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NON-REGULARISED INVERSE FINITE ELEMENT ANALYSIS

FOR 3D TRACTION FORCE MICROSCOPY

JOSÉ J MUÑOZ

Abstract. The tractions that cells exert on a gel substrate from the observed displacements is
an increasingly attractive and valuable information in biomedical experiments. The computation

of these tractions requires in general the solution of an inverse problem. Here, we resort to the

discretisation with finite elements of the associated direct variational formulation, and solve the
inverse analysis using a least square approach. This strategy requires the minimisation of an

error functional, which is usually regularised in order to obtain a stable system of equations with

a unique solution. In this paper we show that for many common three-dimensional geometries,
meshes and loading conditions, this regularisation is unnecessary. In these cases, the computa-

tional cost of the inverse problem becomes equivalent to a direct finite element problem. For the

non-regularised functional, we deduce the necessary and sufficient conditions that the dimensions
of the interpolated displacement and traction fields must preserve in order to exactly satisfy or

yield a unique solution of the discrete equilibrium equations. We apply the theoretical results to

some illustrative examples and to real experimental data. Due to the relevance of the results for
biologists and modellers, the article concludes with some practical rules that the finite element

discretisation must satisfy.

Key words. Inverse analysis, linear elasticity, finite elements, three-dimensional traction force

microscopy.

1. Introduction

The development of computational methods that allow scientists to accurately
quantify the forces that cells exert on their surrounding has attracted a large amount
of research [6, 14, 29, 31, 9], which can be also found in recent review articles [30].
These methods are currently being used to elucidate the proteins that control the
mechanical response of cells when undergoing embryo morphogenesis, wound closure
or cancer growth, to name a few [5, 32].

Some of the experimental techniques that were originally developed to mea-
sure the cellular tractions used micromachined substrates [15], microneedles, or
micro-pilars [13]. Nowadays, the most popular methodology is to compute the cell
tractions from the measured cell velocities and displacements on a polyacrylamide
gel substrate. In some cases, this gel is partially covered by a membrane of poly-
dimethylsiloxane (PDMS) that surrounds the cell monolayer in order to control the
initial conditions of the cell migration. The idea of indirectly retrieving the cell
tractions from the substrate deformations is founded on the seminal work of Harris
et al. [18], and was later experimentally implemented in two [10] and three dimen-
sions [11]. These techniques have been experimentally improved by Toyjanova et al.
[31] in order to increase the accuracy of the measurements. Figure 1 illustrates the
set-up considered in the present paper, where the deformation u0 at the top surface
of an assumed elastic gel is measured, and the traction field t obtained indirectly.
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Elastic Gel

Cell monolayer

Figure 1. General set-up in Traction Force Microscopy (TFM).
A displacement field u0 is imposed by the cell monolayer on the
top of an assumed elastic gel is measured, and the traction field t
computed by solving an inverse elasticity problem.

Computationally, retrieving the tractions t exerted by the cells from the mea-
sured displacements u0 requires the solution of an inverse elasticity problem. In the
present paper we analyse the finite element discretisation of this inverse problem.
The use of finite elements in inverse analysis is a common practice in scattering
problems [4], localisation of pollutant sources [12], estimation of Robin coefficients
[21], or in elasticity problems [2, 34]. So far, the construction of well-posed inverse
problems is ensured by resorting to Tikhonov regularisation [2, 27, 29, 34], which
depends on a penalty parameter. The optimal value of this parameter, which com-
promises the accuracy of the equilibrium conditions and the condition number of
the system of equations has been studied for instance in [17]. We here determine
the conditions that give rise to a well-posed discretised inverse elasticity problem
in the absence of regularisation. We focus our attention on finite element (FE)
discretisations of some commonly employed configurations in Traction Force Mi-
croscopy (TFM), also known as Cell Traction Microscopy [33]. We show that the
regularisation process is in fact unnecessary, or it can be circumvented by modifying
the domain discretisation.

The paper is organised as follows. In Section 2 we present the continuous direct
and inverse problems. Section 3 describes the discrete versions of these two prob-
lems, and analyses the uniqueness of the solution in the inverse problem according
to the dimensions of the discrete traction and displacement fields. Section 4 applies
the methodology to a toy problem that illustrates the main theoretical results, and
to a problem with real experimental data.

2. Continuous problem in linear elasticity

2.1. Continuous direct problem. We consider an open connected domain Ω ⊂
R3 subjected to homogeneous displacement conditions at a Dirichlet boundary Γd 6=
∅ and to surface loads t on a Neumann boundary Γn, with Γ̄d ∩ Γ̄n = ∅ and with
the boundary ∂Ω = Γd ∪ Γn which is Lipschitz-continuous. The material in Ω is
assumed to obey a linear elastic constitutive law with Lamé coefficients λ > 0 and
µ > 0, which are not necessarily constant in the domain Ω. After neglecting the
volumetric forces, the strong form of linear elasticity may be stated as the following
boundary value problem [7]:

∇ · σ(u) = 0, ∀x ∈ int(Ω),(1)

σ(u)n = t, ∀x ∈ Γn,(2)

u = 0, ∀x ∈ Γd,(3)

with σ(u) = λ(∇ · u)I + µ(∇u + ∇uT ) denoting the stress tensor. The traction
field may contain discontinuities, but it is assumed that t ∈ T ⊆ L2(Γn). We
point out that the strong form (1)-(3) and the subsequent results are valid for
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homogeneous and non-homogeneous problems. Indeed, linear anisotropic or non-
homogeneous materials may be handled by resorting to the necessary alternative
stress-strain relationships or by just using position dependent material properties.
In fact, the latter case has motivated the present article. These changes will only
affect the computation of the matrices that will be presented in the finite element
discretisation, but do not modify the methodology and theoretical results of this
article.

