We first introduce two changes of variables to make the bi-linear form
coercive and to derive an equivalent homogeneous boundary condition. We then
prove the existence of a unique solution to the problem in a finite dimensional
subspace of the H1 Sobolev space. The weak limit of finite dimensional solutions
is shown to be a strong solution by a stability result. Finally, the regularity of the
solution is provided.

To cancel the boundary value of V (x, t), let

(15) W (x, t) = V (n)(x, t)− w0(x, t),

where

w0(x, t) =
(cmax − x)V (n)(cmin, 0) + (x− cmin)V

(n)(cmax, 0)

xmax − xmin
e−xt.

W (x, t) is the solution of the following initial value problem with homogeneous
boundary conditions:

∂W

∂t
− σ2

2
x
∂2W

∂x2
−k(θ − x)

∂W

∂x
+ xW = w1(x, t) ∀(x, t) ∈ Ω×Θ,

W (x, 0) = g(x) ∀x ∈ Ω,

W (cmin, t) =W (cmax, t) = 0 ∀t ∈ Θ,
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where Ω = (cmin, cmax), Θ = (0, 1/12), and

w1(x, t) =
∂w0

∂t
− σ2

2
x
∂2w0

∂x2
− k(θ − x)

∂w0

∂x
+ xw0,

g(x) = V (n)(x, 0)− w0(x, 0).

In order to define a coercive bi-linear form for the variation problem, let

(16) v(x, t) = e−λ0tW (x, t),

where

λ0 = 2

(
(kcmax + σ2/2)2

cminσ2
− cmin

)
.

It leads to the following initial value problem for v(x, t):

∂v

∂t
− σ2

2
x
∂2v

∂x2
−k(θ − x)

∂v

∂x
+ (λ0 + x)v = w1e

λ0t ∀(x, t) ∈ Ω×Θ,(17)

v(x, 0) = g(x) ∀x ∈ Ω,(18)

v(cmin, t) = v(cmax, t) = 0 ∀t ∈ Θ,(19)

Multiplying (17) by a test function w(x) ∈ H1
0 (Ω), after an integration by parts,

we obtain the following weak variation problem: Find v ∈ L2(Θ,H1
0 (Ω)) such that

(v̇, w) + a(v, w) = (w1e
λ0t, w) ∀w ∈ H1

0 (Ω),(20)

v(x, 0) = g(x),(21)

where the bi-linear form

(22) a(v, w) =
σ2

2
(xv′, w′) + ((k(x− θ) +

σ2

2
)v′, w) + ((λ0 + x)v, w).

Here v̇ and v′ represent the derivatives in time and in space respectively, and the
inner product denotes the L2 inner product:

(v, w) =

∫
Ω

vw dx.

Lemma 3.1. (Proved in Section 6.) The bi-linear form a(v, w) is continuous and
coercive, i.e.,

a(v, w) ≤ C1∥v∥H1∥w∥H1 ∀v, w ∈ H1
0 (Ω),(23)

a(v, v) ≥ C2∥v∥2H1 ∀v ∈ H1
0 (Ω).(24)

where C1 and C2 are independent of the functions in the estimation.

Let {ϕi(x), i = 1, 2, ...} be the orthonormal basis of L2(Ω) which is also or-
thogonal in the separable Hilbert space H1

0 (Ω). To be specific, ϕi are normalized
eigenfunctions of the Laplace operator in L2 inner product, which form a basis for
H1

0 (Ω). Let Hn be subspaces of H1
0 (Ω) defined by

Hn =

{
v(t) =

n∑
i=1

νi(t)ϕi(x)

}
⊂ H1

0 (Ω).

We first solve the following approximation problem: Determine vn ∈ H1(Θ, H1
0 (Ω)),

such that, for i = 1, 2, ..., n,

(v̇n, ϕi) + a(vn, ϕi) = (w1e
λ0t, ϕi), a.e. t ∈ Θ,(25)

vn(0) =
n∑

j=1

gjϕj ,
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where gj = (g(x), ϕj).

Lemma 3.2. (Proved in Section 6.) The linear system of n ordinary differential
equations (25) has a unique solution vn for each n such that

vn ∈ H1(Θ,H1
0 (Ω)), v̇n ∈ L2(Θ,H1

0 (Ω)).

Lemma 3.3. (Proved in Section 6.) Let vn be the unique solution of (25). It holds
that

(26) ∥vn(t)∥2L2 + C2

∫ t

0

∥vn(s)∥2H1ds ≤ C3∥V (n)(0)∥2H1 .

Here C2 is defined in Lemma 3.1, and C3 is to be specified below.

