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EQUIVALENCE BETWEEN RIEMANN-CHRISTOFFEL

AND GAUSS-CODAZZI-MAINARDI CONDITIONS

FOR A SHELL

DANIELLE LÉONARD-FORTUNÉ, BERNADETTE MIARA, AND CLAUDE VALLÉE

Abstract. We establish the equivalence between the vanishing three-dimensionnal Riemann-

Christoffel curvature tensor of a shell and the two-dimensionnal Gauss-Codazzi-Mainardi compat-
ibility conditions on its middle surface. Additionally we produce a new proof of Gauss theorema
egregium and Bonnet theorem (reconstructing a surface from its two fundamental forms). This is

performed in the very elegant framework of Cartan’s moving frames.
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1. Introduction

Let D ⊂ R3 be a compact, connected, simply-connected manifold with boundary
of class C2. Let X = (X1, X2, X3) be a system of Cartesian coordinates and
x = (x1, x2, x3) be a system of curvilinear coordinates in R3. The purpose of this
paper is to revisit the integrability of the system of nonlinear partial differential
equations (PDE)

(1)
∑

k,l=1,..3

∂xk

∂Xi
δkl

∂xl

∂Xj
= gij(X), i, j = 1, 2, 3.

where g is a regular, twice covariant, positive definite bilinear form, for example of
class C2(D). In some of their previous works Vallée and Fortuné have already ad-
dressed this question in the framework of Darboux’s instantaneous rotation vectors
[9, 10, 5]. We consider again this question by using Cartan setting as introduced
in [2] . Let us note that the interest of our approach is that it does not rely on the
knowledge of the radii of curvature nor on the principal directions of the shell as in
[7].

The plan of this work is as follows: in the next section, for the sake of clarity
we recall some definitions and properties satisfied by the metric, in section 3 we
establish the Riemann-Christoffel compatibility conditions for a three-dimensional
Riemannian manifold. In section 4 with the same Frobenius approach we estab-
lish the Gauss-Codazzi-Mainardi conditions for a surface embedded in R3. As a
by-product, Weingarten’s condition on the normal at each point of the surface is
therefore recovered. In section 5 we address the equivalence of Riemann-Christoffel
and Gauss-Codazzi-Mainardi compatibility conditions for a shell. Finally in section
6 we state Gauss Theorema egregium and Bonnet reconstruction theorem.

2. Notations, lemmas and assumptions

Let ε and δ be respectively the Levi-Civita symbol, and the Kronecker symbols.
Einstein summation convention of repeated indices and exponents is applied. In
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Rn, the identity matrix is denoted In. The transpose of the matrix R is the matrix
Rt. The scalar product of two vectors u and v with components ui and vi is denoted

u · v = δiju
ivj , i, j = 1, ...n.

Let ω and λ be two 1-forms with components ωk and λk. We define their tensor
product as the covariant tensor ω ⊗ λ with components:

(ω ⊗ λ)ij = ωiλj , i, j = 1, ..., n.

Now let us enunciate two elementary results that we will use repeatedly.
Lemma 2.1 (i) Let g be a given positive symmetric bilinear form in Rn × Rn,
there exists n independent 1-form ωk (the volume n-form ω1∧ω2∧ ...∧ωn does not
vanish) such that g can be expanded:

(2) g = δkl ω
k ⊗ ωl.

(ii) The form g can be defined by it covariant (gij) and contravariant (gkl) compo-
nents related by

gijg
jk = δki .

Let us denote by (ek) the dual vector basis associated to (ωk), i.e. ωk(el) = ωk
i e

i
l =

δkl and g−1 whose components are (gkl) can be expanded:

g−1 = δij ei ⊗ ej .

(iii) The expansion (2) is not unique. If there exists a second expansion such that
g(x) = δkl ζ

k ⊗ ζl and if the signs of the n-forms ω1 ∧ω2...∧ωn and ζ1 ∧ ζ2...∧ ζn

are the same, then there exists a rotation R ∈ SO(n) such that:

ζk = Rk
l ω

l.

