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WEIGHTED HARMONIC AND COMPLEX GINZBURG-LANDAU

EQUATIONS FOR GRAY VALUE IMAGE INPAINTING

ZAKARIA BELHACHMI, MOEZ KALLEL, MAHER MOAKHER, AND ANIS THELJANI

(Communicated by Jie Shen)

Abstract. We consider two second-order variational models in the image inpainting problems.
The aim is to obtain in the restored region some fine features of the initial image, e.g. corners,
edges, . . . . The first model is a linear weighted harmonic method well suited for binary images
and the second one is its extension to the complex Ginzburg-Landau equation for the inpainting
of multi-gray level images. The approach that we introduce consists of constructing a family of
regularized functionals and to select locally and adaptively the regularization parameters in order
to capture fine geometric features of the image. The parameters selection is performed, at the
discrete level, with a posteriori error indicators in the framework of the finite element method.
We perform the mathematical analysis of the proposed models and show that they allows us
to reconstruct accurately the edges and the corners. Finally, in order to make some comparisons
with well established models, we consider the nonlinear anisotropic diffusion and we present several
numerical simulations to test the efficiency of the proposed approach.

Key words. Image inpainting, inverse problems, regularization procedures, adaptive finite ele-
ments.

1. Introduction

Image inpainting (or disocclusion) refers to restoring a damaged image with
missing information. This type of image processing is very important and has
many applications in various fields (painted canvas, movies restoration, augmented
reality, . . . ). In fact, many images are often scratched and damaged, and the goal
in the inpainting problems is to restore deteriorated or missing parts, so that a
viewer cannot distinguish them from the rest. Various mathematical and heuristic
techniques were considered to address this problem, such as statistical methods
[23], mathematical programing and computational geometry methods [34], we refer
to the article [11] and the references therein where an exhaustive review is given for
this problem and for the various approaches developed to solve it. In this article
we will be concerned by the Partial Differential Equations (PDE) approach which
belongs to the class of the widely used methods ([6, 12, 19, 20]). Let Ω ⊂ R

d

(d = 2, 3), denotes the entire domain of a given image f , the basic idea in the PDE
approach, is to fill-in the damaged region D ⊂ Ω, where the pixels of f are altered
or lost, by an interpolation from the available part in Ω\D. Usually, the PDE-based
models are obtained from the mathematical knowledge of the properties of some
differential operators, and aim to fulfill some a priori expectations and assumptions
on the final solution. The diffusion operators are the mostly used to this end (e.g.
the heat equation, the Cahn-Hilliard equation,...[10, 12, 15, 20, 28]). Usually such
models are formulated as a constrained optimization problem:

(1) Minimize R(u) given u = f + n in Ω\D,
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where the image f is given in Ω\D and n is a Gaussian noise. R(u) denotes the
regularizing term, mostly a semi-norm of a functional space fixed a priori to enforce
some expectations on the solution (e.g. a Sobolev space Hs, Bounded Variations
functions space BV, . . . ) and u is the image to be reconstructed. The unconstrained
formulation of (1) reads:

(2) αR(u) +
1

2

∫

Ω

λD(u− f)2dx,

where α is a regularization parameter and λD = λ0χΩ\D for λ0 ≫ 0, a penalization
factor, and χΩ\D is the indicator function of the sub-domain Ω \ D. These two
parameters α and λ0 are chosen in order to balance the regularization term R(u)
and the data fitting term.

Various methods use uniform parameters α and λ, chosen in general empirically
or within the regularization theory, e.g. with Morozov’s criterium when the magni-
tude of the noise is given [25, 31]. In many applications, this choice is not reliable
and may produce the loss of some relevant features of the image such as the edges
(see Fig:1). Therefore, based on the importance of the scale-space representation of

Figure 1. Harmonic inpainting (T. Chan and J. Shen [19]).

the image, spatially varying choices of the parameter α were proposed in the litera-
ture. We mention as an example the variant of the total variation (TV) functional,
considered by D. Strong and T. Chan [36] which results in a multi-scale strategy
with a uniform α updated at each scale [4]. Others strategies to choose such param-
eters are also developed within the statistical approach or using some a priori PDE
[32] for the denoising problem. Note that the topological gradient method leads
implicitly to such a choice by allowing the modification of the diffusion coefficients
[5, 6].

We consider in this article a novel approach which consists of an adaptive method
for the choice of such spatially varying regularization parameters. The method
is well-suited for images with few textures and was successfully applied to the
segmentation problems [8]. Loosely speaking, we start with a simple model (e.g.
linear diffusion with a variable coefficient), then iteratively, an adaptive selection
of the parameters based on some local information on the gradient magnitude is
performed. The gradient information are available at the discrete level from the
computed solution, thus the process is completely an a posteriori method without
any reference to the continuous solution of (2). This amounts to change dynamically
the reconstruction model in order to capture accurately the fine geometric structures
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of the image. This approach was introduced by Hecht and Belhachmi in [9] for the
optic flow estimation problem, where it was demonstrated to have several attractive
features such as: the efficiency (e.g. the cost of computations, best representation
of the solution,. . . ) as well as a good edge-preserving property. Moreover, it was
proven in [8] that it allows one to approximate, in the Γ-convergence sense [14], the
Mumford-Shah functional (see [8, 17, 18]) although formally the continuous model
remains linear (with respect to the primary variable).