Let us define the following spaces U and V ,

U = V = (H1
0 (Ω))3 =

{
v ∈ (H1(Ω))3 : vi = 0 on Γd, i = 1, 2, 3

}
,

which are endowed with the scalar product (u,v) =
∫

Ω
u · vdΩ, and equipped with

the norm ||v||Ω =
(∑3

i=1 ||vi||21,Ω
)1/2

, where ||vi||21,Ω =
∫

Ω
(|vi|2 + ∇vi ·∇vi)dΩ.

After multiplying by a trial function v ∈ V the first equation in (1)-(3), integrating
on the domain Ω, integration by parts, and using the boundary conditions, the
weak form of problem (1)-(3) reads [7]:

Find u ∈ U s.t. a(u,v) = b(v), ∀v ∈ V.(4)

The bilinear and linear forms a(·, ·) and b(·) are given by,

a(u,v) :=

∫
Ω

σ(u) : ε(v)dΩ,

b(v) :=

∫
Γn

v · tdΓ,

where ε(v) = 1
2

(
∇v + (∇v)T

)
is the small strain tensor. Since the bilinear form

a(·, ·) is continuous and coercive (or V− elliptic) with respect to the space V (see
[7], Section 1.2), and we assume that Γd 6= ∅, the weak form in (4) accepts only
one solution [7]. We will denote by u[t] the solution of problem (4) for a given
boundary load t.

In the subsequent paragraphs we will in fact consider a partitioning of the domain
Ω into domains Ω0 ⊆ Ω and Ω1 = Ω\Ω0. In sub-domain Ω1 we assume a given
displacement field u1 that satisfies the elasticity equations,

∇ · σ(u1) = 0, ∀x ∈ int(Ω1),

σ(u1)n = t, ∀x ∈ Γn ∩ Ω1,(5)

u1 = 0, ∀x ∈ Γd ∩ Ω1.

We will then denote by u[t,u1], the solution u0 that satisfies the elasticity
problem in Ω0 compatible with u1 and the boundary conditions in (2)-(3),

∇ · σ(u0) = 0, ∀x ∈ int(Ω0),

σ(u0)n = t, ∀x ∈ Γn ∩ Ω0,(6)

u0 = 0, ∀x ∈ Γd ∩ Ω0,

u0 = u1, ∀x ∈ ∂Ω0\(Γn ∪ Γd),

It is important to stress that problem (6) aims to find an unknown displacement
u0, while equations (5) just give some conditions on the known displacement u1.
The tractions t and displacements u1 are known, and u1 satisfies the equilibrium
equations, so that problem (5)-(6) accepts only one solution (u1,u2). This direct
problem has no practical interest, but it is used here to ease the presentation of the
inverse problem in the next subsection.
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2.2. Continuous inverse problem. The continuous inverse problem of (6)-(5)
consists on assuming instead the knowledge of displacements u0, and finding the
traction and displacements fields, t and u1 respectively. Formally, it is stated as,

Given u0 ∈ U0(Ω0),find t ∈ T ⊆ L2(Γn) and u1 ∈ U1(Ω1) s.t.

b̄(t,v) = ā(u1,v) + c̄(v), ∀v ∈ V,(7)

where the forms ā(u1,v), b̄(t,v) and c̄(v) are given by,

ā(u1,v) :=

∫
Ω1

σ(u1) : ε(v)dΩ,

b̄(t,v) :=

∫
Γn

v · tdΓ,

c̄(v) :=

∫
Ω0

σ(u0) : ε(v)dΩ.

Domain Ω0 contains the location of the points where u0 is measured. Although it
is possible to experimentally measure displacements fields at the interior of tissues
or organs, in our examples in Section 4, domain Ω0 will be limited to the top
boundary of the gel, in contact with the cell monolayer (see Figure 1), while Ω1 is
the interior of the gel. The unknown t will correspond in this case to the tractions
exerted by the cells on the top of the gel.

In general, the existence and uniqueness of the solution of (7) cannot be guaran-
teed. This is partially due to the fact that the measured displacements u0 may not
be a solution of a linear elastic problem, due to the non-linearities of the substrate
or to experimental errors. For instance, if ∇·σ(u0) 6= 0 somewhere in int(Ω0), then
no traction field satisfying (7) can be found. If instead ∇·σ(u0) = 0 everywhere in

Ω0, the choice t = σ(u0)n
∣∣∣
Γn∩Ω0

and u1 the solution of the elasticity problem in

(5) is a solution of the inverse problem. Since we do not impose any conditions on
the measurements u0, the solvability of (7) cannot be ensured. The methodology
presented in this paper aims to find a traction and displacement field that solves
a discrete version of the inverse problem, and if no solution exists, minimises the
error ā(u1,v) + c̄(v)− b̄(t,v) for arbitrary test functions v.