In the sequel Latin indices or exponents take their value in the set {1, 2, 3},
Greek indices or exponents take their value in the set {1, 2}.
For n = 3 the exterior product of two 1-forms ω and λ is the 2-form ω ∧ λ with
components

(ω ∧ λ)i = δij εjkl ωkλl, i, j, k, l = 1, ...3.

Let us consider two vectorial 1-forms ω = (ω1, ω2, ω3) and λ = (λ1, λ2, λ3) we use
the compact expression ω ∧ λ to represent the vectorial 2-form with components
(ω∧λ)i = δij εjkl ω

k∧λl, i, j, k, l = 1, ...3. For scalar 1-forms ω, λ we remark that
ω∧λ = −λ∧ω. However, for vectorial 1-forms ω = (ω1, ω2, ω3) and λ = (λ1, λ2, λ3)
we remark that

ω ∧ λ = λ ∧ ω.

For example we have (ω ∧ λ)1 = ω2 ∧ λ3 − ω3 ∧ λ2 = λ2 ∧ ω3 − λ3 ∧ ω2 = (λ ∧ ω)1.

Lemma 2.2 Let R be a rotation field. There exists a vectorial 1-form λ = (λk)
such that:

dR = Rj(λ),

where d represents the exterior derivative and j(λ) =

 0 −λ3 +λ2

+λ3 0 −λ1

−λ2 +λ1 0

 .

The proof is based upon the relationship RtR = I3 which implies that RtdR is
antisymmetric. For all vectorial 1-forms λ, ω a direct computation yields:

j(λ) ∧ ω = λ ∧ ω.

Let us remark that j(λ) is a vectorial 1-form for the Lie algebra so(3) of SO(3).
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3. Riemann-Christoffel compatibility condition in 3D

To facilitate the reading capital letters Ω and Λ are preferred in three-dimensional
framework and we return to small letters ω, λ in two-dimensional framework.

For a given metric tensor field g, the PDE (1) can be rewritten as:

δkl dx
k ⊗ dxl = g(X).

And according to Lemma 2.1, we can state that there exists a vectorial 1-form
Ω = (Ωk) and a rotation field R such that:

dx = RΩ.

Consequently, according to Lemma 2.2, there exists a vectorial 1-form Λ such that
dR = Rj(Λ).
We are led to consider the following Pfaff system and to study its integrability:

(3)

{
dx = RΩ,
dR = Rj(Λ),

Theorem 3.1 Frobenius integrability conditions for the Pfaff system (3) reads

(4)

{
dΩ+ Λ ∧ Ω = 0,

dΛ +
1

2
Λ ∧ Λ = 0.

We remark that the vectorial 2-form dΩ+Λ∧Ω represents the torsion tensor. The

vectorial 2-form dΛ+
1

2
Λ∧Λ represents the Riemann-Christoffel curvature tensor,

it depends only upon the vectorial 1-form Λ.

Proof of Theorem 3.1. From one hand we equate d2x to zero and get:

0 = d2x = dR ∧ Ω+RdΩ = R(j(Λ) ∧ Ω+ dΩ) = R(dΩ+ Λ ∧ Ω),

and from the other hand we equate d2R to zero and get:

0 = d2R = dR ∧ j(Λ) +Rj(dΛ) = R(j(dΛ) + j(Λ) ∧ j(Λ)) = Rj(dΛ +
1

2
Λ ∧ Λ). �

Lemma 3.2 The vectorial 1-form Λ is determined from the first equation of Pfaffian
system (4). It depends only of the metric tensor g and can be computed from Ω and
dΩ by the following formula:

(5) VΛk = δij(dΩ
i ∧ Ωk)Ωj − 1

2
T Ωk,

where T is the 3-form T = δij Ωi∧dΩj and the volume 3-form is V = Ω1∧Ω2∧Ω3.
Proof of Lemma 3.2. Cramer identity [8] reads:

VΛk = (Ω1 ∧ Ω2 ∧ Ω3)Λk

= (Λk ∧ Ω2 ∧ Ω3)Ω1 + (Ω1 ∧ Λk ∧ Ω3)Ω2 + (Ω1 ∧ Ω2 ∧ Λk)Ω3

=
1

2
(εjlm Λk ∧ Ωj ∧ Ωl)Ωm.