The article is organized as follows: In Section 2, we introduce a weighted regu-
larizing functional to obtain the suitable modified version of the harmonic model
and we establish its properties. In Section 3, we introduce the discrete framework
of the method and we make a selective diffusion, controlled by suitable error indi-
cators. Using ([8, 17, 18])), we perform the Γ-convergence analysis of the method.
We also modify the adaptive strategy in the non damaged regions in order to im-
prove the fitting to the data term which allows us to handle simultaneously the
inpainting task and the denoising of the available part of the input image. In
section 4, we extend such an approach from second order linear diffusion to the
complex-Ginzburg-Landau energy which is known, at least numerically, to enhance
the contrast in inpainting problems and is well suited for multi-gray level images
[3, 26]. We present several numerical simulations to show the performances of the
method for the considered models. We also make some comparisons with the non-
linear anisotropic diffusion method which belongs to the well established techniques
in the image inpainting [38].

2. Weighted harmonic inpainting

We assume that the domain Ω is partitioned into a finite number of disjoint
subdomains Ωi, i = 1, . . . , I, and we consider a function α which is scalar, piecewise
constant in Ω and such that

α = αi in Ωi, i = 1, . . . , I.

We denote by αm = min1≤i≤I αi, αM = max1≤i≤I αi, and we assume that αm > 0.
We consider the following linear equation:

(3)

{

−∇.(α(x)∇uα) + λD(uα − f) = 0, in Ω,
∂nuα = 0, on ∂Ω.

Remark 1. It should be emphasized here that the parameter λ0 is intended to be
large enough to penalize the constraint uα = f in Ω \ D and (3) is equivalent to
the the following transmission problem:

(4)























−∇.(α(x)∇uα) + λ0(uα − f) = 0, in Ω\D,
∇.(α(x)∇uα) = 0, in D,

[uα] = 0, on ∂D,
[α∇uα · ~n] = 0, on ∂D,
∂nuα = 0, on ∂Ω,

where [·] denotes the jump across ∂D.

We define the subspace V = {u ∈ H1(Ω);
∫

D
u dx = 0}. Therefore, under the

previous assumptions on the function α, we have:

Proposition 1. Let f ∈ L2(Ω), then the problem (3) admits a unique weak solution
uα in V .
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Proof. Equation (3) is the optimality condition of the following minimization prob-
lem:

(5) min
v∈V

{Fα(v) =

∫

Ω

α(x)|∇v|2dx+

∫

Ω

λD(v − f)2dx}.

One may check directly that Fα is convex and weakly lower semi-continuous in
H1(Ω). For u ∈ V , we have:

Fα(u) ≥ αm

∫

Ω\D

|∇u|2 dx+ λ0

∫

Ω\D

(u− f)2 dx+ αm

∫

D

|∇u|2 dx.

Using the previous inequality and applying the Poincaré-Wirtinger inequality in D,
we get:

Fα(u) ≥ c‖u‖2H1(Ω),

where the constant c is dependent on αm, λ0 and the geometry of D. which implies
that Fα is coercive. Thus, the functional Fα admits a minimizer uα ∈ V . The
uniqueness is guaranteed by the strict convexity of Fα. �

The weak formulation of (3) reads:

(6)

{

find uα ∈ V, such that:
aα(uα, v) = l(v), ∀v ∈ V,

where

(7)











aα(u, v) =

∫

Ω

α(x)∇u · ∇vdx +

∫

Ω

λDuvdx,

l(v) =

∫

Ω

λDfvdx.

The equivalence of the problems (6) and (5) follows by standard arguments. Note
that if Ω is Lipschitz-continuous, f ∈ L2(Ω) and λD ∈ L+∞(Ω), the following
regularity result holds [7, Proposition 2.5]

Proposition 2. There exists a constant c only depending on the geometry of Ω,
such that a weak solution uα of problem (6) belongs to Hs+1(Ω), for all real numbers
s < s0, where s0 is given by

s0 = min

{

1

2
, c| log(1−

αm

αM

)|

}

.

Remark 2. This result reminds us that even non-smooth the solution of (6) is
H1(Ω) and therefore admits no jump inside Ω. Nevertheless, our approach consists
in decreasing the diffusion coefficient α in high gradient zones (formally to zero)
encouraging possible jumps in these areas.