Lemma 3.4. (Proved in Section 6.) Let vn be the unique solution of (25). It holds
that

(27)

∫
Θ

∥v̇n(s)∥2H−1ds ≤ C5∥V (n)(0)∥2H1 .

where C5 is to be specified below.

Since we have two Hilbert spaces L2(Θ,H1
0 (Ω)) and L

2(Θ, H−1(Ω)), by Lemmas
3.3 and 3.4, we have a subsequence vni which converges weakly in the first space,
and a sub-subsequence vnij

so that v̇nij
converges weakly in the second space. For

simplicity, we denote the sub-subsequence by vn too:

vn → v weakly in L2(Θ, H1
0 (Ω)),(28)

v̇n → v̇ weakly in L2(Θ, H−1(Ω)).(29)

Theorem 3.1. (Proved in Section 6.) Let v be defined in (28). Then v is the
unique solution to (20), and furthermore, (26) and (27) hold for v too, with vn
replaced with v.

As v is the unique solution to (20), the original initial-boundary value problem
(9)–(11) has a unique solution too, cf (15) and (16),

V (n) = eλ0tv(x, t) + w0(x, t).

We conclude this section by showing there is a unique free boundary point x = hn
in (12)–(13).

Theorem 3.2. For n = 1, 2, ..., there is a unique hn ∈ Ω such that (13) holds.

Proof. It is standard to prove the regularity of v in L2(Θ,H2(Ω)) and L∞(Θ,H1
0 (Ω)),

via the regularity results for elliptic equations, cf. [6]. Further we have interior
regularity that v(x, t) and V (n)(x, t) are C1(Ω × Θ) functions. By continuity of
V (n)(x, 1/12) and its boundary conditions, we have that

V (n)(cmin,
1

12
) < V (n)(cmin, 0)e

−c/12 < V (n)(cmax,
1

12
)

and that the horizontal line of graph V = V (n)(cmin, 0)e
−c/12 crosses the graph of

V = V (n)(x, 1/12) at least once, cf. Figure 2(a).
Now, if (13) has more than one solution, i.e., the horizontal line crosses the

graph of V (n)(x, 1/12) more than once, by the boundary conditions, we would have
an odd number of solutions, see Figure 2(b). Similar to the proof of the maximal
principle, we will show a contradictory in this case. In fact, we will show V (n)(x, t)
is a decreasing function in x for each t. Let

δ(t) = max
x′,x′′∈Ω

{V (n)(x′, t)− V (n)(x′′, t) | x′ ≤ x′′}, t ∈ Θ.
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(a)

V = V (n)(x, 1/12)

V = V (n)(cmin, 0)e
−c/12

-
cmin cmax

6
V

x

(b)

-
cmin cmax

6
V

x

Figure 2. The uniqueness of solution to the free boundary prob-
lem (13).

By the initial condition (10) δ(0) = 0. By the assumption of multiple solutions in
(13), see Figure 2(b), δ(1/12) > 0. As δ(t) is a continuous function, we have an
0 < t0 ≤ 1/12 such that

(30) δ(t0) = max
0<t≤1/12

{δ(t)}.

Since V (n)(x, t0) is continuous, there are x′0 and x′′0 such that

x′0 < x′′0 and δ(t0) = V (n)(x′0, t0)− V (n)(x′′0 , t0).

Let us assume x′0 ̸= cmin and x′′0 ̸= cmax to avoid some technical details. As V (n) is
C1 inside the region Ω×Θ, we have

dV (n)

dx
(x′0, t0) =

dV (n)

dx
(x′′0 , t0) = 0,

d2V (n)

dx2
(x′0, t0) > 0,

d2V (n)

dx2
(x′′0 , t0) < 0.

By the partial differential equation (9),

dV (n)

dt
(x′0, t0) =

σ2

2
x′0
d2V (n)

dx2
(x′0, t0)− x′0V

(n)(x′0, t0)

> −x′0V (n)(x′0, t0) = (x′′0 − x′0)δ(t0)− x′′0V
(n)(x′′0 , t0)

> (x′′0 − x′0)δ(t0) +
σ2

2
x′′0
d2V (n)

dx2
(x′0, t0)− x′0V

(n)(x′0, t0)

= (x′′0 − x′0)δ(t0) +
dV (n)

dt
(x′′0 , t0).

Then there is a small δ0 > 0 such that the above inequality holds for all t0 − δ0 <
t < t0. By the mean value theorem,

V (n)(x′0, t0 − δ0)− V (n)(x′′0 , t0 − δ0) >(x
′′
0 − x′0)δ(t0)δ0 + V (n)(x′0, t0)− V (n)(x′′0 , t0)

=(x′′0 − x′0)δ(t0)δ0 + δ(t0) > δ(t0),

which contradicts to (30).