From the relation dΩ = −Λ ∧ Ω we can compute all the terms εjlm Λk ∧ Ωj ∧ Ωl: εjlm Λk ∧ Ωj ∧ Ωl = εjlm (Λk ∧ Ωj − Λj ∧ Ωk) ∧ Ωl + εjlm (Λj ∧ Ωk) ∧ Ωl

= −εjlm(εpkjδprdΩ
r ∧ Ωl)− εjlm (Λj ∧ Ωl) ∧ Ωk

= −δkmT + 2δmr(dΩ
r ∧ Ωk)

which give the desired result. �
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4. Surface embedded in R3 and GCM conditions

Let S be a two-dimensional surface embedded in R3. To parametrize S we con-
sider a system of coordinates X = (X1, X2). The tangent plane to each point x of

S is mapped by the two vectors a1 =
∂x

∂X1
and a2 =

∂x

∂X2
which are assumed to be

independent. We denote by n the unit normal at this point. The two fundamental
forms associated to S are the metric tensor denoted a = aαβ dXα ⊗ dXβ and the
curvature tensor denoted b = bαβ dXα⊗dXβ . The aim of this section is once more
to rewrite in Cartan’s framework the integrability conditions for the PDE system:

(6)

{
δij dxi ⊗ dxj = a,
δij dxi ⊗ dnj = −b.

The next step is therefore to replace (6) by a Pfaff system and consider its Frobe-
nius integrability conditions.

In R2 the Levi-Civita symbol is still denoted ε and take the value ε11 = −ε22 =
0, ε12 = −ε21 = 1.

4.1. Expansion of the two fundamental forms (a, b). .
Theorem 4.1 There exist two independent 1-forms ω1 and ω2 and three 1-forms
λ1, λ2 and λ3 such that:

(7)

{
a = δαβ ωα ⊗ ωβ ,

−b = εαβ ωα ⊗ λβ

or in other words

(8)

{
a = ω1 ⊗ ω1 + ω2 ⊗ ω2,

−b = ω1 ⊗ λ2 − ω2 ⊗ λ1.

Proof of Theorem 4.1. It is broken into 3 steps.

Step 1. According to Lemma 2.1, there exist two 1-forms ω1 and ω2 which allow
the decomposition of the first fundamental form a.
Step 2. A direct application of Lemma 2.1 in two-dimensional framework yields
the following result: There exists a 3 × 2 matrix field r satisfying rt r = I2 such
that:

(9) dxi = riα ωα.

Let us denote by A and B the two columns of r. Following one of Poincaré’s ideas
we can construct a full rotation R ∈ SO(3) whose columns are A,B and A × B
where × denotes the vector product (A × B)l = εijkδ

klAiBj . Between r and R

the following matrix relation holds r = Rk, where k =

 1 0
0 1
0 0

. According to

Lemma 2.2, we denote λ =

 λ1

λ2

λ3

 with λi = λi
1dX

1+λi
2dX

2 the vectorial 1-form

given by:

(10) dR = Rj(λ), j(λ) =

 0 −λ3 +λ2

+λ3 0 −λ1

−λ2 +λ1 0

 .
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We are now in a position to expand the second form.

Step 3. We consider the vector ñ = R

 0
0
1

. From Rtr =

(
1 0
0 1
0 0

)
we infer

that ñtr =
(
0, 0

)
. Hence vector ñ is orthogonal to A and B, it is the unit normal

to the surface with the correct orientation sign. Therefore n and ñ coincide. A
direct computation yields

dn = Rj(λ)

 0
0
1

 = R

 +λ2

−λ1

0

 .

The expansion of the second fundamental form is obtained from dx = rω and

rtdn =

(
+λ2

−λ1

)
and reads

−b = ω1 ⊗ λ2 − ω2 ⊗ λ1. �

In the next section we will show that tensor b is symmetric. (15)
Let us emphasize what we found during Step 3.

Corollary 4.2 Weingarten formula reads dn = R

 +λ2

−λ1

0

 and Frobenius inte-

grability conduition d2n = 0 is always satisfied.

