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THE UNSTABLE MODE IN THE CRANK-NICOLSON

LEAP-FROG METHOD IS STABLE

NICK HURL, WILLIAM LAYTON, YONG LI, AND MARINA MORAITI

Abstract. This report proves that under the time step condition ∆t|Λ| < 1 (| · | = Euclidean
norm) suggested by root condition analysis and necessary for stability, all modes of the Crank-
Nicolson Leap-Frog (CNLF) approximate solution to the system

du

dt
+Au+ Λu = 0, for t > 0 and u(0) = u0,

where A+AT is symmetric positive definite and Λ is skew symmetric, are asymptotically stable.
This result gives a sufficient stability condition for non-commutative A and Λ, and is proven by
energy methods. Thus, the growth, often reported in the unstable mode, is not due to systems
effects and its explanation must be sought elsewhere.

Key words. IMEX method, Crank-Nicolson Leap-Frog, CNLF, unstable mode, computational
mode.

1. Introduction

Implicit-explicit (IMEX) time-stepping schemes are often used for solving multi-
physics problems with both stiff and nonstiff components, e.g., advection-diffusion-
reaction equations, Navier-Stokes equations, geophysical flows, surface-groundwater
flows. IMEX schemes treat the stiff term implicitly and the nonstiff term explicitly,
and thus suffer from neither the computational expense of fully implicit schemes
nor the demanding time step requirement of fully explicit methods, e.g., [1, 6, 7, 23].

The Crank-Nicolson Leap-Frog (CNLF) scheme, a classic two-step IMEXmethod,
is frequently used in atmospheric flow simulations [1, 6, 17]. In this article, we prove
asymptotic stability of the unstable or computational mode of the CNLF method
for the system

du

dt
+Au+ Λu = 0, for t > 0 and u(0) = u0,(1)

where As = 1
2 (A + AT ) > 0 (As is symmetric positive definite) and Λ is skew

symmetric. Here u : [0,∞) → Rd and the square, non-commutative, real matrices
A,Λ have compatible dimensions. Under these conditions, the solution to (1) sat-
isfies u(t) → 0 as t→ ∞, so any growth in the approximate solution is a numerics
induced instability. With superscript denoting the time step number, CNLF, the
IMEX combination of Crank-Nicolson and Leap-Frog, is given by: given u0, u1, find
un+1 satisfying for n ≥ 1:

(CNLF)
un+1 − un−1

2∆t
+A

un+1 + un−1

2
+ Λun = 0.
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Root condition analysis of CNLF for the scalar test problem y′+ay+ iλy = 0 leads
to the necessary time step condition essentially from [11]:

(2) ∆t|Λ| < 1, | · | = Euclidean norm.

This condition was recently proven (by discrete energy methods) sufficient for sta-
bility in [15].

However, in practical simulations, difficulties with CNLF’s unstable mode occur.
It is often reported (see for example [5], [12], [19], [2], [18], [22], [10]) that as n→ ∞,

Stable Mode: |un+1 + un−1| → 0,

Unstable Mode: |un+1 − un−1| → ∞.(3)

CNLF is used for many geophysical flow simulations from which experience with
and fixes for the unstable mode are correspondingly large, e.g., [5], [12], [13], [19],
[2], [18], [22], [10]. One mystery is that since CNLF is stable under (2), no growth
is possible in theory and yet time filters to deal with (3) are nearly universal in
practice, [10, 16, 22]. It is an open question to determine if this could be due to the
gap for IMEX methods (e.g., [1], [3], [6], [8], [20], [21]) between necessary conditions
from root condition analysis and sufficient ones for systems, to roundoff errors
exciting the weak instability in LF not sufficiently damped by CN, to imperfect
imposition of (2), to nonlinearities or other unknown causes.

We prove that under (2) the CNLF unstable mode is asymptotically stable for the
system (1). This result, consistent with numerical tests in Section 3, supports the
scenario that growth in the unstable mode is not due to a system effect but rather
due to imperfect imposition of and thus slight violation of (2), or non-autonomous
effects studied in [14], or the combination of roundoff errors breaking skew symmetry
in Λ and near singularity of A.

