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A CONSERVATIVE ENFORCING POSITIVITY-PRESERVING

ALGORITHM FOR DIFFUSION SCHEME ON GENERAL

MESHES

FUJUN CAO, YANZHONG YAO, YUNLONG YU, AND GUANGWEI YUAN∗

Abstract. For a class of diffusion schemes not satisfying the property of positivity-preserving, we
propose an enforcing positivity algorithm. It is locally conservative and easy to be implemented in
existing codes. Moreover, this algorithm can be performed on both structured and unstructured
meshes. Numerical experiments demonstrate that in terms of L2 error and conservation this
algorithm is much better than the trick of directly enforcing the negative values to zero (ENZ),
which has been used in applications, meanwhile, in terms of L∞ error it is approximate to ENZ
and CEPA repairing algorithms.
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1. Introduction

Diffusion process appears in many physical problems, such as the subsurface
flows, radioactive material transport and inertia confinement fusion. While numer-
ically simulating those problems, in order to obtain reliable numerical solution, it is
necessary for the numerical methods to preserve some basic properties of diffusion
equation such as the conservation and the maximum principle. Unfortunately, most
of the discrete schemes for diffusion equations can not satisfy the discrete maximum
principle(DMP) on distorted meshes, including some well-known diffusion schemes,
such as the Kershaw scheme presented in [4], the MDHW scheme proposed in [10],
the Nine-Point scheme (NPS) in [6], the multi-point flux approximation (MPFA)
in [1], and the mimetic finite difference (MFD) methods in [7, 8]. A scheme not
satisfying the DMP may produce negative numerical solution for diffusion equation
with nonnegative initial value and sources term.

As it was pointed out in [14], the positivity of solutions is very important for
numerical robustness. For some nonlinear diffusion problems, diffusion coefficients
have no definition for negative solutions. If the numerical solutions are negative
values in the process of computation, the computation procedure will break down.
In order to prevent the computation procedure from interrupting, one common
way is to modify the negative values by using certain repair techniques, and then
the positivity-preserving can be achieved. Another way is to design positivity-
preserving schemes, such as those in [2], [11], [12], [16], [21] and [22]. But, as we
know, all of them with the accuracy being higher than first order are nonlinear
schemes even if the diffusion equation is linear, so the computational costs will
increase unavoidably.

This paper will focus on the first way of mending the ”negative” cells, i.e., the
numerical solutions of finite volume scheme on those cells are negative. The sim-
plest repair technique for a posteriori correction of the discrete solution is just to

Received by the editors March 22, 2016 and, in revised form, July 17, 2016.
2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.
∗Corresponding author. This work was supported by the National Nature Science Foundation

of China (11571048, 11571047, 11671049).

739



740 F.J. CAO AND Y.Z. YAO, Y.L. YU, AND G.W. YUAN

set negative values to be zero (or a small positive number), which is easy to be
implemented in existing codes but it destroys the conservation. Some improved
strategies are proposed in recent years. In [9] a repair technique is proposed which
enforces the linear finite element solution of elliptic equations on 2D triangular
meshes to satisfy the discrete maximum principle and keep the total energy con-
servation. In [17] a global repair technique is devised for diamond finite volume
schemes, which also keeps total energy conservation. In [5] a nonlinear constrained
finite element method satisfying the discrete maximum principle to anisotropic dif-
fusion problems is proposed, which is a positivity-preserving correction scheme. All
of these repair algorithms do not maintain local conservation, i.e., they don’t give
consistent discrete flux on cell-edges between the neighboring cells.

In [20] a method of enforcing positivity with local conservation for nine-point
schemes of nonlinear diffusion equations is developed, which allows the new solution
to preserve positivity as well as local conservation at each nonlinear iteration step
in solving nonlinear diffusion problems. However, this method may lead to the
increase of the number of nonlinear iteration, and then computational efficiency
decreases.

In this paper we develop an efficient method of enforcing negative values to
zero with local conservation for nonlinear diffusion equations on both structure and
unstructured meshes. It allows the new solution to preserve positivity as well as
local conservation at each nonlinear iteration step .

This paper is organized as follows. In Section 2, we introduce a finite volume
scheme on polygonal meshes for nonlinear diffusion equation. In Section 3, the
conservative enforcing positivity-preserving algorithm is discussed. In Section 4,
we give some numerical examples to verify the accuracy and conservation for our
algorithm. The conclusion is summarized in Section 5.