4.2. Pfaff system for a surface embedded in R3 and Gauss-Codazzi-
Mainardi conditions. Motivated by (6) let us consider the following Pfaff system
associated to the surface S.

(11)

{
dx = rω, r = Rk,
dR = Rj(λ).

Theorem 4.3 Frobenius integrability of the Pfaff system yields three sets of PDE:
(i) Gauss-Codazzi-Mainardi conditions

(12) dλ+
1

2
λ ∧ λ = 0,

(ii) Gauss conditions

(13)

{
dω1 − λ3 ∧ ω2 = 0,
dω2 + λ3 ∧ ω1 = 0,

(iii) Symmetry of tensor b

(14) λ1 ∧ ω2 − λ2 ∧ ω1 = 0.

Proof of Theorem 4.3. The proof is established with Frobenius integrability condi-
tions in two steps.

Step 1. Equating d2R to zero yields (12):

0 = d2R = Rj(dλ) + dR ∧ j(λ) = R
(
j(dλ) + j(λ) ∧ j(λ)

)
= Rj

(
dλ+

1

2
λ ∧ λ

)
,

or component-wise  dλ1 + λ2 ∧ λ3 = 0,
dλ2 + λ3 ∧ λ1 = 0,
dλ3 + λ1 ∧ λ2 = 0.
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Step 2. Equating d2x to zero yields (13)-(14):

0 = d2x = rdω + dr ∧ ω = R
(
kdω + (j(λ) k) ∧ ω

)
= R

 dω1

dω2

0

+ R

 −λ3 ∧ ω2

+λ3 ∧ ω1

+λ1 ∧ ω2 − λ2 ∧ ω1

 .

We notice that the last relation λ1 ∧ ω2 − λ2 ∧ ω1 = 0 expresses the symmetry
of the second fundamental form b. More precisely we can complete relation (8) by

(15) −b = ω1 ⊗ λ2 − ω2 ⊗ λ1 = λ2 ⊗ ω1 − λ1 ⊗ ω2. �

As usual, when working with shells, it is of interest to introduce the so-called
third fundamental form c = ba−1b also given by its covariant components cαβ =
bαγa

γσbσβ . This form can be expanded in terms of the vectorial 1-form λ, as it has
been done for the first two fundamental forms.

4.3. Expansion of the third form c. .

Theorem 4.4 The third form c can be expanded as follows:

(16) c = δαβ λα ⊗ λβ .

Proof. Applying Lemma 2.1 (ii) in two-dimension we can write

a−1 = δαβ eα ⊗ eβ .

We replace tensors a and b by their factorization in terms of cross products of ω, λ
and we get {

a−1b = (δαβ eα ⊗ eβ)(εστ ωσ ⊗ λτ ),
= δαβεστδ

σ
β (eα ⊗ λτ ) = δαβεβτ (eα ⊗ λτ ).

The symmetry of b obtained in (15) yields c = −(εµν λµ ⊗ ων)(δαβεβτ (eα ⊗ λτ ),
= −(εµνδ

αβεβτ )(δ
ν
α λµ ⊗ λτ ),

= −(δαβ εµαeβτ )(λ
µ ⊗ λτ ) = δµτ (λµ ⊗ λτ )

which implies the nice factorisation of the twice covariant, bilinear and symmetric
form c. �

5. The case of a shell

We consider a surface S which is defined by the mapping φ : (X1, X2) ∈ D −→
R3. Therefore the shell with middle surface S and thickness 2ε is mapped by

(X1, X2, X3) ∈ D × (−ε, ε) −→ φ+X3n.

It is well known that the three-dimensional metric tensor G, given by its covariant
expression, reads

Gαβ = gαβ , Gα3 = G3α = 0, G33 = 1, with g = a− 2X3b+ (X3)2c.

In the sequel we assume that X3 is small enough so that g remains definite positive.
In the next section we establish the expansion of tensor G.
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5.1. Expansion of the bilinear symmetric form G. .

