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DATA DEPENDENT STABILITY OF FORWARD IN TIME AND

CENTRED IN SPACE (FTCS) SCHEME FOR SCALAR

HYPERBOLIC EQUATIONS

RITESH KUMAR DUBEY

Abstract. The main novelty of this note is the approach which is used to show that Forward Time
and Centred in Space (FTCS) scheme is data dependent stable for scalar hyperbolic conservation

laws. Note that FTCS is well known to be unconditionally unstable in von-Neumann sense. In this

new approach, the ratio of consecutive gradients is used to classify the initial data region where
FTCS is non-oscillatory and stable. Numerical results for 1D scalar and system test problems are

given to verify the claim.

Key words. Numerical oscillations; von-Neumann stability; smoothness parameter; finite differ-

ence schemes; hyperbolic conservation laws.

1. Introduction

The notion of stability of a numerical scheme for the time dependent problems
evolves around the induced spurious numerical oscillations especially at disconti-
nuities. In the founding work, Courant-Friedrichs and Levy shown that for the
convergence, a difference scheme must contains the physical domain of dependence
of the partial differential equation [1]. In other words, they gave a necessary con-
dition on the ratio of the spatial and time discritization steps for the stability of
the difference scheme known as CFL condition. Later O’Brien, Hyman and Kaplan
defined the stability of a difference scheme in terms of the growth of rounding errors
[14]. In the seminal work [13], Lax and Richtmyer defined the stability using the
uniformly boundedness of linear difference operator in the numerical scheme and
gave the the necessary and sufficient condition for the convergence of linear schemes.
One can summarize that the stability of a scheme ensures for the bounded growth of
the solution. This becomes a significant requirement when it comes to approximate
the solution of following scalar hyperbolic initial value problem

(1) u(x, t)t + g(u(x, t))x = 0, u(x, 0) = u0(x).

This boundedness of numerical solution is required because the physical solution
u(x, t) of (1) satisfies the following maximum principle,

(2) min
x

(u(x, 0)) ≤ u(x, t) ≤ max
x

u(x, 0), ∀x and t ≥ 0.

If one consider a uniform grid with the spatial width h, time step k and denote the
discrete mesh point (xj , tn) by xj = jh, j = 1, 2, . . . N and tn = nk, k = 1, 2, . . .M .

Then the CFL number for (1) can be defined as C = λmaxu |g′(u)| where λ = k
h

and g′(u) is the characteristic speed associated with (1). It can be approximated
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at the cell interface xj+ 1
2

of the cell [xj , xj+1] can by

(3) aj+ 1
2

=

{
∆+g

n
j

∆+un
j

if ∆+u
n
j 6= 0,

g′j else.

Starting from the the work in [1], the CFL number has been an indispensable tool
for defining the stability of numerical schemes. The linear von-Neumann stability
analysis of a numerical scheme deduces a stability condition on the CFL number.
Stronger non-linear stability conditions which ensure the boundedness requirement
(2) in the numerical solution of (1) are also heavily depend on the CFL number.
For example upwind range condition, monotone stability [12, 2, 20], positivity pre-
serving [8, 16] and total variation stability [6].

In fact, one needs to satisfy the CFL requirement i.e., C ≤ K where K ∈ R
to devise any new stable scheme e.g., TVD schemes in [3, 9, 19], essentially non-
oscillatory (ENO) schemes [7, 21], weighted essentially non-oscillatory schemes [24].
Apart from defining the stability, in a recent paper [10], the CFL number is exploited
for the improved approximation by the flux limiters based scheme.

In this work, we consider the FTCS scheme obtained by the discretization of (1)
by replacing the time derivative with a forward difference and the space derivative
with a centred difference formula as

(4) un+1
j = unj −

k

2h

(
gnj+1 − gnj−1

)
.

where gnj = g(unj ) and unj ≈ u(xj , tn). The above three point centred FTCS
scheme (4) seems to be a correct and natural choice as the spatial discritization in
FTCS does not violets the physical domain of dependence of (1). Contrary to the
expectation, even for the linear problem g(u) = au, the solution obtained by FTCS
scheme (4) is diverging and the induced oscillations grow exponentially no matter
how small the time step is compared to the space step. The classical von-Neumann
stability analysis also shows that FTCS (4) is unconditionally unstable. Moreover,
FTCS does not satisfy criteria for any of the above mentioned non-linear stability
conditions see [11]. One can find such unconditional unstability of FTCS scheme
(4) quite surprising mainly because as