2. The finite volume scheme on general meshes

Consider the nonlinear diffusion problem

∂u

∂t
−∇ · (κ(X, t, u)∇u) = f(X, t), X ∈ Ω, t ∈ (0, T ],(1)

u(X, 0) = φ(X), X ∈ Ω,(2)

u(X, t) = ψ(X, t), X ∈ ∂Ω, t ∈ [0, T ],(3)

where u = u(X, t) is a function to be solved, Ω is a polygonal domain in R2,
X = (x, y) ∈ Ω, κ is a positive diffusion coefficient which may depend on u and
could be discontinuous on Ω, and f is a given source function. The boundary
conditions can also be Neumann or Robin types.

Divide Ω into polygonal meshes (see Fig. 1), in which a polygonal cell and its
center are denoted by K or L. The cell edge is denoted by σ. If the σ is a common
edge of cell K and L, and its vertices are A and B, then we denote σ = K|L = BA.
Let T be the set of all cells, and C is the set of all cell-edges, and CK is the set of
all cell-edges of cell K. The length of σ is denoted by |σ|, and the area of cell K
is denoted by SK . The distance from the center of the cell K or L to the edge σ
is denoted by dK,σ or dL,σ respectively. As usual we introduce a time step ∆t > 0
and the time levels tn = n∆t with n = 0, 1, . . . , N , and tN = T .

By integrating (1) over the cell K and using the Green’s formula, we can obtain
∫

K

∂u

∂t
dX +

∑

σ∈CK

FK,σ =

∫

K

f(X, t)dX,(4)
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Figure 1: The polygonal meshes.

where FK,σ is the normal flux on the edge σ, and is defined by

FK,σ = −

∫

σ

κ(X, t, u)∇u(X, t) · ~nK,σdl,(5)

where ~nK,σ is the outward unit normal on the edge σ of the cell K. Adopting the
procedure in [6, 15], we can obtain

FK,σ = τσ(u(K, t)− u(L, t)−Dσ(u(B, t)− u(A, t))) +O(h2),(6)

where τσ =
τK,στL,σ

τK,σ+τL,σ
, and τK,σ = |σ| κK

dK,σ
, τL,σ = |σ| κL

dL,σ
, h = max

K∈T
diamK and

κK = κ(K, t) and κL = κ(L, t) are diffusion coefficients on cells K and L respec-

tively, and Dσ = (
−−→
KL,

−−→
BA)

|σ|2 , in which (
−−→
KL,

−−→
BA) denotes the inner product for the

vectors
−−→
KL and

−−→
BA.

The discrete unknowns defined at cell-centers K, L and cell-vertices A,B are
denoted by uK , uL and uA,uB , respectively. Then the implicit scheme of the
problem (2.1)-(2.3) is given as follows

(7)
un+1
K − unK

∆t
+

1

SK

∑

σ∈CK

Fn+1
K,σ = fn+1

K , K ∈ T ,

where

(8) Fn+1
K,σ = τn+1

σ ((un+1
K −un+1

L )−Dσ(u
n+1
B −un+1

A )), σ ∈ CK∩CL = BA = K|L,

(9) Fn+1
K,σ = τn+1

K,σ ((un+1
K − ψn+1

X )−DK,σ(ψ
n+1
B − ψn+1

A )), σ ∈ CK ∩ ∂Ω = AB,

and DK,σ = (
−−→
KX,

−−→
BA)

|σ|2 , fn+1
K = f(K, tn+1), ψn+1

B = ψ(B, tn+1), ψn+1
A = ψ(A, tn+1),

and ψn+1
X = ψ(X, tn+1), where X is the midpoint of the boundary edge.

In (7), in addition to cell-centered unknowns, there are some cell-vertex un-
knowns, such as un+1

A and un+1
B . Usually, in order to reduce computational cost

the cell-vertex values are taken as intermediate unknowns, i.e., they are replaced
by certain combinations of neighboring cell-centered values as follows

(10) un+1
A =

1
∑

I∈B(A) ω
n+1
I

∑

I∈B(A)

ωn+1
I un+1

I ,

where B(A) is the set of these cells with A as a vertex. There are some simple
methods to compute the weighted factors ωn+1

I , such as the arithmetic average

weighted mode, i.e., ωn+1
I = 1

NA
, and the inverse distance weighted mode, i.e.,

ωn+1
I =

κn+1

I

dI,A
, where NA is the number of cells in B(A) and dI,A is the distance

between the center of cell I and the vertex A. These two modes have acceptable
accuracy on smooth and uniform meshes, but when the meshes are highly distorted,
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the accuracy will be very low. In recent years some works have been devoted to
improve the accuracy of computing the cell-vertex values on distorted grids, such
as [13], [15], [18] and [19]. In our numerical experiments, the weighted interpolation
formula in [19] will be used.