Theorem 1. Consider (CNLF) for non-commutative A,Λ. Suppose the (neces-
sary) time step condition (2) holds. Then, all modes of CNLF are asymptotically
stable:

un → 0 as n→ ∞ and thus both

un+1 + un−1 → 0 and un+1 − un−1 → 0.

Remark 2. If the matrices A and Λ commute then this follows from standard
root condition analysis. Thus, (2) is a necessary condition for asymptotic stabil-
ity. For single linear multistep methods it is known that root conditions are also
sufficient. However, for implicit-explicit combinations of different methods, such as
CNLF, root conditions are not sufficient. For example, Asher, Ruuth and Wetton
[1] page 811 note “these results provide necessary but not sufficient conditions for
stability...” and Hundsdorfer and Ruuth [7] page 2019 note “Theoretical results are
difficult to obtain if these linearizations do not commute...”. The only general path
(that we take in Section 2) to a sufficient condition for systems is through energy
methods.

2. Three examples of the structure (1)

It is very common for problems in applications to have the structure of (1), a
dissipative perturbation of a conservative system. We give three simple examples.

2.1. Transport plus diffusion. Suppressing spacial discretization, suppose we
take Au = −ϵuxx (typically ϵ is small). Then (1) becomes the evolutionary
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convection-diffusion problem:

∂u

∂t
− ϵ

∂2u

∂x2
+ c

∂u

∂x
= 0, −∞ < x <∞, t > 0.(4)

The CNLF method for (4) is to find un+1 given un and un−1, satisfying, for all
n ≥ 1:

un+1 − un−1

2∆t
− ϵ

∂2

∂x2

(
un+1 + un−1

2

)
+ c

∂un

∂x
= 0.

2.2. Stokes flow plus Coriolis force. The use of (CNLF) in geophysical flows is
based on fast-slow wave decompositions and time filters, see [19], [22]. Let Ω be a 2
or 3-dimensional bounded regular domain, u denote the velocity, p the pressure, f
the body forces, and ν the kinematic viscosity. Omitting many of the complexities
in geophysics, the system representing Stokes flow plus a Coriolis force, fC × u, is:

ut − ν∆u+∇p+ fC × u = f(x, t), and ∇ · u = 0 in Ω,

u = 0 on ∂Ω, and u(x, 0) = u0(x) in Ω.

We assume conforming velocity-pressure finite element spaces, Xh ⊂
(
H1

0 (Ω)
)d

and Qh ⊂ L2
0(Ω), satisfying the usual discrete inf-sup condition for stability of the

discrete pressure, and denote the usual L2 inner product over Ω by (·, ·). Letting
Λu := fC × u, the (CNLF) realization is to find (un+1

h , pn+1
h ) ∈ Xh × Qh, given

unh, u
n−1
h ∈ Xh, satisfying, for all (vh, qh) ∈ Xh ×Qh and all n ≥ 1:(

un+1
h −un−1

h

2∆t , vh

)
+ ν

(
∇
(

un+1
h +un−1

h

2

)
,∇vh

)
+ (Λunh, vh)

−
(

pn+1
h +pn−1

h

2 ,∇ · vh
)
+
(
qh,∇ ·

(
un+1
h +un−1

h

2

))
= (fn, vh).

2.3. The evolutionary Stokes-Darcy problem. Consider the application of
(CNLF) to the uncoupling of surface and groundwater flows. Let Ωf and Ωp be
2 or 3-dimensional bounded regular domains that lie across an interface, I. The
fluid velocity, u, fluid pressure, p, and hydraulic head, ϕ, satisfy the Stokes and the
groundwater flow equations:

ut − ν∆u+∇p = ff (x, t),∇ · u = 0, in Ωf ,

S0ϕt −∇ · (K∇ϕ) = fp(x, t), in Ωp,(5)

ϕ(x, 0) = ϕ0(x), in Ωp and u(x, 0) = u0(x), in Ωf ,

ϕ(x, t) = 0, in ∂Ωp\I and u(x, t) = 0, in ∂Ωf\I.