2.1. Discrete problem and adaptivity. We assume that the domain Ω is polyg-
onal. We consider a regular family of triangulations Th made of elements which are
triangles (or quadrilaterals) with a maximum size h, satisfying the usual admissi-
bility assumptions, i.e., the intersection of two different elements is either empty, a
vertex, or a whole edge. For h > 0, we introduce the following discrete space:

Xh =
{

vh ∈ C(Ω)|∀K ∈ Th, vh|K ∈ P1(K)
}

∩ V,

and the following notations: for uh, vh ∈ Xh:

(8)











aα,h(uh, vh) =

∫

Ω

αh(x)∇uh · ∇vhdx+

∫

Ω

λDuhvhdx,

lh(v) =

∫

Ω

λDfhvh dx,
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where fh is a finite element approximation of f associated with Th. The discrete
problem leads to:

(9)

{

find uα,h ∈ Xh, such that:
aα,h(uα,h, vh) = lh(vh), ∀vh ∈ Xh.

Proposition 3. There exists a unique solution uα,h in Xh of the discrete problem
(9).

Proof. The proof can be carried out by applying the Lax-Milgram Lemma. Fur-
thermore, we have following finite element error:

‖uα − uα,h‖V ≈ O(h).

�

Remark 3. We do not impose any compatibility of the mesh with the “partition”
D ∪ (Ω \D). We are given a regular mesh over Ω similarly to the fictitious domain
methods.

2.2. Adaptive local choice of α. For an element K ∈ Th, we denote by EK the
set of its edges not contained in the boundary ∂Ω. The union of all EK , K ∈ Th
is denoted by Eh. With each edge e ∈ Eh, we associate a unit vector ne normal to
e and we denote by [φ]e the jump of the piecewise continuous function φ across e
in the direction ne. For each K ∈ Th, we denote by hK the diameter of K and we
denote by he the length of e, e ∈ EK and fh a finite element approximation of f .
We define the residual error indicator as follows: for each element K ∈ Th, we set:

ηK = α
− 1

2

K hK ||λ
1

2

D(uα,h−fh)+αh∆uα,h||L2(K)+
1
2

∑

e∈EK

α
− t

2

e h
1

2

e ||[α∇uα,h ·ne]e||L2(e),

where αe = max(αK1, αK2), K1 and K2 being the two elements adjacent to e.
On the triangulation Th, we compute the solution uα,h of problem (9) and the
corresponding error indicator which is well know to be equivalent to the H1-norm
of the finite element error (see [8] for details) and allows mostly mesh adaptation.
ηK gives the error distribution of the computation of uα,h, and includes information
about edges in the following term:

(10) 1
2

∑

e∈EK

α
− 1

2

e h
1

2

e ||[α∇uα,h · ne]e||L2(e).

In fact, the edges in the image are characterized by the brightness changes (large
gradients). Therefore the quantity (10) acts as a measure locating regions of edges
and will be used next to control the parameter α.

Remark 4. The gradient can represent the change in gray level and his magnitude
provides information about the strength of the edge. Since all error indicators are
(mainly) equivalent [37], we may change the error indicator ηK by the following
local energy:

(11) η′K = α
1

2

Kh
1

2

K ||∇uα,h||L2(K),

which might be well suited in the adaptation steps and behaves like the residual
error indicator.
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Adaptive strategy. We control the diffusion process by following the adaptive
algorithm: Given the initial grid T 0

h in Ω, we:

(1) Compute uα0,h solution of the problem (3) on T 0
h with a large constant

α = α0.
(2) We build an adapted isotropic mesh T 1

h (in the sense of the finite element
method, i.e. with respect to the parameter h) with the metric error indi-
cator ([8]).

(3) We perform an automatic local choice of α(x) on T 1
h to obtain a new func-

tion α1(x) in D.
(4) Go to step (1) and compute uα1,h on T 1

h .

During the adaptation, we use the following formula: for each triangle K

(12) αk+1
K = max











αk
K

1 + κ ∗

((

ηK
||η||∞

)

− 0.1

)+ , αthr











,

where αtrh is a threshold parameter and κ is a coefficient chosen to control the rate
of decrease of α, (u+) = max(u, 0). Here η is the piecewise-constant function such
that η|K = ηk, ∀K ∈ T 1

h .
The formula (12) means that in the regions of high gradients, one decreases the

values of α. Actually, if the error indicator deviates more than 10% from its mean
value, then there is a large error which indicates that the element contains a part
of the singular set of u. Therefore, decreasing α (nearly as a geometric sequence
with the iteration number) produces an edge location.

The adaptive algorithm consists of two steps. First, given α, we solve a linear
equation (3) and build an adapted isotropic mesh Th. The adapted mesh is obtained
by coarsening the initial grid in the homogeneous regions and by refinement to
obtain smaller elements ’close’ to the jump set of u. Second, we update the value
of α in every element K of Th in accordance with the formula (12).