Furthermore, u0 is in practice only retrieved on a set of n0 discrete points X =
{x1, . . . ,xn0

} of Ω0. We denote by O the operator that extracts the values of
a continuous field u0 on the set X, that is, Ou0 = {u0(x1), . . . ,u0(xn0

)}. The
inverse problem in (7) is then modified by defining the following functional,

J̃0(t,u1) := ||Ou[t,u1]−Ou0||2,(8)

with || • || the standard Euclidean norm in R3×n0 , and solving the following min-
imisation problem:

(t∗,u∗1) = argmin
t,u1

J̃0(t,u1).(9)

We note that this minimisation problem differs from other inverse problems
which also consider partial knowledge of the field u0 [2, 28]. The aim in these
works is to minimise the following regularised functional :

J̃ε(t) := ||Ou[t]−Ou0||2 + ε||t||22,Γn
, ε > 0,(10)

with || • ||2,Γn
the L2-norm in Γn. Our functional in (8) is instead non-regularised,

that is, J̃0(t,u1) in (8) does not include the term ε||t||22,Γn
. This term is needed
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in order to ensure the coercivity of the penalty functional J̃ε(t), and therefore
guarantee the uniqueness of the optimum t∗ (see for instance [28], Section 8.9,
for a proof). If this term is not included, the minimisation problem may become
ill-posed, and the solution of its discrete form may require the computation of a
pseudo-inverse matrix, which may become computationally prohibitive. However,
in the functional defined in (10), the value of the parameter ε needs to be chosen
appropriately [25]. The larger the value of ε, the larger the error in the equilibrium
equations in (4) becomes, while for very small values of ε, the regularised problem
may become ill-conditioned [17]. In the next section, instead of considering the
regularisation of the problem in (8)-(9), we will analyse the discrete form of the
inverse problem and study the need for such regularisation.

3. Finite Element discretisation

3.1. Discrete direct problem. Let us consider a finite element discretisation
of the weak form in (4). We discretise the domain Ω ⊂ R3 with a structured or
unstructured mesh M using NE non-overlapping conformal hexahedral elements
K1, . . . ,KNE

and N nodes xi ∈ Ω, i = 1, . . . , N . Elements Ke, e = 1, . . . , NE are
such that [4, 7],

Ω̄ = K1 ∪K2 . . . ∪KE , int(Ke) ∩ int(Ke′) = ∅,∀e 6= e′.

Let us define the polynomials Qr(Ke) on an element Ke as

Qr(Ke) = {q : q(x, y, z) =∑
0≤i,j,l≤r

cijlx
iyjzl, (x, y, z) ∈ Ke, cijl ∈ R,∀Ke ∈M}.

In our numerical examples we will use the case r = 1, which is tantamount to
using the following finite element spaces Uh ⊂ U and V h ⊂ V :

Uh = V h = {v(x) ∈ (H1
0 (Ω))3 : v ∈ C(Ω),v|Ke ∈ Q1(Ke), ∀Ke ∈M}.

We are thus employing tri-linear hexahedral elements, although the results pre-
sented here are also valid for other element types and degrees. After replacing in
(4) the spaces U and V by Uh and V h, respectively, the discrete version of the weak
form reads,

Find uh ∈ Uh s.t. a(uh,vh) = b(vh), ∀vh ∈ V h.(11)

The space of the traction field T will be replaced by the set of piece-wise bi-linear
tractions in C0(Γn):

Th := {t(x) ∈ (L2(Γn))3 : t|∂Ke
∈ Q1(∂Ke),∀ ∂Ke ∈ Γn}.

The space Th is illustrated in Figure 2b, together with the nodally interpolated
displacement field uh. The use of the spaces defined above is equivalent to resorting
to the following Lagrangian interpolation of the field u and traction field t,

u ≈ uh =
∑
∀j,xj 6∈Γd

qj(x)uj ,

t ≈ th =
∑
∀j,xj∈Γn

q̃j(x)tj ,

where the polynomials qj(x) ∈ Q1 and q̃j(x) form bases of the spaces Uh and Th

respectively, and uj ∈ R3 and tj ∈ R3 are the displacement and traction vectors at
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node j. The solution of (11) is then equivalent to solving the following system of
equations [19]:

Ku = At,(12)

with K the standard stiffness matrix and A a matrix that projects the boundary
loads on nodal contributions. Matrix K is formed by block matrices Kij that couple
nodes i and j,

Kij =

∫
Ω

(
λ∇qi∇qTj + µ((∇qTi ∇qj)I +∇qj∇qTi )

)
dΩ, xi,xj 6∈ Γd,

while matrix A adopts the following expression:

Aij = I

∫
Γn

tr(qi(x))q̃j(x)dΓ, ∀i, j,xi 6∈ Γd,xj ∈ Γn,

with tr(qi(x)) the trace of function qi(x) on the domain Γn. Vectors u and t in
(12) gather the set of nodal displacements uj ,∀xj 6∈ Γd, and nodal values tj .

(a) (b)

Figure 2. a) Scheme of cell monolayer on gel substrate, discre-
tised with a three-dimensional two-layered Cartesian mesh. b)
Scheme of the discretisation on the top surface of the substrate,
using nodal displacements and nodal tractions. Black circles and
lines indicate respectively nodes and finite element mesh. The grey
circle indicate the location where the traction field is defined.

It will be convenient to consider a modified matrix Â and alternative loading
consisting on a set of point loads t̂j ,∀xj ∈ Γn:

Âij = δijI, ∀i, j,xi 6∈ Γd,xj ∈ Γn.(13)

t̂j =

∫
Γn

tr(qi(x))thdΓ, ∀j,xj ∈ Γn, t
h ∈ T i.(14)

It can be verified that At = Ât̂, and therefore the product Ât̂ has equivalent
total nodal loads, but with simpler matrix components Âij . Furthermore, and in

view of equation (14), the relation between t and t̂ may be written as

t̂ = Mt,

with

Mij = I

∫
Γn

tr(qi(x))q̃j(x)dΓ,∀i, j,xi,xj ∈ Γn.