4. The finite element method

In this section, we define a finite element method for solving the mortgage valu-
ation problem, where in the space we use piecewise linear elements and in the time
direction we use the Crank-Nicholson method.

Let Ωδx be a uniform grid on Ω = (cmin, cmax):

Ωδx = {[xi, xi+1] | xi+1 − xi = δx, x0 = cmin, xN = cmax}.
For better accuracy, we can use graded grids as well, as shown in Figure 3, where
xi+1 − xi ≃ δx

√
xi. Or, in addition, we can use adaptive grids where the grid
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Figure 3. A graded grid, and the finite element solution V (n)(x, 0).

size can be much smaller near the free boundary point x = hn for each variational
problem (20), see the numerical computation next section. Let the C0 − P1 finite
element spaces be

Xδx = {v(x) ∈ C0(Ω) | v(x)|E ∈ P1(x), E ∈ Ωδx} ⊂ H1
0 (Ω).

Let {ψi} be the nodal basis functions for Xδx , where the piecewise linear function
ψi has nodal value 1 at x = xi and 0 at the rest nodes xj . The semi discrete
approximation to (20) reads: Find vδx =

∑
i vi(t)ψi(x) such that

(v̇δx , ψj) + a(vδx , ψj) = (w1e
λ0t, ψj), 1 ≤ j ≤ (N − 1),(31)

vδx(0) =
N−1∑
i=1

giψi(x),(32)

where
∑

i giψ(x) ∈ Xδx is the nodal interpolation of g(x) on the grid Ωδx . We first
prove the convergence of this semi-discretization method.

Theorem 4.1. (Proved in Section 6.) The semi discrete problem (31)–(32) has
a unique solution vδx(t), which approximates the exact solution v of (20) in the
optimal order:

∥v(t)− vδx(t)∥L2 ≤ Cδ2x

(
∥V (n)(x, 0)∥H2(cmin,hn−1)

+ ∥V (n)(x, 0)∥H2(hn−1,cmax) + ∥v(t)∥H2 +

∫ t

0

∥v̇(s)∥H2ds
)
.(33)

Further estimation on (33) requires regularity results on the smooth solution. To
avoid technical details, we refer to Theorem 2 on Page 55 of [15] for the following
result:

∥v(t)− vδx(t)∥L2 ≤ Cδ2xt
−1∥v(0)∥|L2 ∀t ∈ Θ.

Applying this result to our problem, the following estimate would be derived im-
mediately.

Corollary 4.1. The unique solution to the semi discrete problem (31)–(32) ap-
proximates the exact solution v of (20) in the optimal order:

∥v( 1

12
)− vδx(

1

12
)∥L2 ≤ Cδ2x∥V (n)(x, 0)∥H1(Ω).
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We next discretize the problem fully, both in the space and in the time domain.
The time domain is uniformly subdivided:

0 = t0 < t1 = δt < ... < tM =Mδt =
1

12
.

We then apply the Crank-Nicholson method in the time discretization. The fully
discretized finite element problem for (20) reads: For i = 1, 2, ...,M , find viδx ∈ Xδx

such that

(Div
i
δx , wδx) + a(Aiv

i
δx , wδx) = (Ai(w1e

λ0t), wδx) ∀wδx ∈ Xδx ,(34)

v0δx = Iδxg(x),(35)

where Di and Ai are a finite difference operator and an averaging operator respec-
tively

Div
i
δx =

vi+1
δx

− viδx
δt

, Aiw =
w(x, ti+1) + w(x, ti)

2
.

Here we have an implicit scheme that vi+1
δx

is defined by a linear system of equations

(A+
1

2
δtB)vi+1 = (A− 1

2
δtB)vi + kwi,

where the entries of matrices and vectors are defined by

Aij = (ψi(x), ψj(x)),

Bij = a(ψi(x), ψj(x)),

wi
j = (Ai(w1e

λ0t), ψj).

By the coercive condition (24), the matrix (A + 1
2δtB) is invertible and the linear

system (34) has a unique solution. we then prove the following convergence theorem
for the fully discretized problem.

Theorem 4.2. (Proved in Section 6.) The full-discrete problem (34)–(35) has a
unique solution vMδx , which approximates the exact solution v of (20) in the optimal
order:

∥v( 1

12
)− vMδx ∥L2 ≤ Cδ2x

(
∥V (n)(x, 0)∥H2(cmin,hn−1)

+ ∥V (n)(x, 0)∥H2(hn−1,cmax) + ∥v( 1

12
)∥H2 +

∫
Θ

∥vt∥H2ds
)

+ Cδt

∫
Θ

(∥vttt∥L2 + ∥vtt∥H2)ds.(36)

As we use the exact (but artificial) boundary conditions at cmin and cmax, the
numerical error would not grow exponentially. The exponential growth of the mort-
gage payment was computed without numerical error as the payment enters the
initial conditions exactly. We then have the following global error estimate.