2.3. Γ-convergence analysis of the adaptive algorithm. A Γ-convergence
study of the adaptive strategy is performed in [8] for the optical flow problems.
Analyzing this strategy, the authors proved that it is equivalent to the adaptive
algorithm introduced for denoising, by Chambolle-Dal Maso in [18] and Chambolle-
Bourdin in [17] where a similar method for the numerical discrete approximation of
the Mumford-Shah energy was proposed. They proved that this method, based on
finite element discretization and adaptive mesh strategy, is a good approximation
in the Γ-convergence sense [14] of the Mumford-Shah energy. We briefly recall
the results and the numerical approximation of this method. For a fixed angle
0 < θ0 ≤ π/3, a constant c ≥ 6, and for ǫ > 0, we denote Tǫ(Ω) = Tǫ(Ω; θ0; c) the
set of all triangulations of Ω whose triangles K have the following characteristics:

i) The length of all three edges of K is between ǫ and ǫc.
ii) The three angles of K are greater than or equal to θ0.

Let Vǫ(Ω) the set of all continuous functions u : Ω −→ R such that u is affine on any
triangle K of a triangulation T ∈ Tǫ(Ω) and for a given u, Tǫ(u) ⊂ Tǫ(Ω) is the set
of all triangulations adapted to the function u, i.e., such that u is piecewise affine on
T. They introduce a non-decreasing continuous function g : [0,+∞) −→ [0,+∞)
such that:

lim
t→0

g(t)

t
= 1, lim

t→+∞
g(t) = g∞.
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For any u ∈ Lp(Ω), (p ≥ 1) and T ∈ Tǫ(Ω), the authors in [18] introduced the
following minimization problem:

(13) Gǫ(u) = min
T∈Tǫ(Ω)

G̃ǫ(u,T),

where

G̃ǫ(u,T) =







∑

K∈T
|K ∩Ω|

1

hK
g(hK |∇u|2), u ∈ Vǫ(Ω),T ∈ Tǫ(Ω),

+∞, Otherwise.

For ǫ going to zero and provided θ0 is less than some Θ > 0, they proved that the
energy Gǫ Γ-converges to the Mumford-Shah functional:

G(u) =

{

∫

Ω
|∇u|2 dx+ g∞H1(Su), u ∈ L2(Ω) ∩GSBV (Ω),

+∞, u ∈ L2(Ω)\GSBV (Ω),

where H1 is the 1-dimensional Hausdorff measure and GSBV (Ω) is the space of
generalized special functions with bounded variation (see [1]). It follows from the
Γ-convergence to Gǫ [18, Theorem 2]:

Theorem 2.1. Let (uǫ)ǫ>0 be a family of functions such that uǫ ∈ Vǫ(Ω) for all
ǫ > 0 and

(14) sup
ǫ>0

Gǫ(u
ǫ) + ||uǫ||L2(Ω) < +∞.

Then there exists u ∈ GSBV (Ω) and a subsequence (uǫj)j converging to u, a.e. in
Ω, such that:

G(u) ≤ lim inf Gǫj (u
ǫj ),

and, if for each ǫ, uǫ is a solution of:

(15) min
v
Gǫ(v) +

∫

Ω

λD|v − f |2dx,

then the limit u solves:

(16) min
v
G(v) +

∫

Ω

λD|v − f |2dx,

and uǫj converges strongly to u.

We suppose that the function g is concave and differentiable and that g(0) = 0.
Thus, extending g with the value −∞ on ] −∞, 0], −g is convex and lower semi-
continuous. We have (see [24]),

−g(t) = sup
v∈R

−ψ(−v) = inf
v∈R

tv + ψ(v),

where ψ(−v) = supt∈R
tv − (−g)(t) = (−g)∗(v) is the Legendre-Fenchel conjugate

of (−g). The first supremum is achieved at v such that t ∈ ∂(−g)∗(v) which is
equivalent to v ∈ ∂(−g)(t). Since ∂(−g)(t) is given as: {−g′(t)} if t > 0 and
]−∞,−1] if t = 0, we deduce that the sup is reached at some v ∈ [−1, 0] (in fact,
for t = 0, we check that (g)∗(−1) = 0 and the supremum is achieved at v = −1),
we obtain:

g(t) = min
v∈[0,1]

tv + ψ(v),

and the minimum is achieved for v = g′(t) and therefore, for a given triangulation
Tǫ, the minimization of Gǫ is then equivalent to minimize the following functional:

G′
ǫ(u, v,Tǫ) =

∑

K∈Tǫ

|K ∩Ω|
1

hK
(vK |∇u|2 +

ψ(vK)

hK
),
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over all u ∈ Vǫ(Ω) and v = (vK)K∈Tǫ
, piecewise constant on each K ∈ Tǫ. For a

fixed u, the minimizer over each v is explicitly given by:

(17) vK = g′(hK |∇u|2),

and the optimal u for fixed v solves an elliptic equation. The adaptive algorithm
minimizes G′ with v = α.

Remark 5.

- Given a function α, the computation of the minimization problem with
respect to u is simple and very fast because after each adaptation step,
one solves a linear problem with the number of nodes of the mesh which
decreases.