Lemma 5.1 There exist a vectorial 1-form Ω = (Ω1,Ω2,Ω3) such that the metric
tensor of the shell can be expanded as:

(17) G = δij Ωi ⊗ Ωj .

with

(18) Ω1 = ω1 +X3λ2, Ω2 = ω2 −X3λ1, Ω3 = dX3.

the two vectorial 1-forms ω = (ω1, ω2) and λ = (λ1, λ2, λ3) being those associated
to the middle surface and introduced in Theorem 4.1.
Proof of Lemma 5.1. This is directly deduced from the factorisation of the three
fundamental forms (7)-(16). We get the factorisation of G from the factorisation
of g = a− 2X3b+ (X3)2c, hence

g =
(
ω1 ⊗ ω1 + ω2 ⊗ ω2

)
+ 2X3

(
ω1 ⊗ λ2 − ω2 ⊗ λ1

)
+(X3)2

(
λ1 ⊗ λ1 + λ2 ⊗ λ2

)
,

= (ω1 +X3λ2)⊗ (ω1 +X3λ2) + (ω2 −X3λ1)⊗ (ω2 −X3λ1).

5.2. Computation of the volume element. .

Lemma 5.2 The three-dimensional 3-form volume element (Ω1 ∧ Ω2 ∧ Ω3) can be
expanded in terms of the two-dimensional 2-form volume (ω1 ∧ω2) and in terms of
the data a and b as:

Ω1 ∧ Ω2 ∧ Ω3 =
(
ω1 ∧ ω2 ∧ dX3

)(
1−X3(bαγa

γα) + (X3)2
Det b

Det a

)
.

Proof of Lemma 5.2.
We use the definition of Ω given by (18) to obtain

Ω1∧Ω2 = (ω1+X3λ2)∧(ω2−X3λ1) = (ω1∧ω2)+X3(λ1∧ω1+λ2∧ω2)+(X3)2(λ1∧λ2).

The proof is established in two steps.

Step 1. We express the 1-forms λ1, λ2 in terms of ω1, ω2 making use of the second
fundamental form b as follows. The first components of λ1 and λ2 are obtained
from the two relations −bα1 = (ω1 ⊗ λ2 − ω2 ⊗ λ1)α1. The symmetry of b yields
the computation of their second components from the relations −b2α = (λ2 ⊗ ω1 −
λ1 ⊗ ω2)2α. Therefore we get the following three equivalent expressions by taking

into account (7) a = δαβ ωα ⊗ ωβ which implies ω1
1ω

2
2 − ω1

2ω
2
1 =

√
Det a:

(19)


(ω1

1ω
2
2 − ω1

2ω
2
1)λ

α
β = ετσbβσω

α
τ ,√

Det a λα
β = ετσbβσω

α
τ ,

(ω1 ∧ ω2)λα
β = (dX1 ∧ dX2)ετσbβσω

α
τ .

Step 2. The computation of each coefficient of X3 in the expression of Ω1 ∧ Ω2

yields{
(ω1

1ω
2
2 − ω1

2ω
2
1)(λ

1 ∧ ω1 + λ2 ∧ ω2) = −(Det a)(bαγa
γα)(dX1 ∧ dX2),

(ω1
1ω

2
2 − ω1

2ω
2
1)(λ

1 ∧ λ2) = (Det b)(dX1 ∧ dX2)

and finally we use the definition ω1 ∧ ω2 = (ω1
1ω

2
2 − ω1

2ω
2
1)(dX

1 ∧ dX2). �
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5.3. Pfaff system associated to the shell. Let us denote x any point of a
surface S while x̃ = x + X3n is a corresponding point of the shell with middle
surface S.
We recall that the Pfaff system associated to S is:{

dx = rω, r = Rk,
dR = Rj(λ),

and the set of PDE given by Frobenius integrability conditions is (12)-(13)-(14)
dω1 − λ3 ∧ ω2 = 0,
dω2 + λ3 ∧ ω1 = 0,
ω1 ∧ λ2 − ω2 ∧ λ1 = 0,
dλ+ 1

2λ ∧ λ = 0.