Corollary 4.2. The global solution of full-discrete problem (34)–(35), with the
initial condition (10) that v0δt,(n) = vMδt,(n−1), or V

(n)(0), for n = 1, 2, ..., 30 × 12 ,

approximates the exact solution V (n) of (20) in the optimal order:

∥V (n)(
1

12
)− vMδx,(n)∥L2 ≤

n∑
i=1

Cδ2x

(
∥V (i)(0)∥H2(cmin,hn−1) + ∥V (i)(0)∥H2(hn−1,cmax)

+

∫
Θ

∥V (i)
t ∥H2ds

)
+ Cδt

∫
Θ

(∥V (i)
ttt ∥L2 + ∥V (i)

tt ∥H2)ds.
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Proof. As we enter the exact payment into the initial condition for the next level
partial differential equation, the PDE is no longer of exponential growth type. Thus,
the numerical error would not grow exponentially. By (26), the true solution for
the initial condition perturbed, and homogeneous boundary conditioned problem
is zero. Thus,

∥V (n)(
1

12
)− vMδx,(n)∥L2

≤ C∥V (n)(0)− vMδx,(n−1)∥L2 + Cδ2x

(
∥V (n)(0)∥H2(cmin,hn−1)

+ ∥V (n)(0)∥H2(hn−1,cmax) + ∥V (n)(
1

12
)∥H2 +

∫
Θ

∥V (n)
t ∥H2ds

)
+ Cδt

∫
Θ

(∥V (n)
ttt ∥L2 + ∥V (n)

tt ∥H2)ds

≤
n∑

i=1

Cδ2x

(
∥V (i)(0)∥H2(cmin,hn−1) + ∥V (i)(0)∥H2(hn−1,cmax)

+

∫
Θ

∥V (i)
t ∥H2ds

)
+ Cδt

∫
Θ

(∥V (i)
ttt ∥L2 + ∥V (i)

tt ∥H2)ds.

5. Numerical Computation

We apply the finite element method (34) directly to the original problem (9)–
(11), where the treatment for inhomogeneous boundary conditions is standard, i.e.,
extending the boundary condition into the space domain by setting the interior
nodal values 0. First, the time domain Θ is subdivided uniformly by

(37) δt =
1

12Nt
, Nt = 300.

At each time level, i.e., after each monthly payment, we remesh the space grid by
letting

(38) δx =
hn−1 − cmin

N1 −N0

and

(39) xi =

{
cmin + iδx, i = 0, 1, ..., N1,

cmin +N1δx + (i−N1)(i−N1+1)
2 δ′x, i−N1 = 1, 2, ...N2,

where

δ′x = max{0, 2(cmax − xN1)

N2(N2 + 1)
}.

We note that we enforce one grid point to match exactly the nonsmooth point
of initial condition V (n)(x, 0) at x = hn−1, where we have a jump in the space
derivative. This would improve the numerical order by 1/2, as in typical interface
problems solved by the finite element method, indicated by both the numerical
results and the analysis (33). One grid is shown in Figure 3, where we plot only
one grid point out of every four points. In addition, we choose, for example,

(40) N0 = 20, N1 = 100, N2 = 200,

so that we have small elements near x = cmin and also near the free boundary point
x = hn. For the former, we have small diffusion when x is close to 0. For the latter,
we use smaller elements near the free boundary point where the solution changes
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Figure 4. The solution V
(n)
(1) on spacial grid (42).

rapidly (cf. Figure 3). For the portion of graded grid in (39), we make the discrete
diffusion on each element roughly the same:

xi
d2

dx2
≃ xi(xi+1 − xi)

−2 ∼ constant.

In our numerical tests, the constants in (9) are from [16] (except cmin and cmax),
where the authors used maximum likelihood method to derive the parameter values
using historical data of treasury bills.

(41) σ = 0.01, k = 0.1, θ = 0.07, c = 0.06, m =
1

12
, cmin = 0.005, cmax = 4.

We first show that the numerical results are very accurate, that is, the numerical
errors can be ignored, even for relatively large grid size. This is because we enter
the payment exactly in initial conditions so that we have a diffusive problem in
between. As long as the numerical scheme is stable, the numerical error would
be reduced rapidly as the time level increases. First, for the following two sets of
spacial grids, cf. (37) and (39),

δ(1) : N1 = 100, N2 = 200, Nt = 300,(42)

the solution V (n) at the end of 5 years and the end of 30 years, is computed, and
plotted in Figure 4.