- For computational reasons, we have chosen the formula (12) to update
the diffusion function α (which is similar to the choice g(t) = λmin(t, µ)
for given constants λ and µ). This allows for stable computations, other
possible choices to update α are possible. In [17], the authors considered a

smooth function g(t) =M arctan(
t

M
), for M > 0 which leads according to

the formula (16) to the diffusion function

αK =
1

1 + (hK |∇u|)2
.

- It may be noticed that the parameter α acts as a “phase field function” and
plays a role similar to the z-field in the Ambrosio-Tortorelli approximation
[2] method for the Mumford-Shah energy. However, the edges obtained in
our case seems sharper and their “thickness” is controlled by the refinement
strategy. This behavior of α is shown in Fig: 9 in the numerical examples.

2.4. The inpainting with the image restoration. Numerical evidences show
that there is a strong connection between the noise removal in the available part
of the initial image and the inpainting process. To overcome this sensitivity to
the noise, a natural idea is to perform simultaneously the denoising in Ω \D and
the fill-in in D. The two steps are coherently integrated in the method. Thus, we
replace now the previous constant λ0 with a spatially varying function λ(x) and
we will select locally it values in order to decide whether we should encourage the
penalization (by increasing λ) or not. As mentioned in the remark (1), the residual
error indicator splits as for the transmission problem:
(18)






































If K ∩ Ω\D 6= ∅, we have :

ηK = α
− 1

2

K hK ||λ
1

2

K(uα,h − fh) + αh∆uα,h||L2(K)

+
1

2

∑

e∈EK
α
− 1

2

e h
1

2

e ||[αe∇uα,h · ne]||L2(e),

and if K ∩ Ω \D = ∅, we have :

ηK = α
− 1

2

K hK ||αK∆uα,h||L2(K) +
1

2

∑

e∈EK

α
− 1

2

e h
1

2

e ||[αe∇uα,h · ne]||L2(e).

For an element K ⊂ Ω\D, the error indicator contains a supplementary term, i.e.

(19) EK = α
− 1

2

K hK ||λ
1

2

K (uα,h − fh) + αh∆uα,h||L2(K),

where λK is the constant value of λ in the element K. In this term the parameters
are competing and finding a balance is not obvious. Since our purpose is to make a
noise filtering we choose to keep α fixed and to adjust only λ. In fact, starting with
a large value of α0 in the previous algorithm will smooth the input image f in Ω\D
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at the first iterations which produces some undesirable blurring in this part of the
domain. Thus, in Ω \D, we keep such α constant and increase λ to enhance the
fidelity term. In D, the process is unchanged. This calls for a slight modification of
the previous algorithm. We start with a constant value λ0. If K ∩ Ω\D 6= ∅, then
we update λ as follows:

(20) λk+1
K = min{λkK ∗

(

1 + κ ∗

((

EK

||E||∞

)

− 0.1

)+
)

, λ0},

The explanation of this formula is identical to that of α previously, that is if the
error indicator is 10% larger than the mean value, the fidelity constraint should be
enforced by increasing λ at that location.

3. Adaptive strategy in the complex Ginzburg-Landau equation

We extend such an approach from the linear diffusion to the complex-Ginzburg-
Landau energy. This model was originally developed by Ginzburg & Landau in [29]
to describe phase separation and it is given by:

(21) −∆u +
W ′(u)

ǫ2
= 0,

where u : Ω −→ C, ǫ is a small positive parameter and W (u) = (1−|u|2)2. It is the
Euler-Lagrange equation associated to the minimization of the following energy:

(22)
1

2

∫

Ω

|∇u|2dx+

∫

Ω

W (u)

2ǫ2
dx.

For digital image inpainting purposes, this equation was developed by H. Grossauer
and O. Scherzer in [26]. The key advantage of this model is that its solutions are
known to produce effects like vortices and shockwaves of the phase when ǫ −→ 0
and the solution reveals high contrast in the inpainting domain, which makes it
well suited for multiple gray level images.

The real Ginzburg-Landau equation (21) is appropriate only for two-scale images,
while the minima of the potential W are attained in the sphere |u| = 1. For gray-
scale images, we follow the same methodology of Grossauer and Scherzer in [26].
We rescale the intensity of the input image f(x) to the interval [−1, 1]. Then f is
identified with the real part of the complex valued function fre : Ω −→ C. We then
define:

(23)







f = fre + ifim, where:
fre = f0(the initial damaged image),

fim =
√

1− f2
0 .