3. Conservative positivity-preserving algorithm on general mesh

We use the Picard iteration method to linearize the nonlinear system (7) and
the linear system is solved by the Bi-Conjugate Gradient Stabilized (BiCGStab)
method. For the sake of simplicity, we omit the superscript n + 1 of the value at
the present time level, i.e., uK represents un+1

K . The superscript n of unK at the
previous time level is preserved to avoid confusion. Let s be the nonlinear iteration
index, and the iteration formulae are as follows,

u
(s+1)
K − unK

∆t
+

1

SK

∑

σ∈CK

F
(s+1)
K,σ = fn+1

K , K ∈ T ,(11)

F
(s+1)
K,σ = τ (s)σ ((u

(s+1)
K − u

(s+1)
L )−Dσ(u

(s)
B − u

(s)
A )).(12)

Note that the diffusion coefficient above is linearized by taking the values at the
previous nonlinear iteration step. (un+1

B − un+1
A ) is also set to be the values at the

previous nonlinear iteration step so that it is convenient to solve the linear system.

Suppose that we get the solution values u
(s+1)
K at the (s + 1)-th iteration step.

Because the finite volume scheme (7) is not a positivity-preserving scheme, so the
numerical solutions in some cells may be negative even if the initial values and
source items are nonnegative. Now we devise a conservative enforcing positivity-
preserving algorithm to fix the values for these cells.

We divide the set of all grid-cells T into three subsets, as shown in Fig. 2,

T = N ∪ Pc ∪ P+, where N is the subset of those grid-cells on which u
(s+1)
K < 0,

P+ is the subset of those grid-cells on which u
(s+1)
K ≥ 0, Pc is the subset of those

grid-cells which have been repaired by using the enforcing positivity-preserving
algorithm, and initially Pc is a null set.

P
+

c
P

N

P
+

+

P
+

-

c
N PU

Figure 2: Classification of cells.

At the (s+1)-th nonlinear iteration step, if N is non-empty, i.e., there are negative
solution values in some cells, and we will repair them according to the following
procedure.
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3.1. Enforcing positivity for cells in N. The set Pc ∪ N is composed of the
union of disjoint connected subsets RNm, i.e., Pc ∪ N = ∪M

m=1RNm, where M is
the number of these subsets. The repair procedure is preformed for each RNm.

Define the set S
0
m = {σ : σ ∈ CK ∩ CK0 ,K ∈ RNm,K

0 ∈ P
+}, whose elements

are the boundary edges of m-th subset RNm .

If u
(s+1)
K < 0, K ∈ RNm, its value is enforced to be zero and denoted as ũ

(s+1)
K =

0. In order to keep local conservation, the fluxes across its surrounding edges are

also should be revised, we use F̃
(s+1)
K,σ to denote the modified fluxes, and require

that the revised values and the fluxes satisfy the following equation

(13)
ũ
(s+1)
K − unK

∆t
+

1

SK

∑

σ∈CK

F̃
(s+1)
K,σ = fn+1

K , K ∈ RNm.

Summating above equation over K ∈ RNm, and according to the local flux
conservation condition F̃K,σ = −F̃L,σ, ∀σ = K|L, we can get

(14)
1

∆t

∑

K∈RNm

(ũ
(s+1)
K − unK)SK +

∑

σ∈S0m

F̃
(s+1)
K,σ =

∑

K∈RNm

fn+1
K SK .

Similarly, the following formula can be obtained from (11) by summating it over
K ∈ RNm

(15)
1

∆t

∑

K∈RNm

(u
(s+1)
K − unK)SK +

∑

σ∈S0m

F
(s+1)
K,σ =

∑

K∈RNm

fn+1
K SK .

Subtracting (15) from (14), we can get the relationship between the revised fluxes
and the original fluxes as follows

(16)
∑

σ∈S0m

(F̃
(s+1)
K,σ − F

(s+1)
K,σ ) = −

∆E

∆t
,

where

(17) ∆E =
∑

K∈RNm

(ũ
(s+1)
K − u

(s+1)
K )SK .