Let n̂f/p denote the outward unit normal vector on I associated with Ωf/p and
τ̂i denote an orthonormal basis of tangent vectors on I. The coupling conditions
across I are conservation of mass, balance of forces and the Beavers-Joseph-Saffman
condition on the tangential velocity:

u · n̂f −K∇ϕ · n̂p = 0 and p− ν n̂f · ∇u · n̂f = gϕ on I,

−ν ∇u · n̂f = αBJS√
τ̂i·Kτ̂i

u · τ̂i on I, for any τ̂i tangent vector on I.

Here, g, K, ν and S0 are the gravitational acceleration constant, hydraulic conduc-
tivity tensor, kinematic viscosity and specific mass storativity coefficient, respec-
tively, all positive. We denote by (·, ·)f/p the L2 inner product over Ωf/p.
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To discretize the Stokes-Darcy problem in space by the finite element method,
we choose conforming velocity, pressure, and hydraulic head spaces:

Velocity : Xh
f ⊂ {v ∈

(
H1(Ωf )

)d
: v = 0 on ∂Ωf\I},

Pressure : Qh
f ⊂ L2(Ωf ),

Hydraulic Head : Xh
p ⊂ {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp\I},

and Xh
f and Qh

f are assumed to satisfy the discrete inf-sup condition. Letting

af (u, v) := ν(∇u,∇v)f +
∑
i

∫
I

αBJS√
τ̂i·Kτ̂i

(u · τ̂i)(v · τ̂i) ds,

ap(ϕ, ψ) := g(K∇ϕ,∇ψ)p, and

cI(u, ϕ) := g

∫
I

ϕu · n̂f ds,

the (CNLF) method for Stokes-Darcy is to find (un+1
h , pn+1

h , ϕn+1
h ) ∈ Xh

f ×Qh
f×Xh

p ,

given (unh, p
n
h, ϕ

n
h), (u

n−1
h , pn−1

h , ϕn−1
h ) ∈ Xh

f × Qh
f ×Xh

p satisfying ∀ (vh, qh, ψh) ∈
Xh

f ×Qh
f ×Xh

p :(
un+1
h −un−1

h

2∆t , vh

)
f
+ af

(
un+1
h +un−1

h

2 , vh

)
−
(

pn+1
h +pn−1

h

2 ,∇ · vh
)
f

+cI(vh, ϕ
n
h) = (fnf , vh)f

(qh,∇ · un+1
h )f = 0,

gS0

(
ϕn+1
h −ϕn−1

h

2∆t , ψh

)
p
+ ap

(
ϕn+1
h +ϕn−1

h

2 , ψh

)
− cI(u

n
h, ψh) = g(fnp , ψh)p.

3. Proof of asymptotic stability of the unstable mode

This section gives a direct energy proof of Theorem 1.1. Let As = 1
2 (A +

AT ), Ask = 1
2 (A − AT ). Denote the usual Euclidean inner product and norm by

⟨w, v⟩ := wT v , |v|2 := ⟨v, v⟩ and the A−norm (well defined since As > 0) by

|u|2A := uTAu = uTAsu = ⟨Asu, u⟩ .

Step 1: Energy stability. In step 1 we follow [15]. Take the inner product
of CNLF with un+1 + un−1, add and subtract |un|2 and multiply through by 2∆t.
This yields [

|un+1|2 + |un|2
]
−
[
|un|2 + |un−1|2

]
+∆t|un+1 + un−1|2A + 2∆t⟨Λun, un+1 + un−1⟩ = 0.(6)

Next, using skew symmetry, rearrange to get

2∆t⟨Λun, un+1 + un−1⟩ = 2∆t⟨Λun, un+1⟩ − 2∆t
⟨
Λun−1, un

⟩
.

Define the first energy (which is positive if ∆t|Λ| < 1, [15])

En+1/2 := |un+1|2 + |un|2 + 2∆t⟨Λun, un+1⟩.

Collecting terms we obtain

(7) En+1/2 − En−1/2 +∆t|un+1 + un−1|2A = 0.