By this choice, the complex valued solution u will also have an absolute value equal
to 1 but our inpainting fre may contain any value in the interval [−1, 1]. The aim
is to minimize the following Ginzburg-Landau energy:

(24) Fǫ(u) =

∫

Ω

α(x)

2
|∇u|2dx+

∫

Ω

W (u)

2ǫ2
dx+

1

2

∫

Ω

λD(u − f)2,

over V = {u ∈ H1(Ω,C);
∫

D
u dx = 0} and where H1(Ω,C) is the space of complex

functions equipped with the norm:

||u||21 =

∫

Ω

uudx+

∫

Ω

∇u · ∇udx.
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For the sake of clarity, we omit the ǫ dependence for the minimizers of Fǫ. Then,
uα satisfies the following Euler-Lagrange equation:

(25)

{

−∇.[α(x)∇uα] +
1

ǫ2
uα(|u|2α − 1) + λD(uα − f) = 0, in Ω,

α(x)∂nuα = 0, on ∂Ω.

It is readily checked (see [13] for details).

Proposition 4. The functional (24) admits a minimizer uα in V . Moreover, uα
is a weak solution of (25) and |uα| ≤ 1.

Evolution equation and discretization. We consider the associated evolution
problem:

(26)
∂uα
∂t

−∇.[α(x)∇uα] +
W ′(uα)

ǫ2
+ λD(uα − f) = 0, in R

+ × Ω,

with homogeneous Neumann boundary conditions and the initial time condition
uα(t = 0, x) = f(x) ∀x ∈ Ω. We assume without loss of generality that

∫

Ω
f = 0

and ‖f‖ ≤ 1. The weak solution of (26) solves: find u ∈ L2(0, T ;V ) such that
∫

Ω

∂uα
∂t

φdx +

∫

Ω

α(x)∇uα∇φdx +

∫

Ω

W ′(uα)

ǫ2
φdx

+

∫

Ω

λD(uα − f)φdx = 0 ∀φ ∈ H1(Ω,C).

Time discretization. We use the linearly implicit Euler scheme: given unα, find
un+1
α ∈ H1(Ω,C) such that
∫

Ω

un+1
α − unα
δt

φdx +

∫

Ω

αh∇u
n+1
α ∇φdx +

1

ǫ2

∫

Ω

(|unα|
2 − 1)un+1

α φdx

+

∫

Ω

λD(un+1
α − f)φdx = 0 ∀φ ∈ H1(Ω,C).

4. Comparison with the nonlinear diffusion methods

For the sake of completeness, we will make a comparison with the nonlinear
diffusion method [38] that we recall now. The earliest model considered is the
so-called nonlinear isotropic diffusion by Perona and Malik [33]. The diffusion
coefficient was a nondecreasing function g of |∇u|2 with g(0) = 1, g(s) > 0 and
lim

s−→+∞
g(s) = 0. The method was extended to the anisotropic case by J. Weickert in

[38] who replaced the scalar diffusion function g with a diffusion tensorD depending
on |∇uσ|2, where uσ is a smoothed version of u (convolution with a smoothing
kernel). The diffusion is adjusted according to the directional information contained
in the image structure. In our case, the anisotropic model may be written as follows:

(27)











∂u

∂t
−∇.[D(∇uσ)∇u] + λD(u− f) = 0, in R+ × Ω,

u(x, 0) = f, in Ω,
< D(∇uσ)∇u · n >= 0, on R+ × ∂Ω.

Following [38], let {v1, ..., vd}, be an orthonormal basis of Rd (d = 2, 3) such that
v1||∇uσ. The matrix D is symmetric, positive definite and {v1, ..., vd} represent its
eigenvectors with corresponding eigenvalues {Λ1, ...,Λd}. Then we have:

D(∇uσ) = (v1|...|vd)diag(Λ1, ...,Λd)(v1|...|vd)
T .(28)
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These eigenvalues are chosen to be functions of |∇uσ| in order to obtain a diffusion
tensor adapted to the local structure of the image (i.e., homogeneous area or edges).
Let g ∈ C∞([0,∞), (0, 1]) be a Lipschitz continuous scalar function which is repre-
sented in [0,+∞) by a convergent power series as follows:

g(s) =

∞
∑

k=0

aks
k,

and we consider the tensor product J0(∇uσ) = ∇uσ⊗∇uσ. For the two dimensional
case, the matrix:

(29) D(∇uσ) = g(
√

|J0(∇uσ)|) =
∞
∑

k=0

ak(
√

|J0(∇uσ)|)
k,

defines a diffusion tensor with an orthonormal system of eigenvectors (v1, v2) where:

v1 =

(

v11
v21

)

=
∇uσ
|∇uσ|

and v2 =

(

v21
−v11

)

.

The choice that prevents the diffusion over the edge lead to the matrix D:

D =





| |
v1 v2
| |





(

Λ1 0
0 Λ2

)





| |
v1 v2
| |





T

.

Different classes of anisotropic models and diffusivity functions “g” may be used
(see [21, 22, 32, 38]). In this article we choose the following function:

(30) g(s) =
1

√

ǫ + s2/R2
,

where R and ǫ are a contrast and a resolution parameters, respectively. The varia-
tional formulation of problem (27) reads:

(31)







Find u ∈ C((0, T );V ), such that:
∫

Ω

∂u

∂t
v dx+ a(u;u, v) = l(v), ∀v ∈ V,

where

(32)











a(w;u, v) =

∫

Ω

D(∇wσ)∇u · ∇vdx +

∫

Ω

λDuvdx,

l(v) =

∫

Ω

λDfvdx.