We vary the grid size of δt to see the error of numerical free boundary h(t) at the
end of 5 years. The results are listed in Table 1. Also the graph of h(t) is shown in
Figure 1. For this nonlinear problem, the error is nearly independent of grid size
δt. But the free boundary depends strongly on space discretization. In Table 2, we
computed the free boundary with various spacial grid sizes. By extrapolation, we
list the order of convergence, roughly one, for this nonlinear problem. This is the
reason we use an adaptive grid (39) which is very fine near the free boundary.

Table 1. The computed free boundary forN1 = 80 andN2 = 160
in (39), on adaptive grids (42).

Nt in (37) h(60)(1/12)
4 5.8021e− 002
16 5.8022e− 002
64 5.8022e− 002
256 5.8022e− 002
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Table 2. The computed free boundary for Nt = 160 in (37), on
adaptive grids (42).

N1 in (39) N2 in (39) h(60)(1/12) O(δmx )
40 40 0.060000
80 80 0.058022
160 160 0.057334 1.5236
320 320 0.057097 1.5375
640 640 0.056998 1.2594
1280 1280 0.056951 1.0748

We test the convergence order of the finite element method. We vary the spacial
grid size. We use the next level solution (N1 = N2 = 1280) as the exact solution
for finding numerical errors, in Table 3. Different from the standard case that the
finite element solutions do not converge at the second order, the L2 error converges
at a little more than first order, see column 3 of Table 3. This is caused by the
first order approximation of the free boundary, see Table 2. On the other side, the
order of convergence of the H1 error remains at the optimal order, one. Next, we
vary the time step size to test the order of convergence in Table 4, where we use the
discrete solution of Nt = 1024 as the exact solution. It turns out the error is purely
the computer error. This is because the exact initial conditions are presented and
the diffusion equation each time level damps out the discrete error quickly.

Table 3. The L2 and H1 convergence of V (60)(1/12), for various
Ni and Nt = 160 in (37).

N1 = N2 in (39) ∥V (60) − Ṽ (60)∥L2 O(δmx ) |V (60) − Ṽ (60)|H1 O(δmx )
40 3.1584e− 001 2.3796e+ 000
80 1.1151e− 001 1.5020 1.2862e+ 000 0.88760
160 4.6313e− 002 1.2677 7.0819e− 001 0.86091
320 1.8900e− 002 1.2930 3.6772e− 001 0.94553
640 6.1605e− 003 1.6173 1.4522e− 001 1.34037

Table 4. The L2 and H1 convergence of V (60)(1/12), for various
Nt and N1 = N2 = 160 in (39).

Nt in (37) ∥V (60) − Ṽ (60)∥L2 |V (60) − Ṽ (60)|H1

4 3.7889e− 006 1.3306e− 004
8 1.9668e− 007 4.5296e− 005
16 6.3501e− 007 2.8339e− 005
32 8.1042e− 007 2.6249e− 005
64 8.5462e− 007 2.5941e− 005
128 8.6569e− 007 2.5878e− 005
256 8.6846e− 007 2.5863e− 005

Next, we vary the computational space domain by changing the constants in
(41):

(43)

{
δ(1) : cmin = 0.001, cmax = 10,

δ(2) : cmin = 0.005, cmax = 4.
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Figure 5. The computed free boundary x = h(t), cf (41).

We compare the computed V
(n)
δ(i)

and free boundary hδ(i)(t). The maximal differences

and relative differences between V
(n)
δ(i)

are listed in Table 5. But the maximal error

for the free boundary x = h(t) occurs in the first few months, near the turning
point (from concave down to concave up) of its graph, cf. Figure 1.

Table 5. The difference of numerical solutions and relative error,
on computational domains defined by (43).∥∥∥V (360)

δ(1)
− V

(360)
δ(2)

∥∥∥
L∞

∥∥∥V (360)
δ(1)

− V
(360)
δ(2)

∥∥∥
L∞

/∥∥∥V (360)
δ(1)

∥∥∥
L∞

0.0069 0.05%∣∣h360,δ(1) − h360,δ(2)
∣∣ ∣∣h360,δ(1) − h360,δ(2)

∣∣ /∣∣h360,δ(1)∣∣
0.0001 0.24%

maxn
∣∣hn,δ(1) − hn,δ(2)

∣∣ maxn
∣∣hn,δ(1) − hn,δ(2)