• The FTCS (4) and the centered Lax-Wendroff (LxW) scheme [15] shares
the same spatial stencil of grid points. Note that, for the CFL number
C = λ|a| ≤ 1, the three point centred LxW scheme is linearly stable [23]
while FTCS is completely unstable.
• It can be observed that for smooth initial data, such as sinusoidal wave,

the induced oscillations by FTCS does not grow immediately. Moreover,
up to some extent, the occurrence of induced oscillations can be controlled
by choosing small CFL number C, see Figure 2. On the other hand when
applied on discontinuous initial data, FTCS introduces strong oscillations
immediately see Figure 3(a).

These observations have been the motivation for the present study of the depen-
dence of induced oscillations by the FTCS scheme (4) on data type and the CFL
number. More precisely, we look for initial data type for which FTCS preserves the
positivity, monotonicity and is local extremum diminishing stability properties. In
order to carry out the analysis, we follow the idea used by the author in [4]. Note
that the schemes analyzed in [4] are stable in the von-Neumann sense where as the
FTCS scheme (4) considered in this work is unconditionally unstable.
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In this work the classification is done in terms of ratio of consecutive gradients
which is classically defined as (see [3, 10, 11, 23])

(5) θnj =


∆−u

n
j

∆+unj
if a ≥ 0,

∆+u
n
j

∆−unj
if a < 0,

where a = g′(u) is wave speed associated with (1) and ∆±u
n
j = ±uj± 1 ∓ uj . Rest

of paper is organized as follows: In section 2 we define data dependent stability
(DDS) and give bounds for FTCS scheme for scalar linear and non-linear hyperbolic
conservation laws. In section 4, numerical results are given for 1D benchmark
scalar and nonlinear system test cases. These results show that FTCS is DDS and
introduces oscillations only for specific data type. Conclusion and future plan is
summarized in section 5.

2. Data Dependent stable (DDS) schemes

For simplicity consider, the linear analog of (1) i.e., transport problem,

∂

∂t
u(x, t) + a

∂

∂x
u(x, t) = 0, a ∈ R(6)

u0(x) = f(x)(7)

where u = u(x, t) is a scalar field transported by flow of constant velocity a. The
exact solution of linear transport equation is given by

(8) u(x, t) = u0(x± at).

Seemingly simple, the linear transport equation (6) has played a crucial role in the
development of the numerical methods for general hyperbolic conservation laws. It
is the closed form solution (8) which pave the way to analyze any new numerical
scheme, devised for more complex non-linear hyperbolic problems for its conver-
gence and stability. Considering the solution (8), it is natural to seek a numerical
scheme which is stable in the sense that it does not induce spurious numerical os-
cillations. In case of two point schemes such non occurrence of induced oscillations
in solution of the (6) can be ensured by a linear scheme,

(9) un+1
j =

{
αunj + βunj−1, if a ≥ 0,
αunj + βunj+1, if a ≤ 0,

where α ≥ 0, β ≥ 0 and α + β = 1. Under such condition, the above scheme (9)
is a convex combination of two point values of uni , i = j, j ± 1 therefore ensure
that updated value un+1

j will be stable in the sense of the following local maximum
principle

(10)
min(unj , u

n
j−1) ≤ un+1

j ≤ max(unj , u
n
j−1) if a ≥ 0,

min(unj , u
n
j+1) ≤ un+1

j ≤ max(unj , u
n
j+1) if a ≤ 0,

Moreover the condition α + β = 1 and β = a kh ≥ 0 ensure that (9) is a consistent
approximation of (6). A simple von Neumann stability analysis shows (9) is stable
provided |a| kh ≤ 1. The condition (10) also ensures that the computed solution
satisfies the following discrete analog of the maximum principle (2)

(11) min
j
{u0

j} ≤ un+1
j ≤ max

j
{u0

j},∀j = 1, 2, . . . , N and ∀n = 1, 2, . . .M.
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Note that since scheme (9) is linear, it consistency and stability ensure for its
convergence by Lax-Ritchmyer Theorem [13]. Considering above local maximum
principle (10) and notion of data compatibility in [23] we define,

Definition 2.1. Consider a three point scheme written in the form

(12) un+1
j =

{
α(θj)u

n
j + β(θj)u

n
j−1 if a ≥ 0

α(θj)u
n
j + β(θj)u

n
j+1 if a ≤ 0,

where the coefficients α, β may depends on CFL as well smoothness parameter (5).
We call scheme (12) data independent stable if

(13) αj ≥ 0, βj ≥ 0 and αj + βj = 1 ∀ θj ∈ R,

where αj = α(θj), βj = β(θj). In case, (13) holds only for θj ∈ R \ S where S ⊂ R,
scheme (12) is called data dependent stable.