The symmetric matrix Mij corresponds in fact to the mass matrix, but with no
density factor, associated to the boundary Γn, and is thus invertible [19]. Therefore,
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the space Th can be represented by either t̂ or t = M−1t̂. In the former case, the
system of equations of the discrete direct problem in (12) takes the following form:

(15) Ku = Ât̂,

with Â = AM−1 the matrix given in (13). Since we assume that the continuous
problem in (4) has a unique solution, the discrete problem (11) has also a unique
solution [7], that is, matrix K is regular, and the system of equations in (12) and
in (15) accept the same unique solution u for any loading t and t̂ = Mt.

In agreement with the partitioning of domain Ω = Ω0 ∪Ω1 presented in Section
2.1, with int(Ω0)∩ int(Ω1) = ∅, we will also consider the following decomposition of
the discretised displacement field Uh = Uh0 ⊕Uh1 , where Uh0 denotes the set of nodal
measured displacements u0, and Uh1 is the set of nodal unknown displacements u1,
which cannot be experimentally measured. For instance, for the geometry depicted
in Figure 2a, Uh1 may include the vertical displacements at the top surface, uz, or in
multilayered discretisations (Nz > 1), the displacements at the intermediate layers
of the gel um at height z, 0 < z < H.

Let us introduce the notation n0 = dim(Uh0 ), n1 = dim(Uh1 ), n = dim(Uh) =
n0 + n1, and m = dim(Th). According to the partitioning of Uh, the system of
equations corresponding to the direct problem reads:

(16) K0u0 + K1u1 = At,

or equivalently,

(17) K0u0 + K1u1 = Ât̂,

with K0 ∈ Rn×n0 , K1 ∈ Rn×n1 , and A, Â ∈ Rn×m.
We note that partial knowledge of U has been also treated in [2, 33, 34] by resort-

ing to the adjoint problem of the continuous problem [25], which is solved together
with a regularised inverse problem. Here instead, we deal with this partially known
displacement in the discretised problem.

In addition to the discrete equilibrium equations in (12), we could also impose
the equilibrium conditions on the discrete traction field

∫
Γ
thdΓ = 0 and

∫
Γ
x ×

thdΓ = 0. These conditions are not considered here because in many cases, due
to experimental limitations, the cell monolayer is not isolated, and just a subset of
the whole cellular system can be analysed. In this case, the boundary Γn includes
external forces that other cells not in Ω exert.

3.2. Discrete inverse problem. The discretised form of the functional J̃0(t,u1)
in (8) reads:

(18) J̃h0 (t,u1) := ||K−1
0 (At−K1u1)− u0||2.

The minimisation problem mint,u1 J̃
h
0 (t,u1) would give rise to a system of equa-

tions that requires the computation of K−1
0 . For this reason, we will instead use

the following functional,

Jh0 (t,u1) := ||K0u0 + K1u1 −At||2,(19)

which may be interpreted as the functional in (18) but using a different metric of
the vector space. The minimisation problem mint,u1 J

h
0 (t,u1) gives now rise to the

following normal equations:[
A −K1

]T [
A −K1

]{ t
u1

}
=
[
A −K1

]T
K0u0.(20)
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It will become convenient to rewrite this system as the solution of variables t
and u1 in a partitioned manner. By using the relation A = ÂM, and the fact that
the mass matrix M is positive definite and thus invertible, the system of equations
in (20) can be rewritten as,

KT
1 ĨK1u1 = −KT

1 ĨK0u0,(21)

t = M−1(ÂT Â)†ÂT (K0u0 + K1u1),(22)

where Ĩ = I − Â(ÂT Â)†ÂT , and (ÂT Â)† denotes the pseudo-inverse of ÂT Â,

which is equal to the inverse of ÂT Â when this matrix is invertible. This new form
allows us to compute u1 from equation (21), and then obtain the traction field t
using equation (22).

The form in (21)-(22) is clearly more convenient because requires to solve only
the system in (21). It will be also shown in the numerical results that the condition

number of matrix KT
1 ĨK1 is much lower than the matrix of the system in (20). The

next proposition analyses the uniqueness of the solution in the normal equations
(20) or (21)-(22), and also determines when the computation of the pseudo-inverse
is necessary.

Proposition 1. i) The vectors of nodal tractions t ∈ Rm and displacements
u1 ∈ Rn1 that satisfy the system of equations in (20) are unique if and only
if m ≤ n0.

ii) If m = n0, the optimal solution (t∗,u∗) satisfies Jh0 (t∗,u∗1) = 0.

Proof. i) Only if implication. We will show that when m > n0, the solution
is not unique. We will distinguish two situations:
m > n1+n0: Matrix A ∈ Rn×m is rectangular with m > n, and therefore

dim(ker(A)) = dim(ker(ATA)) ≥ m − n > 0. Consequently, either (20)
has no solution, or if t∗ is a solution of (20), any solution with the form
t∗ + αt0, α 6= 0, with t0 ∈ ker(A), will also be a solution of (20).
n0 + n1 ≥ m > n0: Matrix K1 ∈ Rn×n1 stems from a FE discretisation

of a linear elastic problem, with its columns associated to the displacements
u1 ∈ Rn1 . Since the non-discretised problem in (1)-(3) is well-posed, matrix
K1 is full-rank and thus dim(ker(K1)) = 0. Also, when m ≤ n, we have

that ÂT Â = (ÂT Â)† = I ∈ Rm×m, and therefore, Ĩ = I − ÂÂT ∈ Rn×n
is an identity matrix with m diagonal components equal to zero. The
product ĨK1 is then equal to matrix K1, but with m rows being equal to
0. If m > n0, then dim(ker(ĨK1)) ≥ m − n0 > 0. This implies that ĨK1

is rank-deficient and that the system of equations in (21) has no solution
or accepts more than one solution. In the latter case, by using equation
(22) for any of these multiple solutions, we obtain in turn multiple traction
vectors t.