The Pfaff system associated to the shell is:{
dx̃ = RΩ,
dR = Rj(Λ),

and the set of PDE given by Frobenius integrability conditions (4) reads:{
dΩ+ Ω ∧ Λ = 0,
dΛ + 1

2Λ ∧ Λ = 0.

The main result of our paper which is the equivalence announced in the Introduction
amounts at showing the equivalence of compatibility conditions. This is done in
the next section.

5.4. Equivalence between Riemann-Christoffel and Gauss-Codazzi
-Mainardi compatibility conditions. .

Theorem 5.3 or a shellGauss-Codazzi-Mainardi compatibility conditions are equiv-
alent to a vanishing Riemann-Christoffel tensor.

Proof of Theorem 5.3.
(i) We show that Gauss-Codazzi-Mainardi conditions (12) implies that Riemann-
Christoffel tensor vanishes.
For a shell we can replace Ω by its expression (18) in terms of ω and λ and get:

dΩ1 = d(ω1 +X3λ2) = dω1 +X3dλ2 + dX3 ∧ λ2

= λ3 ∧ ω2 −X3(λ3 ∧ λ1) + dX3 ∧ λ2,
= λ3 ∧ (ω2 −X3λ1) + Ω3 ∧ λ2 = λ3 ∧ Ω2 +Ω3 ∧ λ2,
= −(Ω ∧ λ)1,

and similarly dΩ2 + (Ω ∧ λ)2 = 0 and dΩ3 = d2X3 = 0. According to (14) we
deduce:

(Ω∧λ)3 = Ω1∧λ2−Ω2∧λ1 = (ω1+X3λ2)∧λ2−(ω2−X3λ1)∧λ1 = ω1∧λ2−ω2∧λ1 = 0.

In other words dΩ+Ω∧λ = 0. For the shell we have dΩ+Ω∧Λ = 0, which implies
Ω ∧ (Λ − λ) = 0. Since ω1 and ω2 is a basis, the three forms Ω1, Ω2 and Ω3 is a
basis and Λ coincides with λ. Therefore we get the result.
(ii) Conversely we show that Riemann-Christoffel compatibility conditions dΛ +
1
2Λ ∧ Λ = 0 imply Gauss-Codazzi-Mainardi conditions.
This part is obtained in 3 steps: in Step 1 we show that the vectorial 1-form Λ
is independent of dX3, in Step 2 we show that Λ1 = λ1,Λ2 = λ2 and that Gauss
condition is satisfied, finally in Step 3 we show that Λ3 = λ3 and that Gauss-
Codazzi-Mainardi conditions are satisfied
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Step 1. From the first equality of (4) that relies Ω and Λ we get 0 = (dΩ +
Ω ∧ Λ)3 = Ω1 ∧ Λ2 − Ω2 ∧ Λ1. Since the third components of Ω1 and Ω2 vanish
then, the third components of (Λ1,Λ2) also vanish. The second equality of (4), i.e.,
0 = dΛ1 + Λ2 ∧ Λ3 and 0 = dΛ2 + Λ3 ∧ Λ1 imply that the third component of Λ3

also vanishes (otherwise we would have obtained Λ1 = Λ2 = 0).

Step 2. We return to the expression of dΩ:
0 = dΩ1 + (Ω ∧ Λ)1 = dΩ1 +Ω2 ∧ Λ3 − Ω3 ∧ Λ2,

=
(
dω1 +X3dλ2 + dX3 ∧ λ2

)
+
(
(ω2 −X3λ1) ∧ Λ3 − dX3 ∧ Λ2

)
,

= (dω1 + ω2 ∧ Λ3) +X3(dλ2 − λ1 ∧ Λ3)− dX3 ∧ (Λ2 − λ2).

We make use of the integrability condition (13) dω1+ω2∧λ3 = 0, dω2−ω1∧λ3 = 0
to simplify the previous relation which now reads:{

0 = ω2 ∧ (Λ3 − λ3) +X3(dλ2 − λ1 ∧ Λ3)− dX3 ∧ (Λ2 − λ2),
= Ω2 ∧ (Λ3 − λ3) +X3(dλ2 − λ1 ∧ λ3)− dX3 ∧ (Λ2 − λ2).