3. DDS stability of FTCS for non-linear scalar problem

The sonic point u∗ of (1) corresponds to zero wave speed i. e., g′(u∗) = 0 and
signals a change in the wave direction. It is well known that in many numerical
methods produces significant errors near sonic points, especially at expansive sonic
points and lead to sonic expansion. There are standard approaches to avoid these
difficulties such as Harten’s sonic entropy fix or addition of artificial viscosity [11].
Therefore we focus to analyse the bounds for FTCS (4) only in the non-sonic region
to get non-oscillatory approximation of scalar problem (1).

Theorem 3.1. Away from the sonic point i.e., where aj− 1
2
× aj+ 1

2
> 0, the FTCS

scheme (4) is data dependent stable and non-oscillatory in the solution region where

(14) θnj ∈ SFTCS =


(
∞,− aj+12

aj−12

]
∪
[

λaj+12

2−λaj−12
,∞
)

if g′(u) > 0,

(
∞,−aj−12

aj+12

]
∪
[
− λaj−12

2+λaj+12
,∞
)

if g′(u) < 0.

provided λmaxu |g′(u)| ≤ 2.

Proof. Rewrite (4) using (3) as

(15) un+1
j = unj −

λ

2

(
aj+ 1

2
∆+u

n
j + aj− 1

2
∆−u

n
j

)
.

In case if g′(u) > 0 i.e., aj± 1
2
> 0, , (15) can be written in upwind form as

(16) un+1
j = unj −

λ

2

(
aj+ 1

2
∆+u

n
j

∆−unj
+ aj− 1

2

)
∆−u

n
j .

Rewriting it as

(17) un+1
j = α+unj + β+unj−1.

where the coefficients α+ = 1− λ

2

(
aj+ 1

2

∆+u
n
j

∆−unj
+ aj− 1

2

)
and

β+ =
λ

2

(
aj+ 1

2

∆+u
n
j

∆−unj
+ aj− 1

2

)
. Note that α+ +β+ = 1, thus by definition (2.1), to



DATA DEPENDENT STABILITY OF FTCS SCHEME 693

ensure non-oscillatory stable approximation such that unj−1 ≤ un+1
j ≤ unj by (15),

it is sufficient that
(18)

α+ = 1− λ

2

(
aj+ 1

2

∆+u
n
j

∆−unj
+ aj− 1

2

)
≥ 0, and β+ =

λ

2

(
aj+ 1

2

∆+u
n
j

∆−unj
+ aj− 1

2

)
≥ 0.

Inequalities (18) satisfies if,

∆+u
n
j

∆−unj
≥ −

aj− 1
2

aj+ 1
2

and
∆+u

n
j

∆−unj
≤

2− aj− 1
2
λ

aj+ 1
2
λ

.

Which on inversion yield following non-oscillatory condition for FTCS scheme (26)
in case of g′(u) > 0,

(19)
∆−u

n
j

∆+unj
≤ −

aj+ 1
2

aj− 1
2

OR
∆−u

n
j

∆+unj
≥

aj+ 1
2
λ

2− aj− 1
2
λ

Similarly in case if g′(u) < 0 i.e., aj+ 1
2
< 0, j = 1, 2., (15) can be written as

(20) un+1
j = unj −

λ

2

(
aj+ 1

2
+
aj− 1

2
∆−u

n
j

∆+unj

)
∆+u

n
j .

or

(21) un+1
j = α− unj + β− unj+1.

where α− =

(
1 +

λ

2

(
aj+ 1

2
+ aj− 1

2

∆−u
n
j

∆+unj

))
and β− = −λ

2

(
aj+ 1

2
+ aj− 1

2

∆−u
n
j

∆+unj

)
.

Since α− + β− = 1, similar to above, (21) ensures for a non-oscillatory approxima-
tion provided,

(22)

(
λ

2

(
aj+ 1

2
+ aj− 1

2

∆−u
n
j

∆+unj

))
≥ −1 and

−λ
2

(
aj+ 1

2
+ aj− 1

2

∆−u
n
j

∆+unj

)
≥ 0.