∣∣ /maxn
∣∣hn,δ(1) ∣∣

0.0005 1.1%

Finally, we examine the dependence of the solution to (9) on the expected fu-
ture interest rate θ, numerically. This function provides the practical guideline in
mortgage industry. We keep the other constants in (41) except θ. The computed
mortgage value for a 30-year loan almost does not depend on θ at all, as shown in
Figure 6. This is because of the diffusive nature of the parabolic problem (9). But
the free boundary is determined mainly by the expected interest rate θ. In Figure
5, we plotted h(t) for various θ. From the free boundary diagrams, we can tell the
equilibrium points. For example, when θ = 9%, if the current interest rate is 3.3%,
a bank should offer 30-year home mortgage loans at a rate no less than 6% (i.e.,
2.7% higher than market interest rate) in order to break even, comparing to de-
positing the fund into a saving account. But one only needs to raise market interest
from 4.5% to 6% for a 15-year mortgage if the long term interest rate is 9%. On
the other hand, if the long term interest rate is 6%, then one can propose 30-year
mortgages at 6%, only 0.3% higher than the rate when the contract is signed. We
list the computed mortgage rates in Table 6.
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Figure 6. The computed V (360)(x, 0), and a zoom-in graph, cf (41).

Table 6. The computed mortgage rate for (9), for various long-
term interest rates and mortgage terms.

Long-term interest rate θ Mortgage rate c above market rate
9% 6%, 30-year +2.7%
9% 6%, 15-year +1.5%
6% 6%, 30-year +0.3%

However, this computation is conservative as we assume that a borrower would
refinance immediately when the market interest rate is lower than the contract rate.
But as we point out, all banks would offer mortgages a point or more higher than
the market rate at any time. That is, there is a gap between the rates for savings
and for loans. To be more realistic, we may modify the initial condition (10) to

V (n)(x, 0) = me−
max{c,x}

12 +min

{
V (n−1)(x,

1

12
), V (n−1)(cmin, 0)e

− c′
12

}
for some constant c′ < c such as c′ = 0.9c, which prices in the refinancing cost and
the gap between the average bank interest rate and the average mortgage rate.

6. Appendix

This section provides details of the proofs to the lemmas and theorems contained
in Sections 3 and 4 where they were referred to in these two Sections without proof.

Proof. (For Lemma 3.1.) By (22), we have that

a(v, w) ≤σ
2

2
cmax|v|H1 |w|H1 +

(
kcmax +

σ2

2

)
|v|H1∥w∥L2 + (λ0 + cmax)∥v∥L2∥w∥L2

≤C1∥v∥H1∥w∥H1 ,

where C1 is chosen to be the maximum of the three constant coefficients, multiplied
by the Poincaré constant which bounds the L2 norm of H1

0 functions by the semi-
H1 norm. In our application, C1 would be (λ0 + cmax) which is much bigger than
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the other two constants. For coercivity, we have

a(v, v) ≥σ
2

2
cmin|v|2H1 −

(
kcmax +

σ2

2

)
|v|H1∥v∥L2 + (λ0 + cmin)∥v∥2L2

≥σ
2

2
cmin|v|2H1 −

(
kcmax +

σ2

2

)(
γ0
2
|v|2H1 +

1

γ02
∥v∥2L2

)

+ (λ0 + cmin)∥v∥2L2

=
σ2

4
cmin|v|2H1 +

λ0
2
∥v∥2L2 ≥ C2∥v∥2H1 ,

where we choose

γ0 =
cminσ

2

2kcmax + σ2
.

Again, C2 is the minimum of the two constants, which would be σ2cmin/4 in general,
divided by one plus the Poincaré constant.

Proof. (For Lemma 3.2.) Under the double orthogonal basis {ϕi}, the linear ODE
system (25) can be written in the matrix form:

V̇n = −AnVn + Fn

with initial conditions

νj(0) = gj .

Here the vectors and matrix are

Vn =


ν1(t)
ν2(t)
...

νn(t)

 , Fn = eλ0t


(w1, ϕ1)
(w1, ϕ2)

...
(w1, ϕn)

 , An =

a(ϕ1, ϕ1) · · · a(ϕn, ϕ1)
...

a(ϕ1, ϕn) · · · a(ϕn, ϕn)

 .

By Lemma 3.1, An is invertible with all positive eigenvalues. Converting the system
to a block-diagonal one by the eigen-system of An, we obtain unique solutions
νj(t) ∈ H1(Θ, R). The regularities are derived by the expression of the solutions,
as we have variable-separated solutions.

Proof. (For Lemma 3.3.) Combining the n ODEs of (25), it follows that

(v̇n, vn) + a(vn, vn) = (w1e
λ0t, vn).

Noting that

(v̇n, vn) =
1

2

d

dt
∥vn∥2L2 ,

a(vn, vn) ≥ C2∥vn∥2H1 ,

(w1e
λ0t, vn) ≤ ∥w1e

λ0t∥L2 ≤ 1

2C2
∥w1e

λ0t∥2L2 +
C2

2
∥vn∥2H1 ,

we obtain
d

dt
∥vn∥2L2 + C2∥vn∥2H1 ≤ 1

C2
∥w1e

λ0t∥2L2 .