A natural way for the choice of the revised fluxes is

(18) F̃
(s+1)
K,σ = F

(s+1)
K,σ − wσ

∆E

∆t
, σ ∈ S

0
m,

where the wσ is

(19) wσ =
|σ|

∑

σ∗∈S0m
|σ∗|

.

In fact, more choice can be designed for the coefficient wσ , such as wσ = 1
Nσ

, where

Nσ is the number of elements in the set S0m.

3.2. Updating the cells in P+ for conservation. The physical conservation
requires that the fluxes on the common edges of adjacent cells satisfy the following
relationship, FK,σ = −FL,σ, σ = ∂K

⋂

∂L. So we need to revise the fluxes of cell
in P+ to keep the local conservation.

Firstly, we divide the set P+ into two subsets, P+ = P
+
+ ∪ P

+
−. P

+
+ = {K : K ∈

P+, ∀Ki ∈ πK ,Ki ∈ P+}, where πK is the set of cells which have common edge
with cell K. P+

− = {K : K ∈ P+, ∃Ki ∈ πK ,Ki /∈ P+}.

For any K ∈ P
+
+, we keep its values and flux on edge not to be repaired, i.e.,

(20) ũ
(s+1)
K = u

(s+1)
K , F̃

(s+1)
K,σ = F

(s+1)
K,σ , ∀σ ∈ CK .
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For ∀K ∈ P
+
−, σ ∈ CK , if σ /∈ S0m then

(21) F̃
(s+1)
K,σ = F

(s+1)
K,σ ,

else if σ ∈ S0m, then

(22) F̃
(s+1)
K,σ = F

(s+1)
K,σ + wσ

∆E

∆t
.

Next, we use the revised fluxes to renew the values on the cell K

(23)
ũ
(s+1)
K − unK

∆t
+

1

SK

∑

σ∈CK

F̃
(s+1)
K,σ = fn+1

K , K ∈ P
+
−.

From (21)-(23), the revised values satisfy the following equation

(24)
ũ
(s+1)
K − unK

∆t
+

1

SK

∑

σ∈CK

F
(s+1)
K,σ +

1

SK

∑

σ∈CK

⋂
S0m

wσ
∆E

∆t
= fn+1

K , K ∈ P
+
−.

Subtract the formula (11) from (24) and multiply ∆t, we can get

(25) ũ
(s+1)
K − u

(s+1)
K +

1

SK

∑

σ∈CK

⋂
S0m

wσ∆E = 0,

i.e.,

(26) ũ
(s+1)
K = u

(s+1)
K −

1

SK

∑

σ∈CK

⋂
S0m

wσ∆E.

Obviously, the calculation of ũ
(s+1)
K,σ here is explicit. For the cell K, if only one

flux (e.g., that across the edge σ) is changed, then we can set

(27) ũ
(s+1)
K = u

(s+1)
K − wσ

∆E

SK
.

We call this algorithm as the General Conservative Enforcing Negative values to
Zero, which is abbreviated to GCENZ.

3.3. Accuracy analysis for GCENZ. Now we consider the accuracy of the
repaired solution given by the conservative repair algorithm GCENZ. For a cell K
with negative value at time t = tn+1, the error of the original (unrepaired) discrete
solution is

(28) e(K, t) = |u
(s+1)
K − u(K, t)|,

and the error of the repaired discrete solution is

(29) ẽ(K, t) = |ũ
(s+1)
K − u(K, t)|,

where the u(K, t) is the exact solution at (K, t). Obviously, since

(30) u
(s+1)
K < 0, u(K, t) ≥ 0, ũ

(s+1)
K = 0

we can get

(31) e(K, t) > u(K, t) = ẽ(K, t),

so the accuracy of numerical solution by GCENZ algorithm is definitely improved
for the negative cells.
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For a cell L with positive value which is updated from the conservation require-

ment, the updated value is given by (27). Suppose the discrete solution u
(s+1)
X is

the p-th order approximation to u(X, t), i.e.,

(32) u
(s+1)
X = u(X, t) +O(hp),

and the repaired solution satisfies

(33) ũ
(s+1)
K − u

(s+1)
K = O(hp+1),

moreover,the number of negative cells account for a small portion of total cells’s

(34) NRNm
= O(1/h),

where NRNm
denotes the number of elements in the set RNm, then in terms of (17)

and (27) we have

(35) ũ
(s+1)
L = u(L, t) +O(hp).

3.4. Procedure of GCENZ. The GCENZ procedure algorithm is given as fol-
lows:

(1) Solve the (s+ 1)-th iteration step to obtain the cell-centered values u
(s+1)
K

and cell-edge flux of cell K, {F
(s+1)
K,σ |σ ∈ CK}.