Iterative scheme: To find the solution u of the nonlinear problem (27), we start

from an initial guess u0 and we use the explicit Euler scheme with
∂u

∂t
replaced by

un+1 − un

δt
(where δt is the time step). We then obtain the following semi-implicit

problem:

(33)







Given un, find un+1 ∈ V, such that:
∫

Ω

un+1 − un

δt
v dx+ a(un, un+1, v) = l(v) ∀v ∈ V.

At each iteration, the bilinear form a(un, un+1, v) is symmetric and positive defi-
nite and the problem (33) is well defined. The proof of the next proposition is a
straightforward application of the analysis in [16] (see also Weickert [38]).

Proposition 5.
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(i) Let f ∈ L2(Ω); then there is a unique solution u(t, x) of (27), u ∈ C([0, T ];V )∩
L2(0, T ;V ′), V ′ stands for the dual of V .

(ii) Let (un)n denotes the sequence of solutions of the linearized problems (33).
Then, the sequence (un)n converges, in C([0, T ];L2(Ω)) as n→ +∞, to the
solution u of problem (27).

5. Numerical examples

All the PDEs considered in this section are solved using the finite element open
source software FreeFem++ [27]. In all the examples, the damaged regions are
marked with red color rectangles. All the examples are for 2-D images.

Examples 1. In the first example, the task is to fill broken edges in a white strip.
We display in Fig. 2 the evolution of the meshes for iterations 1, 10 and 20. one can
see that the meshes are progressively sparse. The first mesh is T0 which is a regular
grid where every pixel corresponds to a node. The harmonic inpainting without
adaptation in Fig. 3 does not achieve any connectedness and produces a smooth
solution u in D, blurring the edges. At the contrary, with the adaptive algorithm
the edges of the strip are well captured.

Figure 2. The mesh at iterations 1, 10 and 20, respectively.

Figure 3. From left to right: Damaged, Harmonic and Harmonic
& adaptation images, respectively.

Examples 2. In the second example, we have chosen a 220× 250 gray-scale image
containing some edges and jumps. The damaged regions are numbered (see Fig. 4).
We show in Fig. 5 the results obtained using the total variation (left) and the
harmonic models without adaptation (middle), and with the adaptation, using the
error indicator ηK (right). Note that the total variation is approximated here with
√

ǫ+ |∇u|2 (ǫ = 0.001).
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In Fig. 6, we display the inpainted images using the weighted harmonic model
where we adapt with the error indicator η′k (left), the Ginzburg-Landau with adap-
tation (middle) and the anisotropic model (right). We have performed the adapta-
tion with the two residual error indicators of Section 2. In both cases, we initialized
the algorithm by a large value of α = α0 = 50 and we performed 20 iterations for
the error indicator ηK and 40 iterations for η′K . We give in Fig. 9 the two error
indicators ηK and η′K at the final iteration of the algorithm. We note that numer-
ically, the error indicator η′K performs better for these examples as it is computed
in the element K, rather than from the jumps on the edges which is less stable for
computations.
In addition, we emphasize that the adaptive method, both the weighted harmonic
and the the Ginzburg-Landau equation, gives visually comparable results to those
obtained using the anisotropic nonlinear model. The dissimilarities are only seen
by zooming (so at few pixels scale).
We present in Fig. 10 and Fig. 11 the evolution of the mesh for some iterations (0,
2, 10 and 20) where we used η′K as an error indicator. The number of elements
decreases at the first iterations and produces sparse solutions requiring few degrees
of freedom in the homogeneous zones. This is shown by the curve in Fig. 12 where
we presented the degrees of freedom (right) and the L2-error ER = ||ukα − uexact||
between the restored and the exact image (left), in a semi-log scale, as a function
of the number of iterations. Note that the gain in term of the reduction of degrees
of freedom depends also on the size of the edges set and may be enhanced by more
unrefinement in the homogeneous areas (see [8]).

In the numerical experiment in Fig. 13 , the aim is to remove the foreground
text in the input image. We initialized the algorithm with a large value of α = 50
and we performed 10 iterations of the adaptive algorithm. The text has been
successfully removed and the restored image is close to the original one. We display
the difference between the original and the restored images at iterations 1 and 10
respectively and we give in Fig. 14 a zoom caption (the resolution is degraded in
the initial image however the “blurring” produced by the adaptive method−−α >
0−−is discernible at this scale).

Figure 4. Original and damaged images.

Examples 3. We present in Fig. 15 the result for simultaneous image inpainting
and denoising. The input image f is corrupted by a Gaussian noise in the region
Ω\D. We started the computation with α = 50 in the entire image domain which
produces a blurring of the edges at the first iterations. However, the simultaneous
adaptive choice of α and λ allows us to recover the edges. We present the evolution
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Figure 5. From left to right: restored images using total varia-
tion, harmonic and harmonic & adaptation (indicator ηK).