By the initial condition, it follows that

∥vn(t)∥2L2 + C2

∫ t

0

∥vn(s)∥2H1ds ≤ ∥g∥2L2 +
1

C2

∫ t

0

∥w1e
λ0t∥2L2 .



848 D. XIE AND S. ZHANG

By the definition of g, w1 and λ0, we can bound the terms in the right hand side:

∥g∥L2 ≤ C4∥V (n)(0)∥H1 ,(44)

∥w1e
λ0t∥L2 ≤ C4∥V (n)(0)∥H1 ,(45)

where C4 depends on the constants in (9) and the C is from the following Sobolev
embedding theorem,

∥w∥L∞ ≤ C∥w∥H1 ∀w ∈ H1(Ω).

Therefore

∥vn(t)∥2L2 + C2

∫ t

0

∥vn(s)∥2H1ds ≤ C3∥V (n)(0)∥2H1 .

Here C3 = C2
4 (1 + 1/(12C2)).

Proof. (For Lemma 3.4.) We consider v̇n as a linear functional on the dual space
of H1

0 (Ω). Let w ∈ H1
0 (Ω) and w = wn ⊕ zn, where wn ∈ Hn and zn ∈ H⊥

n under
H1–inner product. By (25), we get

(v̇n(s), w) = (v̇n(s), wn) = −a(vn(s), wn) + (w1e
λ0s, wn),

|(v̇n(s), w)| ≤ C1∥vn(s)∥H1∥wn∥H1 + ∥w1e
λ0s∥L2∥wn∥L2

≤ (C1∥vn(s)∥H1 + ∥w1e
λ0s∥L2)∥w∥H1 .

Here we used the bounds ∥wn∥L2 ≤ ∥wn∥H1 and ∥wn∥H1 ≤ ∥w∥H1 . Therefore, by
(45) and Lemma 3.3,

∥v̇n(s)∥H−1 ≤ C1∥vn(s)∥H1 + ∥w1e
λ0s∥L2 ,∫

Θ

∥v̇n(s)∥2H−1ds ≤
∫
Θ

(2C2
1∥vn(s)∥2H1 + 2C2

4∥V (n)(0)∥H1)ds

≤ (2C2
1

C3

C2
+
C2

4

6
)∥V (n)(0)∥H1 .

Therefore the lemma holds with C5 = 2C2
1C3/C2 + C2

4/6.

Proof. (For Theorem 3.1.) By (28) and (29),∫
Θ

(vn(t), w)H1dt→
∫
Θ

(v(t), w)H1dt ∀w ∈ L2(Θ, H1
0 (Ω)),∫

Θ

(v̇n(t), w)H1dt→
∫
Θ

(v̇(t), w)dt ∀w ∈ L2(Θ,H−1(Ω)).

Let

w =
∞∑
i=1

wi(t)ϕi, wN =
N∑
i=1

wi(t)ϕi.

Let n ≥ N . By (25),∫
Θ

[(v̇n(t), wN (t)) + a(vn(t), wN (t))]dt =

∫
Θ

(w1e
λ0t, wN (t))dt.

Taking the weak limit by letting n→ ∞ while N is fixed,∫
Θ

[(v̇(t), wN (t)) + a(v(t), wN (t))]dt =

∫
Θ

(w1e
λ0t, wN (t))dt.
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Let N → ∞, because wN → w weakly too,∫
Θ

[(v̇(t), w) + a(v(t), w)]dt =

∫
Θ

(w1e
λ0t, w)dt.

Because w is arbitrary, we get the equality pointwise, i.e.,

(v̇(t), w) + a(v(t), w) = (w1e
λ0t, w) a.e. t ∈ Θ.

Hence (20) holds. It is then standard to check the initial condition for v(x, t), via
an integration by parts. Now, if there are two solutions to (20), va and vb, by the
linearity and (24),

(v̇a − v̇b, w) = −a(va − vb, w),

1

2

d

dt
∥va − vb∥2L2 = −a(va − vb, va − vb),

∥va(t)− vb(t)∥2L2 ≤ −C2

∫ t

0

∥va − vb∥2H1
ds ≤ 0.

Hence va = vb. Finally, by taking limits, the bounds (26) and (27) hold for v too.

Proof. (For Theorem 4.1.) We first define the a(·, ·)-projection operator P1 : v 7→
v1,

(46) a(v1(t), w) = a(v(t), w) ∀w ∈ Xδx .

By Céa’s Lemma, cf. [2], and the coerciveness of the bi-linear form a(·, ·) provided
in (24), it follows that

∥v1(t)− v(t)∥H1 ≤ Cδx∥v(t)∥H2 .