If implication. As before, dim(ker(K1)) = 0, and matrix ĨK1 is equal
to matrix K1 with m rows being replaced by 0. The m rows correspond
to those degrees of freedom (dofs) where the tractions are applied. Since
m ≤ n0, t is applied onto nodes where u is known, i.e. a subset of u0.
Hence, dim(ker(ĨK1)) = dim(ker(K1)) = 0. It follows that the system of
equations in (21) has full-rank, and the solution u1 is unique. The optimal
traction field t is also unique after inserting u1 into (22).
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ii) When m = n0, we have that ÂÂT = I ∈ Rn×n. Then, by inserting the
expression of t in (22) into

K0u0 + K1u1 −At

and using the relation A = ÂM, it can be verified that the expression
above vanishes, and therefore, the functional Jh0 (t,u1) defined in (19) also
vanishes.

�

In view of Proposition 1 and its proof, we can conclude that when m ≤ n0, the
normal equations in (21)-(22) take the following simpler form:

KT
1 Ĩ0K1u1 = −KT

1 Ĩ0K0u0,(23)

t = M−1ÂT (K0u0 + K1u1),(24)

with Ĩ0 = I − ÂÂT . If instead m > n0, the inverse problem may be solved by
resorting to the pseudo-inverse (ÂT Â)† and the normal equations in (21)-(22), or
alternatively, by using a regularised functional such as

J̃hε (t,u1) := Jh0 (t,u1) + ε||t||22, ε > 0.(25)

We note that Proposition 1 includes also the trivial case n1 = 0, which is ob-
tained by removing the components of vector u1 and matrix K1 in equation (20).

The traction is then obtained from (24) simply as t = M−1ÂTK0u0. However,
the situation n1 = 0 has no practical interest, since in general it furnishes a too
inaccurate solution of the discrete inverse problem.

3.3. Condition of discrete inverse problem. Although Proposition 1 allows
to determine the conditions that ensure a unique solution, nothing has been said
about the conditioning of the system of equations. In the trivial case n1 = 0, the
system in (20) reduces to equation (24), so that the conditioning of the system of
equations is equivalent to the one of a standard direct FE problem. When n1 > 0
and m ≤ n0, the optimal values of the inverse problem require the solution of the
system in (23), whose condition number, κI = cond(KT

1 ĨK1), depends on the finite
element interpolation (degree, number of elements or their aspect ratio) and the
Lamé parameters λ and µ.

In the numerical results presented in Section 4.2, we show numerically the de-
pendence of κI on some relevant numerical parameters. We point out here that,
as expected, κI depends on the differences in element sizes within a problem, but
it is independent of homogeneous variations of the element size h, since all the
components in matrix K1 and the eigenvalues are equally affected by h.

For a real symmetric square matrix K, we have that cond(KTK) = cond(K)2. In

our case though, K1 is a rectangular matrix with n rows and n1 columns, while ĨK1

is equal to K1 but with m rows equal to 0. The full matrix of the direct problem
is K = [K0 K1], whose condition number is equal to κD = cond(K). We show in
our numerical results that κD < κI << κ2

D, that is, the condition number of the
inverse problem is larger than the condition number of the direct problem, but does
not worsen significantly for the examples tested, with up to 32000 elements.

The condition number κD, and therefore also κI , depend on the number of
elements. More importanty, kI also depends on the factor m/n. Indeed, as m/n
decreases, with m ≤ n0, the matrix of the inverse problem resembles a direct
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problem, but with a matrix KT
1 ĨK1 that approaches KTK. Therefore, we have the

following relation:
lim

m/n→0
κI = κ2

D,

and in all the cases tested, we have that κI < κ2
D.

The condition number of the normal equations affect in turn the stability of
the solution u1 and t. From the normal equation in (23), and for a given pertur-
bation δu0 on the measured displacements u0, the perturbation on the retrieved
displacements δu1 may be bounded as,

||δu1||2
||δu0||2

≤ κI ||K0||2
||u1||2

||ÂTK0u0||2
.(26)

This relation follows from the fact that for any system with the form Bx = b,
it can be shown that ||δx||2/||δb||2 ≤ κB ||x||2/b||2, with κB the condition number
of matrix B, and by also using the relations,

||ÂTK0δu0||2 ≤ ||K0δu0||2 ≤ ||K0||2||δu0||2.
A similar bound can be deduced from equation (24), which reads,

||δt||2
||δu0||2

≤ κM ||K0||2
||t||2

||ÂT

(
I−K1

(
ÂTA

)−1

KT
1 Ĩ0

)
K0u0||2

,

with κM the condition number of the mass matrix M. When m = n0, we have that
u1 is absent and thus the previous relation simplifies to,

||δt||2
||δu0||2

≤ κM ||K0||2
||t||2

||ÂTK0u0||2
.(27)

The bounds in (26) and (27) show that the condition numbers κI and κM deter-
mine the stability of the solution. The former may have a more detrimental effect,
since it may attain the value κ2

D. However, as noted before, in the cases tested we
have that κI << κ2

D, and therefore the solution remains stable with respect to the
noise in the measured displacements δu0, as it also numerically verified in Example
4.3.

3.4. Discussion and Implementation. The results in Proposition 1 neither de-
pend on the order of interpolation nor on its continuity, but just on the relative
dimensions between the displacement and traction dofs. Therefore, these results
are equally valid for other element types, as far as both the displacements and trac-
tions are nodally interpolated. In fact, we note that the result in Proposition 1 does
not carry over to the situation when the traction field is considered as a piece-wise
constant traction field. Although we do not study this case here, we just mention
that for elementally interpolated tractions, the equivalent normal equations would
yield a non unique solution if m > n, with m the number of elemental dofs.