This implies that the stable mode un+1 + un−1 → 0 as n → ∞. Indeed, summing
for n = 1, · · ·, N and then letting N → ∞ , we see that∑∞

n=1
|un+1 + un−1|2A <∞
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and thus the nth term |un+1 + un−1|2A → 0.
Step 2: The key estimate. Take the inner product of CNLF with un+1−un−1

and multiply through by 2∆tδ where δ > 0 will be determined later. This gives

∆tδ
⟨
A(un+1 + un−1), un+1 − un−1

⟩
+δ|un+1 − un−1|2 + 2δ∆t⟨Λun, un+1 − un−1⟩ = 0.(8)

Split the operator A = As +Ask. The first term of (8) becomes⟨
A(un+1 + un−1), un+1 − un−1

⟩
=

⟨
As(u

n+1 + un−1), un+1 − un−1
⟩
+
⟨
Ask(u

n+1 + un−1), un+1 − un−1
⟩

=
⟨
Asu

n+1, un+1
⟩
−
⟨
Asu

n−1, un−1
⟩
+

⟨
Ask(u

n+1 + un−1), un+1 − un−1
⟩

= |un+1|2A − |un−1|2A +
⟨
Ask(u

n+1 + un−1), un+1 − un−1
⟩
.

Use the above equality for the first term in (8) and add and subtract ∆tδ|un|2A to
obtain [

δ∆t|un+1|2A + δ∆t|un|2A
]
−
[
δ∆t|un|2A + δ∆t|un−1|2A

]
+δ∆t

⟨
Ask(u

n+1 + un−1), un+1 − un−1
⟩

+δ|un+1 − un−1|2 + 2δ∆t⟨Λun, un+1 − un−1⟩ = 0.(9)

Define the second energy

En+1/2 := En+1/2 + δ∆t|un+1|2A + δ∆t|un|2A.

The key step is adding (7) and (9) which gives

En+1/2 − En−1/2 +∆t|un+1 + un−1|2A + δ|un+1 − un−1|2

+δ∆t
⟨
Ask(u

n+1 + un−1), un+1 − un−1
⟩
+ 2δ∆t⟨Λun, un+1 − un−1⟩ = 0.

Summing this from n = 1 to N gives

EN+1/2 +
N∑

n=1

[
∆t|un+1 + un−1|2A + δ|un+1 − un−1|2

]
+Q1 +Q2 = E1/2,(10)

Q1 :=
N∑

n=1

δ∆t
⟨
Ask(u

n+1 + un−1), un+1 − un−1
⟩
,

Q2 :=
N∑

n=1

2δ∆t⟨Λun, un+1 − un−1⟩.

Step 3: Bounding |Q1| & |Q2| . For Q1 note that⟨
Ask(u

n+1 + un−1), un+1 − un−1
⟩
≤ |Ask||un+1 + un−1||un+1 − un−1|

≤ 1

2ϵ
|Ask||un+1 + un−1|2 + ϵ

2
|Ask||un+1 − un−1|2

where ϵ > 0. Hence

|Q1| ≤
N∑

n=1

δ∆t

2ϵ
|Ask||un+1 + un−1|2 +

N∑
n=1

δ∆tϵ

2
|Ask||un+1 − un−1|2.
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For Q2 note that

⟨Λun, un+1 − un−1⟩ =

=
1

2
⟨Λ(un − un−2), un+1 − un−1⟩+ 1

2
⟨Λ(un + un−2), un+1 − un−1⟩

≤ 1

2
|Λ||un − un−2||un+1 − un−1|+ 1

2
|Λ||un + un−2||un+1 − un−1|

≤ 1

2
|Λ|

(
1

2
|un − un−2|2 + 1

2
|un+1 − un−1|2

)
+
1

2
|Λ|

(
1

2ϵ
|un + un−2|2 + ϵ

2
|un+1 − un−1|2

)
.(11)