Equating to zero the coefficients of dX3 ∧ dX1 and dX3 ∧ dX2 we get Λ2 = λ2 and
similarly Λ1 = λ1, which in turns yields

Ω1 ∧ Λ2 − Ω2 ∧ Λ1 = 0.

In other words ω1 ∧ λ2 − ω2 ∧ λ1 = 0 and Gauss-Codazzi-Mainardi conditions are
satisfied.

Step 3. From Step 2, Riemann-Christoffel’s compatibility conditions combined
with the second relation in (18) give 0 = Ω2 ∧ (Λ3 − λ3) + X3λ1 ∧ (Λ3 − λ3) =
ω2 ∧ (Λ3 − λ3) and similarly 0 = ω1 ∧ (Λ3 − λ3). Since Ω1,Ω2,Ω3 is a basis we
deduce that ω1, ω2 is also a basis, hence Λ3 = λ3. �

6. Gauss theorema egregium

The total curvature of a surface is related to the two fundamental forms a and
b, it is given by the formula:

K =
Det b

Det a
.

Let us enunciate and prove Gauss theorema egregium.
Theorem 6.1 The total curvature only depends upon the first fundamental form.
The proof is now very simple. We recall that b can de decomposed as −b = ω1 ⊗
λ2 − ω2 ⊗ λ1 and that, according to lemma 3.2, λ depends only upon ω and dω.
Hence K only depends upon a. �

7. Bonnet reconstruction theorem

As we showed in section 4, a surface S is associated to Pfaff system (11) which
must satisfy the integrability conditions (13)-(12)-(14). Then the surface S can be
completely recovered in a very easy way as detailed by the following Theorem.
Theorem 7.1 Let the two fundamental forms a and b of S be given. Then S can
be completely recovered up to a fixed rigid displacement.
Proof of Theorem 7.1. It is broken into 5 steps.
Step 1. Since tensor a is definite positive we can select two independent 1-forms
ω1 and ω2 such that a = ω1 ⊗ ω1 + ω2 ⊗ ω2 and the volume element ω1 ∧ ω2 does
not vanish. This determination is not unique.
Step 2. The second fundamental form b yields the computation of λ1 and λ2 as
proved in (19).
Step 3. We compute the two 2-forms dω1 and dω2. By using Cramer identity as
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we did in the proof of Lemma 3.2 and the two Gauss conditions (13) we obtain the
1-form λ3:

(ω1
1ω

2
2 − ω1

2ω
2
1)λ

3 = (λ3 ∧ ω2)1ω
1 + (ω1 ∧ λ3)1ω

2 = (dω1)1ω
1 + (dω2)1ω

2.

Step 4. We solve the PDE dR = Rj(λ) and get R up to a fixed rotation R̂ on the

left. Next, we get the partial rotations r = Rk and r̂r = (R̂R)k.

Step 5. We solve the PDE dx = rω, up to a fixed translation t̂. Since the unknown
x does not appear in the right-hand side the integration turns out to be very simple.
Finally the solution is obtained up to a rigid displacement x̂ = r̂x+ t̂. �

Let us notice that no tedious use of the Christoffel symbols have been necessary
to establish the previous computations. The interest of our approach is once more
obvious.

8. Conclusion and outlook

In this paper we showed how to describe surfaces embedded in R3 and 3D mani-
folds by Pfaff systems. The introduction of Cartan’s differential framework proved
to be very fruitfull in order to simplify the proofs, in particular the equivalence
of 3D and 2D compatibility conditions for shells. We also gave a new method to
recover a surface from its fundamental forms. In a forthcoming paper [6] we still
apply this approach to establish the equilibrium equations of a shell.
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théorie des courbes et des surfaces. Hermann (1967).

[3] H. Flanders. Differential Forms with Applications to the Physical Sciences. Dover Books on
Mathematics (1989).

[4] T. A. Ivey, J.M. Landsberg. Cartan for Beginners: Differential Geometry via Moving Frames

and Exterior Differential Systems. Graduate Studies in Mathematics, vol. 61 (2003). Updates
and Corrections, Errata (posted 7/13).
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