Note that λ aj+ 1
2
< 0, therefore inequalities in (22) satisfy if(
∆−u

n
j

∆+unj

)
≤
−(2 + aj+ 1

2
λ)

aj− 1
2
λ

and
∆−u

n
j

∆+unj
≥ −

aj+ 1
2

aj− 1
2

Since
−
(

2+a
j+1

2
λ

)
a
j− 1

2
λ > 0 and

a
j+1

2

a
j− 1

2

> 0, thus on inversion above compound inequality

satisfies if,

(23)
∆+u

n
j

∆−unj
≤ −

aj− 1
2

aj+ 1
2

OR
∆+u

n
j

∆−unj
≥

−aj+ 1
2
λ

(2 + aj+ 1
2
λ)

�

Remark 1. Note that conditions (19) and (23) are equivalent to positivity or
monotonicity preserving and local extremum diminishing stability [11, 8] of ap-
proximation by (17) and (21) respectively or equivalently by FTCS scheme (4).
Moreover it can be shown that these conditions are sufficient to characterize the
data region where FTCS is TVD. It follows from considering equations (16) and
(20) along with the following result due to Harten [6]
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Figure 1. Plot θ v/s aλ, a = 1: aλ→ 0 stabilizes the FTCS as
it corresponds to reduced oscillatory shaded region.

Lemma 3.2. Consider a conservative scheme in the form

(24) ūn+1
i = ūni + Ci+ 1

2
∆+ū

n
i −Di− 1

2
∆−ū

n
i .

A sufficient condition on coefficients C, D for the scheme (24) to be TVD is

(25) Ci+ 1
2
≥ 0, Di− 1

2
≥ 0, 0 ≤ Ci+ 1

2
+Di− 1

2
≤ 1.

For linear case i.e., g(u) = au it follows from Theorem 3.1,

Corollary 3.3. The FTCS scheme for (6) i.e.,

(26) un+1
j = unj −

a k

2h

(
unj+1 − unj−1

)
.

is data dependent stable and non-oscillatory in the solution data region where θnj ∈

SFTCS = (∞,−1] ∪
[

sgn(a)|a|λ
2− sgn(a)|a|λ

,∞
)

, provided CFL number aλ ≤ 2.

In Figure (1) the non-oscillatory stability region SFTCS for (26) is given for a > 0.
As aλ → 2 the unstability region goes to +∞ making FTCS unstable for all data
type except for those extrema where θ < −1. On the other hand aλ → 0 reduces
the instability region in to θ ∈ [−1 : 0). It can easily be deduced from Figure 1 that
it is better to use aλ ≤ 1 so that second order FTCS gives non-oscillatory (stable)
approximation for smooth data region where θ ≈ 1.

Remark 2. Note that this new approach, the data dependent stability analysis
gives significant new information on data type and the stability of a scheme. Also,
possibly this is the only approach which deduce a stability condition of FTCS
scheme which fails to satisfy any existing notion of stability. This approach can be
applied on linearly stable but oscillatory high order schemes to get further insight
on the data region where one can retain higher accuracy as done in [4]. This data
dependent stability approach can also be applied for stable numerical approximation
of physically relevant convective dominated flow problems.
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4. Numerical Verification

In order to validate numerically the data dependent stability of FTCS scheme,
following two approaches are used. These hybrid methods using first order non-
oscillatory Local Lax Friedrichs scheme [22] are designed to elaborate the data
region which cause induced oscillations by FTCS. Let FFTCS

j+ 1
2

and FLLF
j+ 1

2

denotes

the numerical flux function of FTCS and LLF scheme.

4.1. Stable hybrid Approach. To show FTCS does not introduces oscil-
lations for data region SFTCS: This approach can be viewed as the following
hybrid scheme

(27) un+1
j = unj − λ

(
χ(θj)∆−F

FTCS
j+ 1

2
+ (1− χ(θj))∆−F

LLF
j+ 1

2

)
where χ is a limiting function defined as

(28) χ(θj) =

{
1 if θj ∈ SFTCS
0 if θj /∈ SFTCS

Results obtained by this approach are shown by legend ’FTCSLLF’.

Remark 3. Note that LLF scheme is TVD [23] and in the light of Remark 1
and Lemma 3.1, FTCS is conditionally TVD. Therefore, it follows that the hybrid
scheme (27) is always TVD.