Then

2δ∆t
N∑

n=1

1

2
|Λ|

(
1

2
|un − un−2|2 + 1

2
|un+1 − un−1|2

)
=
δ

2
∆t|Λ||uN+1 − uN−1|2+

+δ∆t|Λ|
(
|uN − uN−2|2 + · · ·+ |u3 − u1|2

)
+
δ

2
∆t|Λ||u2 − u0|2

≤ δ∆t|Λ|
N∑

n=1

|un+1 − un−1|2,(12)

and

2δ∆t
N∑

n=1

1

2
|Λ|

(
1

2ϵ
|un + un−2|2 + ϵ

2
|un+1 − un−1|2

)
=

=
δ∆t|Λ|

2ϵ

N−1∑
n=1

|un+1 + un−1|2 + ϵδ∆t|Λ|
2

N∑
n=1

|un+1 − un−1|2

≤δ∆t|Λ|
2ϵ

N∑
n=1

|un+1 + un−1|2 + ϵδ∆t|Λ|
2

N∑
n=1

|un+1 − un−1|2.(13)

Thus, |Q2| is now bounded by combining (12) and (13) as follows

|Q2| ≤ δ∆t|Λ|
(
1 +

ϵ

2

) N∑
n=1

|un+1 − un−1|2 + δ∆t|Λ|
2ϵ

N∑
n=1

|un+1 + un−1|2.

Hence

|Q1|+ |Q2| ≤ δ∆t
(
|Λ|

(
1 +

ϵ

2

)
+
ϵ

2
|Ask|

) N∑
n=1

|un+1 − un−1|2

+
δ∆t

2ϵ

(
|Λ|+ |Ask|

) N∑
n=1

|un+1 + un−1|2.

Step 4: Using the Q1 & Q2 estimates in the energy inequality. Inserting
these estimates for Q1 and Q2 into the energy inequality and collecting terms gives

EN+1/2 + δ
(
1−

(
1 +

ϵ

2

)
∆t|Λ| − ϵ

2
∆t|Ask|

) N∑
n=1

|un+1 − un−1|2

+∆t

N∑
n=1

(
|un+1 + un−1|2A − δ

2ϵ

(
|Λ|+ |Ask|

)
|un+1 + un−1|2

)
≤ C(u0, u1).(14)
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Step 5: Estimating the unstable mode. Since the RHS, C(u0, u1), is in-
dependent of N , we can let N → ∞ and conclude that

δ
(
1− (1 +

ϵ

2
)∆t|Λ| − ϵ

2
∆t|Ask|

) ∞∑
n=1

|un+1 − un−1|2+

+∆t
∞∑

n=1

(
|un+1 + un−1|2A − δ

2ϵ
(|Λ|+ |Ask|)|un+1 + un−1|2

)
<∞.

From this we shall deduce that
∑∞

n=1 |un+1 − un−1|2 < ∞ and thus |un+1 −
un−1|2 → 0 as n → ∞. To make this step, two conditions are required: the
second sum must be non-negative and the coefficient of the first sum positive.
That coefficient is positive if

ϵ < 2
1−∆t|Λ|

∆t|Λ|+∆t|Ask|
.

Since ϵ > 0 is arbitrary, this condition can be satisfied if the stability condition
∆t|Λ| < 1 holds. For the second sum to be non-negative, it suffices that

|un+1 + un−1|2A − δ (|Λ|+ |Ask|)
2ϵ

|un+1 + un−1|2 ≥ 0.

This can be attained by picking δ = ϵλmin(As)/ (|Λ|+ |Ask|), where λmin(As) de-
notes the minimum eigenvalue of As. With this condition on ∆t and choice of δ,
we conclude that the sum below converges:

(15)

∞∑
n=1

|un+1 − un−1|2 ≤ C <∞.

Thus the nth term |un+1−un−1|2 → 0 and |un+1+un−1|2A → 0 from Step 1. Hence,
un → 0 and all modes, including the unstable mode, are controlled.

4. Numerical exploration of the unstable mode

The behavior of the unstable mode in practice is often associated with marginal
stability (weak instability) of Leap-Frog. The first scenario we explore is thus as
follows. Practical simulations often occur with many accompanying perturbations.
Thus, the matrix Λ will only be skew symmetric to O(ε), where ε is the magnitude
of the errors in numerical integration, computer arithmetic, function evaluation,
previous calculations, and so on, used to generate Λ and form the product Λu.
These perturb the eigenvalues of Λ to be outside the stability interval of Leap-
Frog, {z : Re(z) = 0,−1 < Im(z) < +1}. CN contributes damping of the stable
mode sufficient to control its growth. We test if these perturbations can cause the
unstable mode’s growth. The second scenario we test is whether slight violation of
(2) (caused by computing near the CFL limit and imperfect estimation of |Λ| due
to these perturbations) is first seen in the unstable mode.