Proposition 1 allows us to state that the necessary condition m ≤ n is not
sufficient for obtaining a unique solution, and conclude that,

• Rank-deficient problems may be rendered full-rank by adding new measured
displacements observations, or removing some of the nodal tractions, that
is, by increasing n0 or decreasing m.
• The problem that searches optimal nodal traction field t on the same nodes

where the displacement has been measured has a unique solution, since in
this case m = n0.
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We note that from the definitions of the functionals in (19), and assuming that
the space Uh = Uh0 ⊕ Uh1 is constant, but with the partitions Uh0 and Uh1 changing
dimensions, that is, keeping the mesh and n constant, but changing n1 and n0, the
following inequalities hold:

0 ≤ min
t,ū1

Jh0 (t, ū1) ≤ min
t,u1

Jh0 (t,u1) ≤ min
t,n1=0

Jh0 (t), Uh1 ⊆ Ūh1 .(28)

These relations open the possibility to design adaptive strategies, with the aim
of

• reducing the error of the least-squares problem, that is, the measure Jh0 of
the solution in the optimal inverse problem while keeping the mesh fixed.
• reducing the error between the discrete and the analytical solution, that is,

the norm of the difference between the discrete solution and the analytical
solution, ||uh − u|| = (uh − u,uh − u)1/2.

Box 1. Solution algorithm for FEM based TFM.

• Step 1. Build matrices K0,K1. Compute scalars m, n0 and n1.
• Step 2. Compute matrices Â and M.
• Step 3.

– If m > n0:
Step 3.1. Compute pseudo-inverse (ÂtÂ)† and solve
(21)-(22).

– Else:
Step 3.2. Solve system in (24)-(23).

In view of Proposition 1, we can reduce the value of Jh0 by increasing the ratio
m/n0 ≤ 1. However, even in the case m = n0, when the discrete equilibrium
equations are exactly satisfied, the discrete solution uh may be too inaccurate with
respect to the analytical solution u. For this reason, adaptive strategies for reducing
the error ||uh − u|| should be envisaged. We will not apply these techniques here,
but we point out that such strategies for inverse problems can be found for instance
in [3, 24, 35], while other a posteriori strategies for elasticity problems [1] could be
used once the discrete solution uh is computed.

In the numerical results given in the next section, we have applied the solu-
tion algorithm given in Box 1, with the spaces Uh and V h specified in Section
3.1. The computation of pseudo-inverse matrix becomes necessary in Step 3.1. In
this case, the regularisation of the inverse problem may become computationally
more efficient than computing the pseudo-inverse. In these situations though, and
according to the results deduced, it is advised to change the interpolation of the
traction field or the displacement field in order to avoid regularising the inverse
problem or computing the pseudo-inverse. In our numerical examples, the latter
has been computed by retrieving the singular value decomposition of the system
matrix (command svd in Matlab).

4. Numerical results

In all the examples tested here we have used a material with Young modulus
E = 3000 and Poisson ratio ν = 0.3 (Lamé constants λ = 1730.8 and µ = 1153.8).
The solution of the inverse problem has been implemented in Matlab 2013a.
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4.1. Toy problem. We have verified the previous results with a test problem on
the domain Ω = {(x, y, z)|0 ≤ x, y ≤ 3, 0 ≤ z ≤ 1}, with a 3× 3 mesh on the x− y
plane, and using one and two divisions along the height of the gel (Nz = 1, 2, see
Figure 3). This problem is too small to attract any practical interest, but it is used
here in order to verify the results in Proposition 1.

Table 1 summarises the 12 situations analysed. For each row, Table 1 gives the
dimension of the measured displacements u0 ∈ Rn0 , and the dimension of the dis-
placement computed through the inverse problem, u1 ∈ Rn1 . The different values
have been obtained by using different number of layers (Nz = 1, 2), prescribing
some of the displacements, or additionally prescribing the vertical tractions Tz on
the top layer. The displacements were generated randomly, but are the same for
all the cases considered.

Figure 3. Toy problem on a 3 × 3 grid with one (left) and two
layers (right).

The values in Table 1 of the functional Jh0 and the condition number κI of the
system being solved comply with the results in Proposition 1. In the cases where the
non-regularised inverse problem yields a singular matrix (indicated with κI =∞),
the value of Jh0 has been computed from the solution of the pseudo-inverse (Step
3.1 in Box 1). When n1 = 0, we give the value κI = 1, since just the nodal values
t̂ = Mt are computed, and thus no system of equations is actually solved. When
n1 > 0, the values of κI reported in Table 1 correspond to the partitioned form
(24)-(23). We note that the condition number of the equivalent non-partitionned
system with n0 + n1 unknowns,[

ÂT Â −ÂTK1

−KT
1 Â KT

1 K1

]{
Mt
u1

}
=

{
ÂTK0u0

−KT
1 K0u0

}
.

oscillates between 2E7 (case b) and 7E10 (case f). These values are significantly
higher than the condition number reported in Table 1, which highlights the advan-
tage of solving the partitioned system of equations.

We remark that in all the cases where the inverse problem has full rank, and
when the displacements u0 are obtained from a direct FE problem, the tractions
that produced them are fully recovered, that is, Jh0 = 0. If the displacements are
instead randomly generated, as it is the case in the results in Table 1, the optimal
values of the functional Jh0 are those indicated in the table (using always the same
random displacements).