4.2. Unstable hybrid approach. To show FTCS introduces oscillations
only for data region R \ SFTCS: Results obtained by this approach are shown
by legend ’FTLLFCS’.

(29) un+1
j = unj − λ

(
χ(θj)∆−F

LLF
j+ 1

2
+ (1− χ(θj))∆−F

FTCS
j+ 1

2

)
where χ is defined in (28). One can see from the presented numerical results that
FTCS scheme is data dependent stable as stated in Theorem 3.1.

Remark 4. It is needed to state that the limiting approach used in hybrid schemes
(27) and (29) is entirely different from the approach of weighted average flux (WAF)
approach in [23] or slope and flux limiter based TVD schemes [3, 10]. Note that
in the WAF or TVD approaches a weight or limiting function is used to get new
hybrid numerical flux function for a scheme whereas in the present approach, use of
limiting function χ yields a hybrid scheme which switches between FTCS and LLF
scheme. In other words (27) and (29) are scheme limiter based hybrid schemes.

4.3. Linear Case. Consider linear transport equation (2) along with the following
initial conditions

(30) u0(x) = sin(π x), x ∈ [−1 : 1]

This initial condition is taken to show one of the observations i.e., effect of CFL
number on induced oscillations by FTCS which motivated the present study. It
can be clearly seen in Figure 2 that numerical oscillations disappear for small CFL
number. This supports the result in Theorem 3.3 as C → 0 reduces the region of
oscillations of θ to (-1,0) as shown in Figure 1. Following two initial conditions are
taken to show the data dependent stability of FTCS using approaches 4.1 and 4.2.

(31) u0(x) =

{
1 if |x| ≤ 1/3
0 else

, x ∈ [−1 : 1].
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Figure 2. Effect of CFL on induced oscillations in the solution
corresponding to (30), at T = 4 using N = 80 grid points (a)
C = 0.05 (b) C = 0.25 and (c) C = 0.5.

(32) u0(x) =

{
exp

(
−1

1−x2

)
if |x| ≤ 1

0 else
x ∈ [−2 : 4].

In Figure 3, 4 and Figure 5 numerical results are given using unstable FTCS,
FTLLFCS and stable FTCSLLF schemes. Note that application of FTCS in its data
dependent instability region (in approach FTLLFCS) introduces the oscillations
while the stable approach FTCSLLF does not show any oscillation as FTCS is
applied in its data dependent stability region. In Figure 4(b) numerical results are
shown at large time t = 12 when the initial solution have travelled the periodic
domain exactly six times.

4.4. Nonlinear scalar. Note that reduction of (4) using θ leads to non-conservative
formulation (17) and (21). More precisely, keeping θ intact, scheme (17) and (21)
can not be written in the form

(33) un+1
j = unj − λ[Fj+ 1

2
− Fj− 1

2
]

where Fj+ 1
2

is the numerical flux function. Since the bounds for non-linear scalar

case are obtained by these non-conservative approximations (17) and (21) therefore
the hybrid numerical scheme 4.1, based these bounds can lead to wrong propagation
of speed of shock. This can be avoided by using a simple and well established
technique given in [17, 5] i.e., by using a conservative scheme in the neighbourhood
of shock δshockxi

with the help of a shock switch. Here neighbourhood of a shock
point xi is a discrete set of neighbouring point of the grid and we define it by
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Figure 3. Solution corresponding to (31), with N = 80 grid
point at T = 0.1 and C = 0.6, (a) FTCS is highly unstable but
does not introduce oscillations for top and bottom of left and right
discontinuity respectively (b) Induced oscillations by FTLLFCS
approach, where FTCS is applied in its unstability region θ ∈
SFTCS \ R.
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Figure 4. Non-oscillatory solution corresponding to (31) by
FTCSLLF approach where FTCS is applied only in its stability
region θ ∈ SFTCS . Computed solutions using N = 80 grid point
(a) C = 0.6 at time T = 0.1 and (b) C = 0.8 at time T = 12.

δshockxi
= {xi±k, k = 1, 2, 3.}. In the numerical results presented for non-linear case,

a shock detector given in [28] is used to implement the stable hybrid approach 4.1.
We consider the following two non-linear scalar Riemann problems given by

(34) ut + f(u)x = 0,

(i) Test problem 1: Inviscid Burgers equation corresponds to the flux func-
tion

(35) f(u) =
u2

2
,

with initial conditions

(36) u0(x) =

{
1 if x ≤ 0.5
0 x > 0.5, x ∈ [0, 1].