Further, by Nitsch’s trick, i.e., a duality argument, cf. [2, 15], we have

(47) ∥v1(t)− v(t)∥L2 ≤ Cδ2x∥v(t)∥2H2 .

Now we introduce this projection into the estimate:

∥v(t)− vδx(t)∥L2 ≤ ∥v(t)− v1(t)∥L2 + ∥v1(t)− vδx(t)∥L2 .

Noting that v1(t)− vδx(t) ∈ Xδx , by (20) and (31), it follows that

(
d

dt
(v − vδx), v1 − vδx) + a(v − vδx , v1 − vδx) =0,

(
d

dt
(v1 − vδx), v1 − vδx) + a(v1 − vδx , v1 − vδx) =(

d

dt
(v1 − v), v1 − vδx),

and that

1

2

d

dt
∥v1 − vδx∥2L2 = −a(v1 − vδx , v1 − vδx) + (

d

dt
(v1 − v), v1 − vδx)

≤ −C2∥v1 − vδx∥2H1 + ∥ d
dt

(v1 − v)∥L2∥v1 − vδx∥L2

≤ ∥ d
dt

(v1 − v)∥L2∥v1 − vδx∥L2 ,

∥v1(t)− vδx(t)∥L2 ≤ ∥v1(0)− vδx(0)∥L2 +

∫ t

0

∥P1v̇ − v̇∥L2ds

≤ Cδ2x(∥V (n)(x, 0)∥H2(cmin,hn−1)

+ ∥V (n)(x, 0)∥H2(hn−1,cmax) +

∫ t

0

∥ d
dt
v∥H2ds).

Combined with the estimate (47), the theorem is proven.
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Proof. (For Theorem 4.2.) As in Theorem 4.1, we introduce the P1 projection:

vi+1
δx − v(x, ti+1) = (vi+1

δx − P1v(x, ti+1)) + (P1v(x, ti+1)− v(x, ti+1)),

where the second term is estimated by Theorem 4.1, and the first term is to be
shortened by a notation

θi = viδx(x)− P1v(x, ti).

Subtracting (34) from the continuous equation at t = ti+1/2 = ti+ δt/2, we have

(Diθ
i, wδx) + a(Aiθ

i, wδx) = (P1Div(t)−Div(t), wδx)

+ (Div(t)− v(ti+1/2), wδx) + a(v(ti+1/2)−Aiv(t), wδx),(48)

where P1 is defined in (46). Let T be the inverse operator of a(·, ·) with respect to
(·, ·), i.e., a(Tv,w) = (v, w) for all w ∈ H1

0 (Ω). We can rewrite (48) as

(49) (Diθ
i, wδx) + a(Aiθ

i, wδx) = (w̃, wδx),

where

w̃ = w̃1 + w̃2 + w̃3,

w̃1 = P1Div(t),−Div(t),

w̃2 = Div(t)− v(ti+1/2),

w̃3 = T (v(ti+1/2)−Aiv(t)).

Letting wδx = Aiθ
i in (49), we obtain

(Diθ
i, Aiθ

i) ≤ ∥w̃∥L2∥Aiθ
i∥L2 ,

∥θi+1∥2L2 − ∥θi∥2L2 ≤ δt∥w̃∥L2(∥θi+1∥L2 + ∥θi∥L2),

∥θi+1∥L2 ≤ ∥θi∥L2 + δt∥w̃∥L2 .

Hence

∥θi+1∥L2 ≤ ∥θ0∥L2 + δt

i+1∑
j=1

(∥w̃1∥L2 + ∥w̃2∥L2 + ∥w̃3∥L2).

We estimate each of the three terms.

∥w̃1∥L2 = ∥(P1 − I)Div(ti)∥L2 ≤ Cδ2xδ
−1
t

∫ ti+1

ti

∥v̇∥L2ds.

Next,

∥w̃2∥L2 = ∥Div(ti)− v̇(ti+1/2)∥L2

=
1

2
δ−1
t

∥∥∥∥∥
∫ ti+1/2

ti

(s− ti)
2vtttds+

∫ ti+1

ti+1/2

(s− ti+1)
2vtttds

∥∥∥∥∥
L2

≤ Cδt

∫ ti+1

ti

∥vttt∥L2 .

Lastly, w̃3 is the error of finite difference operators on the continuous solution, and
can be treated standardly as in [15],

∥w̃3∥L2 = ∥T (v(ti+1/2)−Aiv(t))∥L2 ≤ C∥v(ti+1/2)−Aiv(t)∥H2

≤ δt

∫ ti+1

ti

∥v̇∥H2ds.
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