When n1 increases, and for constant spaces Uh0 ⊕Uh1 , as it occurs in cases c− f
and i− l (due to constant boundary conditions and number of layers), Jh0 decreases,
in agreement with the inequalities in (28). In addition, when n1 increases, with n0

constant (see cases a and e), the value of Jh0 diminishes. This trend shows that the
error in the mechanical equilibrium is reduced as n1 increases, even if no traction
field satisfying the discrete inverse problem exists. The evolution of this error is
analysed further in the next section.
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Table 1. Results for the toy problem: substrate with 3× 3 divi-
sions on the x− y plane, and Nz = 1 or 2 divisions along z. Jh =
value of the optimal solution of the functional in equation (19).
In cases a-f, the condition Tz = 0 is assumed, while in cases g-l
component Tz is unknown and is found using inverse analysis. ∗

κI has been computed using the Matlab function cond. The case
κ = ∞ means κ > 1E24, in which case the pseudo-inverse was
computed (Step 3.1 in Box 1).

Tractions Displacements

Case Nz Tz m n0 n1 U1 κI
∗ Jh

a 1 0 32 48 0 ∅ 1 0.918
b 1 0 32 32 16 uz 50 0

c 2 0 32 96 0 ∅ 1 5.583
d 2 0 32 80 16 uz 260 4.099
e 2 0 32 48 48 um 620 0.789
f 2 0 32 32 64 uz,m 3E3 0

g 1 unk 48 48 0 ∅ 1 0
h 1 unk 48 32 16 uz ∞ 0

i 2 unk 48 96 0 ∅ 1 5.239
j 2 unk 48 80 16 uz 260 3.603
k 2 unk 48 48 48 um 620 0
l 2 unk 48 32 64 uz,m ∞ 0

4.2. Analysis of condition number and error. We will here evaluate the con-
ditioning of the matrix in the inverse problem KT

1 ĨK1 using the same geometry
given in Figure 3 but with different number of elements and boundary condi-
tions. In order to not taking into account the dependence on the element aspect
ratio, which would affect the condition number of the associated direct problem
κD = cond([K0 K1]) and thus also affect κI = cond(KT

1 ĨK1), we have used solely
cuboid elements, and adapted the height of the domain H accordingly.

As mentioned in Section 3.3, the condition numbers κI and κD are independent
of h, but they do depend on the number of elements NE and ratio m/n. Figure
4a shows the evolution of κI and κD for different values of NE , while keeping
the ration m/n constant. This is achieved by increasing Nx and Ny, but keeping
Nz = constant. It can be observed that κI is slightly affected by NE , overall for
lower values of m/n.

Figure 4b shows the evolution of the condition numbers for different values of
m/n ≈ 1/Nz, while keeping a constant number of elements NE = Nx ∗Ny ∗Nz. We
have analysed two sets of problems, one with NE = 200 and NE = 300 elements.
Figure 4b shows that κI is indeed always larger than κD, and that as m/n dimin-
ishes, κI increases towards κ2

D. However, the plot also shows that this upper bound
is approached only for very low values of m/n (very heigh and narrow geometries
when using cube-like elements). In more general flat-like geometries, we have that
if m/n > 0.005, then κI/κ

2
D < 0.5, or that if m/n > 0.05, then log10(κI/κD) < 1.5,

for the two sets of problems analysed.
We have also measured the error of the discrete inverse problem by inspecting

the evolution of the non-dimensional ratio Jh0 /||t||2 with respect to the ratio (n0 −
m)/n0, which for problems with a unique solution takes a value between 0 and
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Figure 4. Evolution of the condition numbers of the inverse and
associated direct problem, κI and κD respectively, as a function of
the number of elements and ratio m/n.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

(n
0
− m)/n

0

J 0h /||
t||

2

 

 

# elem=200, m=24
# elem=300, m=24

Figure 5. Evolution of the functional Jh0 for different ratios of
(n0 −m)/n0

1. The converge rate is faster than linear, but slightly lower than quadratic. It
can be observed in Figure 5 that Jh0 may become larger than 0.5||t||2 whenever
m < 0.6n0, in which case the traction field becomes too poor with respect to the
measured displacement field u0.

4.3. Experimental data. We have also tested the algorithm with some real data
of Madin Darby Canine Kidney (MDCK) II cells on a gel substrate with dimensions
(x, y) ∈ [0, 55]× [0, 55] during wound healing. The displacements have been stored
on a 56 × 56 grid 72 minutes after wounding the tissue. Figure 6a shows the
horizontal components of the displacements. Since these have been measured on
the 56× 56 grid, a mesh with linear elements has been adapted to these locations
for simplicity. We stress that if required, an irregular mesh or elements with higher
degree could have been equally employed, without altering the methodology.

Figure 6c shows the resulting traction field resorting to the inverse FE analysis,
tFE , computed with one layer and m = n0, so that the equilibrium equations were
exactly satisfied. Figure 6d compares this solution and the Boussinesq solution
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Figure 6. (a) Madin Darby canine kidney (MDCK) II cells 72
minutes after wounding (courtesy of Xavier Trepat [5]). (b) Hor-
izontal displacement field ux. (c) Horizontal traction field tx us-
ing inverse finite element techniques with Nz = 1 layer and a
nodal traction field th ∈ T i. (d) Relative difference between
Boussinesq solution [32] and FE solution in (c) computed as
δt = |tx,Bous − tx,FE |/max tx,Bous. The plot does not include
the outer layer of elements. If these are included, the maximum
value of δt increases from 0.24 up to 0.49.

tBous of an homogeneous elastic infinite half-plane [22, 32] by showing the relative
difference between the two, computed as δt = |tx,Bous − tx,FE |/max tx,Bous. We
note that the average of this difference is equal to δ̄t = 0.035, with a maximum
value δt,max = 0.49.