Test: Small perturbations of Λ. Let A = diag{104, 10−4} and consider the
2× 2 system

du

dt
+ 104u+ ε1u− v = 0,

dv

dt
+ 10−4v + ε2v + u = 0.

The matrix Λ is thus

Λε1,ε2 =

[
ε1 −1
1 ε2

]
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in which skew symmetry is broken by the small, random coefficients ε1 and ε2. We
apply CNLF over a long time interval:

un+1 − un−1

2∆t
+ 104

un+1 + un−1

2
+ ε1u

n − vn = 0,

vn+1 − vn−1

2∆t
+ 10−4 v

n+1 + vn−1

2
+ ε2v

n + un = 0,

with starting conditions u0 = v0 = 1. We test:

• For ∆t = 1.01 > 1 and ε1 = ε2 = 0 CNLF is unstable. Figure 1 (left)
verifies that the instability once again occurs in only the unstable mode.

• For ∆t = 0.99 < 1 and ε1 = ε2 = 0, all modes are stable over a long-time
interval, as seen in Figure 1 (right).

• For ε1 = ε2 = 10−4, both modes remain stable for ∆t = 0.99 (Figure
2 left), while neither of them is stable if the perturbation is increased to
ε1 = ε2 = 10−3 (Figure 2 right).
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Figure 1. For ε1 = ε2 = 0 the unstable mode grows and the
stable mode decays for ∆t = 1.01 (left), while for ∆t = 0.99 (right)
both modes decay.

0 2 4 6 8 10
x 10

4

0

0.5

1

1.5

2

∆ t = 0.99, ε
1
 = ε

2
 = 1e−04

n

 

 

Energy: |un|2/2

Stable Mode: |(un+1+un−1)/2|2

Unstable Mode: |(un+1−un−1)/2|2

0 1 2 3 4 5 6
x 10

4

0

0.5

1

1.5

2x 10
4

∆ t = 0.99, ε
1
 = ε

2
 = 1e−03

n

 

 

Energy: |un|2/2

Stable Mode: |(un+1+un−1)/2|2

Unstable Mode: |(un+1−un−1)/2|2

Figure 2. For ∆t = 0.99 both modes are stable for ε1 = ε2 =
10−4 (left), while for ε1 = ε2 = 10−3 (right) both modes are un-
stable.

The instability in the last case may be due to the fact that the perturbation
is larger than the smallest eigenvalue of the SPD matrix A. Indeed, we found
empirically that the scheme is stable (unstable) when the perturbation is smaller
(bigger) than each eigenvalue of the matrix A. If the perturbation is larger than
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the minimum eigenvalue of the matrix A, then the scheme can possibly become
unstable even when the time step condition is satisfied. We see that when the CFL
condition is slightly violated (Figure 1 (left)), instability occurs in the unstable mode
(as reported in practice). When skew symmetry is broken by a large enough factor,
instability occurs in all modes (Figure 2 (right)).

5. Conclusions

It has been reported that the CNLF method possesses a weak instability in sim-
ulations of complex problems. In practical simulations, stabilizing techniques, e.g.,
time filters, are used to control the unstable mode of CNLF. A better understanding
of this weak instability can be useful downstream for understanding and improv-
ing the action of these time filters. In this article, we prove that under the time
step condition (2), the unstable mode is indeed asymptotically stable for general
autonomous systems. Root conditions provide only necessary stability conditions
for the system case, unless the matrices A and Λ commute. Thus, the proof was
necessarily based on energy methods. The weak instability of CNLF, we conjec-
ture, is possibly due to the perturbation of the skew symmetric matrix Λ because
of the error in numerical integration, computer arithmetic, function evaluation, etc.
Indeed, we observe the instability in the numerics when the magnitude of the per-
turbation is higher than the eigenvalue of the SPD matrix A. We note that the
difference in control of the two modes offered by the Crank-Nicolson method has
been used in a different context in [9].
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