(2) All the cells are divided into three sets N,P+,Pc, where N is the set of
negative cells, N = {K : uK < 0}, Pc is the set of cells whose values are
initially negative in (s+1)-th step and have been repaired, P+ is the set of
positive cells.

(3) If all cell-centered values are nonnegative, i.e., N = ∅, then goto 7, else
goto the next step.

(4) Classify all the cells in Pc∪N into connected subsets {RNm,m = 1, · · ·,M}
according to their connectivity.

(5) Preform the conservative repair method for each subset RNm according to
the algorithm presented in subsections (3.1)-(3.2).

(6) Goto 2.
(7) Goto 1 and execute the nonlinear iteration step until the convergence cri-

terion holds.

4. Numerical experiments

In this section, we give some numerical examples on distorted grids to verify the
efficiency and the accuracy of GCENZ method. The comparison of GCENZ with
other repair algorithms is presented by giving L2, L∞ and conservation errors.

The L∞ and L2 norms of errors are defined as follows:

eL∞
= max

K∈T

∣

∣u(K,T )− uNK
∣

∣ ,(36)

eL2
=

(

∑

K∈T

(u(K,T )− uNK)2SK

)1/2

,(37)

where u(K,T ) is the reference solution defined in the center of the grids at the
time T , which maybe the exact solution or the numerical solution on the refined
orthogonal grids. uNK is the numerical solution at the time T = N∆t.

The conservation error of the numerical solution is defined as follows:
(38)

edcon =

∣

∣

∣

∣

∑

K∈T

uNKSK −
∑

K∈T

u0KSK +
N
∑

n=1

(

∑

σ∈∂Ω

Fn
K,σ

)

△t−
N
∑

n=1

(

∑

K∈T

fn
KSK

)

△t

∣

∣

∣

∣

.
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Figure 3: The solutions at T = 0.001, 0.0015, 0, 003, 0.0045 on Kershaw mesh.

In the following examples, the computational domain is Ω = (0, 1)× (0, 1), and
the nonlinear convergence criterion is

(39) max
K∈T

|u
(s+1)
K − u

(s)
K | < ε.

Example 1 First, we consider the following linear model with Neumann bound-
ary condition:
(40)


























∂u
∂t − div(∇u) = 0, (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = 10 exp ( a2(x−c)2+b2(y−c)2

a2(x−c)2+b2(y−c)2−a2b2 ), a2(x− c)2 + b2(y − c)2 < a2b2,

u(x, y, 0) = 0, a2(x− c)2 + b2(y − c)2 ≥ a2b2,

∂
∂~nu(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ],

where ~n is the unit normal vector outward on ∂Ω. We choose a2 = b2 = 0.01,c = 0.5.
The exact solution is not known for this linear problem, so we solve it on 200× 200
rectangular grids, and then take these numerical solutions as the reference solutions.
We choose ∆t = 10−6, T = 0.01, and the convergence criterion is ε = 10−6.

First, we test this problem on Kershaw mesh and the number of cell is 50× 50.
The numerical solutions using the scheme (7) are shown in Fig. 3. It displays
the numerical solution at different time. The blank part in the figures represents
negative cells.

For this example, we use GCENZ algorithm to repair the numerical solution,
and compare the results from this algorithm with those from the ENZ and CEPA
repair algorithms. ENZ is the directly enforcing the negative values to zero algo-
rithm, which is a traditional repair way, but it is not a conservation method and
the conservation error is ascending with the time increasing. CEPA is the repair
algorithm presented in [20]. Fig. 4 presents the conservation errors in terms of
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1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

NONE
ENZ
CEPA
GCENZ

Figure 4: The discrete conservation errors edcon on Kershaw mesh.

Figure 5: The errors eL∞
and eL2

by NPS, ENZ, CEPA, GCENZ.

Figure 6: The solutions at T = 0.0001, 0.00015, 0, 0003, 0.00045 by the NPS scheme
[6] on random triangular mesh.
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Figure 7: The discrete conservation errors edcon on random triangular mesh.

formula (38) for three repair methods and the original scheme (7) without using
any repair method (denoted as NONE). These three methods are conservative and
the conservation errors are unchanged with time. Moreover, the conservation error
of CEPA and GCENZ are much smaller than that of ENZ. The GCENZ method
is strictly conservative and the conservation error is almost the same as that of the
original scheme.