The error between the two techniques is mainly due to the different interpolation
in the displacements, and the different assumptions on the geometry (semi-infinite
versus finite domain) and lateral boundary conditions (contact stresses due to the
presence of material in Boussinesq versus zero tractions at the boundary in FE
solution). The boundary effects may be reduced if for instance a one element band is
excluded, which is where the errors are more pronounced. In this case, the averaged
and maximum error are respectively reduced to δ̄t = 0.027 and δt,max = 0.24.

We have also tested the bounds in (26) and (27) for the present case, by applying
the noise δu0 on the displacements u0, with ||δu0||/||u0|| ≈ 2E−8, and δu0 a normal
distribution with the same mean value than u0. The resulting values on each side of
the bounds are reported in Table 2. It can be verified that the bounds are satisfied,
and that in all cases we have that
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||δt||
||t||

≈ ||δu0||
||u0||

;
||δu1||
||u1||

≈ ||δu0||
||u0||

,

with u1 and t the solutions for the unperturbed measure u0. The computations
of tractions and displacements remains thus stable with respect to the applied
perturbations.

We have also tested the effect of the perturbation for different magnitudes of
||δu0||/||u0|| and also for different mesh sizes, using meshes with 6050, 48400,
163350 and 387200 elements, by using uniform element subdivisions. From the
values in Table 3 it can be verified that the relative size of the corresponding per-
turbed solutions, measured by ||δu1||/||u1|| and ||δt||/||t||, are not affected by the
element and mesh size.

Table 2. Verification of bounds in equations (26) and (27) for
stability analysis of the experimental tests using Nx = Ny = 55.

Nz
||δu1||2
||δu0||2 Rhs Eq.(26)

||δt||2
||δu0||2 Rhs Eq.(27)

||δu0||
||u0||

||δu1||
||u1||

||δt||
||t||

1 - - 1.15E3 1.95E5 1.94E-8 - 1.05E-8
2 5.44E-1 1.85E3 9.75E2 3.36E5 1.94E-8 2.25E-8 1.12E-8
3 8.07E-1 2.34E4 1.90E3 4.91E5 1.94E-8 2.22E-8 2.27E-8

Table 3. Numerical stability analysis for the experimental tests
using different relative perturbations and mesh sizes.

Nz Nx = Ny
||δu0||
||u0||

||δu1||
||u1||

||δt||
||t||

2 55 1.94E-8 2.25E-8 1.12E-8
2 55 1.00E-3 8.00E-4 4.67E-4
2 55 1.00E-2 8.05E-3 4.67E-3
2 55 1.01E-1 8.15E-2 4.80E-2

4 110 1.00E-3 8.12E-4 1.16E-3
6 165 1.00E-3 8.25E-4 2.31E-3
8 220 1.00E-3 8.41E-4 3.61E-3

5. Conclusions

This paper gives some simple rules that guarantee that the finite element in-
verse problem has a unique solution, without resorting to regularisation techniques.
Briefly, from the numerical problems tested, the most practical results can be sum-
marised as follows:

• Use a nodally interpolated traction field Th.
• Obtain as many tractions degrees of freedom as observed displacements, i.e.

impose m = n0. This ensures a full-rank system and that the equilibrium
equations are exactly satisfied.
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• If condition m = n0 is not possible, use m < n0 (less tractions than known
displacements), but as a general rule, use m > 0.6n0 in order to avoid too
large errors in the equilibrium equations.
• Include unknown nodal displacements u1, that are also computed through

the inverse analysis. The higher the number of unknown displacements,
the smaller the error in the equilibrium equations. However, in order to
keep the condition number κI of the inverse problem not too large, and
far below κ2

D, with κD the condition number of the direct problem, it is
advised to limit the total number of displacement dofs n according to the
relation m > 0.05n.

We note that while the relation m ≤ n0 is general, the conditions 0.6n0 < m
and 0.05n < m have been obtained using cubic hexahedral elements, and thus may
vary if other aspect ratios and geometries are employed.

Very often, the traction field is computed by resorting to the Boussinesq analyt-
ical solution for a linear material [22], and applying the Fourier transform of the
solution, which yields a set of uncoupled system of equations. This technique can
be applied to those situations where the Green function is known, like an infinite
half-plane with infinite thickness [6] or with a constant bounded thickness [32, 8].
In both cases, the material is assumed linear and homogeneous. The finite element
approach presented here, and the results derived, may be also applied to arbitrary
non-homogeneous domains.

An example of the use of FE techniques in TFM may be found for instance
in [23]. These references do not exploit the results shown in the present paper,
and consequently regularisation was employed. In non-linear elasticity, the conclu-
sions stated here do not necessarily carry over the resulting system of non-linear
equations, which requires an iterative process [26].

Another common approach in TFM is the so-called direct forward method, which
after interpolating the strain field, computes the tractions from the derived stresses
as,

t = σ(u)n,

with n the external normal of the boundary. This approach may be employed in
linear [14, 20, 16] and non-linear elasticity [31]. However, in this method, the derived
stress tensor σ does not necessarily satisfies the equilibrium condition ∇ · σ = 0
due to the assumed constitutive law of the material and experimental errors when
measuring the displacement field. Instead, the traction field obtained from the finite
element technique presented here minimises the error of the equilibrium equations,
and when m = n0, these are exactly satisfied (in a weak sense).
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[26] J Palacio, A Jorge-Peñas, A Muñoz-Barrutia, C Ortiz de Solorzano, E de Juan-Pardo, and
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