Figure 6. From left to right: restored images using Harmonic
& adaptation (indicator η′K), Complex Ginzburg-Landau and
anisotropic diffusion.

Figure 7. Zoom on region 1 (40 × 25 Pixels): Total variation -
Harmonic - Harmonic & adaptation (indicator ηK).

Figure 8. Zoom on region 1 (40×25 Pixels): Harmonic (indicator
η′K) - Complex Ginzburg-Landau - Anisotropic.

of the restored image for iterations 5 and 20. In the 5th iteration (middle), the
image is smoothed even in the regions where the data is available. λ is increased
during the process following the formula (20) in order to fit the data-term.

Examples 4. In Fig 17 and Fig 16, we compare different methods when the dam-
aged region contains a corner. The anisotropic nonlinear model (see the left-hand
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Figure 9. The error indicators ηK and η′K at the convergence.

Figure 10. The initial mesh and the adapted one at iteration 2.

Figure 11. The mesh at iterations 10 and 20.

plots of Fig 17) produces well contrasted edges separating the three homogeneous
areas of the inpainting domain. But, the corner itself is not well captured. The
harmonic model with adaptation (see the middle plots of Fig 17), approximates
better the solution near the corner (still not well captured) and the edges are im-
properly contrasted. In the left-hand plots of Fig 17, we display the solution of
the complex Ginzburg-Landau equation with the adaptation. First, the complex-
ification allows us to diffuse more than two colors (0 and 1). Second, this model
with adaptation allows us to approximate and to capture the corner (relatively to
the other methods), and reveals high contrast, which is an advantage of this model
compared to the other ones in this case. We display in Fig 18 the evolution of the
mesh at iterations 0, 7 and 30 for the complex Ginzburg-Landau equation.
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Figure 12. (Left:) The error logER = log ||ukα − uexact||2, and
(Right:) the number of degrees of freedom, as functions of the
iteration numbers.

Figure 13. Top row: Original and damaged images. Middle row:
Restored image (Harmonic & adaptation) at iterations 1 and 10,
respectively. The difference between the original image and the
restored one at iterations 1 and 10, respectively.
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Figure 14. Zoom on a damaged region (40× 50 Pixels): Original
and restored images, respectively.

Figure 15. From left to right: Damaged and noisy - restored at
iteration 5 - restored at iteration 20.

Examples 5. The latest example in Fig 19 deals with the reconstruction of the
curvature. The inpainted edge in the missing part tends to be a straight line and
it is clear that our adaptive algorithm behaves like the Mumford-Shah model (see
[17] for the denoising treatment). This behavior is expected because the preferable
edge with the Mumford-Shah model are those which have the shortest length due
to the penalization term on the length. This example is an extreme case for second
order PDEs methods which fail to capture the curvature contrary to higher order
PDEs ([11]).

Figure 16. The original and damaged images.

6. Conclusion and perspectives

In this paper, we have considered an adaptive approach for image inpainting
based on a local selection of the different parameters in the models, and on mesh
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Figure 17. From left to right: The restored images using
anisotropic nonlinear, Harmonic & adaptation and complex
Ginzburg-Landau & adaptation models, respectively.

Figure 18. The mesh at iterations 0, 7 and 30, respectively.

Figure 19. From left to right: Original, damaged and restored
images (Harmonic & adaptation), respectively.

adaptation techniques. We started with the formulation of a linear variational
model, and detailed its numerical implementation based on the finite element dis-
cretization which approximate in the sense of the Γ-convergence the Mumford-Shah
functional. We extended the model to the Ginzburg-Landau equation, more suited
for multi-gray level images. In order to make some comparisons, we presented the
nonlinear diffusion model which is a standard and high quality method in image
processing. The numerical experiments for the various examples presented here
demonstrate the efficiency of the adaptive method and tends to confirm that find-
ing fine structures in the reconstructed images is a matter of the diffusion more than
a non-linearity in the source term in the PDE. We may say that the multi-scale
strategy, based on a rigorous adaptive selection of the diffusion “rate” and location,
leads to comparable results that one might expect from the nonlinear PDE consid-
ered in this field while presenting an evident advantage from the numerical point of
view. Finally, the combination of this approach and the complex Ginzburg-Landau
model yields very encouraging results.
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The adaptive approach of the article may be applied to other problems in image
analysis. Since the anisotropic diffusion remains one of the best methods, a first
tentative to improve the adaptive approach is to derive an anisotropic version,
which means considering α as a matrix (this is an ongoing work). A second step
will be to extend it to fourth-order PDEs which are more suitable for the inpainting
by preserving high curvatures ([30, 35]). Finally applying the adaptive approach to
the vectorial setting (e.g. color images) would be a challenging problem and will
constitute a breakthrough in the field.
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