(a) Shestakov mesh (b) Random triangular mesh

Figure 8: The two kinds of computational grids.

Fig. 5 displays the L∞ and L2 errors from the scheme (7) and three different
repair algorithms. It can be seen that both the L∞ and L2 errors using GCENZ
and CEPA method are smaller than those of ENZ.

Next, we test this problem on random triangular meshes with the number of cell
being 40× 40. The numerical solutions on random triangular meshes are shown in
Fig. (6)-(7). Fig. 6 shows the numerical solution of the scheme (7) at four different
times. The blank part in figures are negative cells and the number of negative cells
is decreasing with time. From the Fig. 7, we can conclude that GCENZ preserves
the local conservation, and its conservation error is almost the same as that of the
original scheme and much smaller than that of ENZ.
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Figure 9: The solutions at T = 0.001, 0.0015, 0, 003, 0.0045 by NPS scheme on
64× 64 Shestakov mesh.

Figure 10: The errors eL∞
and eL2

by ENZ, CEPA, GCENZ on Shestakov mesh.

Example 2 Consider the following nonlinear model with Neumann boundary
condition:
(41)


























∂u
∂t − div((1 + u)∇u) = 0, (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = 10 exp ( a2(x−c)2+b2(y−c)2

a2(x−c)2+b2(y−c)2−a2b2 ), a2(x− c)2 + b2(y − c)2 < a2b2,

u(x, y, 0) = 0, a2(x− c)2 + b2(y − c)2 ≥ a2b2,

(1 + u) ∂
∂~nu(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ],

It has the same initial and boundary conditions as Example 1 except for the con-
ductive coefficient being 1 + u.

First, we solve this problem on the 64 × 64 Shestakov mesh as shown in Fig.
11(a). Note that this model has no source, and no flux crossing the boundary of
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(a) Kershaw mesh (b) Random triangular mesh

Figure 11: Two kinds of computational grids.

Time

Co
ns

er
va

tio
n

er
ro

r

0 0.002 0.004 0.006 0.008 0.01

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

NONE
ENZ
CEPA
GCENZ

Figure 12: The discrete conservation errors edcon of different repair methods on
Shestakov mesh.

domain, moreover the initial values are nonnegative. The exact solution of (41)
is nonnegative due to maximum principle. However, there are many cells with
negative values of the numerical solution by the scheme (7) as shown in Fig. 9.
The comparison of L2, L∞ errors and the conservation error by different repair
methods are presented in Figs. 10 and 12.

The errors eL∞
,eL2

for the ENZ, CEPA and CENZ on the Shastakov grids are
compared in Fig. 10. It shows that the errors from the conservative repair methods
CEPA and GCENZ are smaller than those from ENZ, thus the GCENZ method is
more accurate than CEPA.

The conservation errors of three repair methods and the original scheme are
presented in Fig. 12. One can see that the conservation error of the GCENZ is
almost the same as that of the scheme (7) and CEPA repair method. In contrast,
the conservation errors produced by ENZ method is much larger than that of others.

We also compute this problem on 40 × 40 random triangular mesh as shown in
Fig. 11(b). Fig. 13 shows the plot of the numerical solutions at different time where
the blank part represents negative cells. The similar results about conservation are
presented in Fig. 14.
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Figure 13: The solutions at T = 0.001, 0.0015, 0, 003, 0.0045 by NPS scheme on
40× 40 random triangular mesh.

Time

Co
ns

er
va

tio
n

er
ro

r

0 0.002 0.004 0.006 0.008 0.01

0.0E+00

5.0E-05

1.0E-04

1.5E-04

NONE
ENZ
GCENZ

Figure 14: The discrete conservation errors edcon by different repair methods on
random triangular mesh.

5. Conclusions

In this paper, we develop a new conservative enforcing positivity-preserving al-
gorithm (GCENZ) for the finite volume scheme of diffusion equations. It is a
posterior repair strategy and can be applied to both structure and unstructured
meshes. Three repair algorithms are compared numerically, including (i) the trick
of directly setting the negative values to zero (ENZ), which was commonly used
in applications, (ii) an existing conservative enforcing positivity-preserving algo-
rithm (CEPA), (iii) and our GCENZ algorithm. The numerical examples show
that GCENZ can keep the positivity of solution, and in terms of the conservation
it is much better than ENZ, and in terms of L2 error it is better than ENZ and
CEPA, moreover, in terms of L∞ error it is approximate to ENZ and CEPA.
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