(37) u0(x) =

{
1 if |x| = 1/3
0 else, x ∈ [−1, 1]..
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Figure 5. Solution corresponding to (32), at T = 1.0 and
C = 0.6 (a) Highly oscillatory approximation by FTCS (b) In-
duced spurious oscillations by FTLLFCS, FTCS introduce oscilla-
tion only in its instability region θ ∈ SFTCS \R. (c) No oscillations
by FTCSLLF approach.

(38) u0(x) =
1

4
(1 + sin(πx)), x ∈ [−1 : 1]

Solution results for above test cases are given in Figures 6 to 9. Results in
Figures 6 and 7 show that solution by FTCS and FTLLFCS is oscillatory
whereas FTCSLLF does not show numerical oscillations. The numerical
solution by hybrid approach FTCSLLF is also compared with the solution
by LLF corresponding to initial conditions (37) and (38) in Figure 8 and
Table 1. Results in Figure 8 and Table 1 show that hybrid scheme FTC-
SLLF crisply captures the left rarefaction with higher resolution and gives
faster convergence rate than the LLF scheme for smooth solution especially
in L∞ error norm.

Table 1. Comparison of order of accuracy for Burgers equations
corresponding to IC (38) using CFL = 0.2 at pre-shock time t =
3
4Tb.

N LLF FTCSLLF

10
20
40
80
160
320

L1 Error Rate L∞ Error Rate
1.0097e-01 . . . 9.8462e-02 . . .
4.7577e-02 1.0856 8.7008e-02 0.1784
2.4282e-02 0.9704 6.0629e-02 0.5211
1.2317e-02 0.9792 4.0273e-02 0.5902
6.2346e-03 0.9823 2.2895e-02 0.8148
3.1609e-03 0.9799 1.2646e-02 0.8564

L1 Error Rate L∞ Error Rate
6.5950e-02 . . . 1.3087e-01 . . .
2.0729e-02 1.6697 7.6180e-02 0.7806
6.9765e-03 1.5711 3.6201e-02 1.0734
2.8087e-03 1.3126 1.7531e-02 1.0461
1.2254e-03 1.1966 7.2388e-03 1.2761
6.7013e-04 0.8708 3.2286e-03 1.1648
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Figure 6. Solution of Burgers equation corresponding to IC (36)
using CFL = 0.8, N = 100, at T = 0.05. In (a) and (b) Oscillatory
solution by unstable FTCS scheme and FTLLFCS approach.
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Figure 7. FTCSLLF approach gives stable non-oscillatory so-
lution for Burgers equation test corresponding to IC (36) using
CFL = 0.8, N = 100, at (a) T = 0.05 and (b) T = 0.8.

(a) (b)

Figure 8. Solution of Burgers equation corresponding to IC (37)
using CFL = 0.4, N = 200, at t = 0.8. (a) FTLLFCS gives oscil-
latory approximation for shock whereas (b) FTCSLLF give stable
approximation for shock with out oscillations. The left rarefaction
is correctly captured with high resolution compared to LLF.
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Figure 9. Solution of Burgers equation corresponding to IC
(38) using CFL = 0.25, N = 100, at (a) breaking time Tb = 4

π (b)

Solution at post breaking time t = 8
π

.

(ii) Test problem 2: It corresponds to the flux function [22]

(39) f(u) = sin(u),

with initial condition with single discontinuity sitting at x = 0 and defined
by

(40) u0(x) =

{
π
4 if x < 0,

15π
4 if x > 0.

The solution for this problem consists one stationary shock at x = 0 sepa-
rated by rarefaction waves and one left moving shock. In Figure 10 numer-
ical results obtained by stable FTCSLLF approach are given which shows
an accurate capturing of steady shock and crisp resolution to rarefaction
by FTCSLLF.
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Figure 10. Solution of Riemann problem (39) corresponding to
IC (40) using CFL = 0.3, N = 100, at time (a) t = 0.5 and (b)
t = 1.0. Accurate approximation of stationary shock at x = 0
and crisp resolution for middle as well top rarefaction waves by
FTCSLLF approach.

From the numerical results presented in Figure 3 to Figure 10 it can
be concluded that FTCS is data dependent stable and does not intro-
duce oscillations in the data region where θ ∈ SFTCS . This also sug-
gests that contrary to expectations and practice, FTCS can be used to
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get non-oscillatory approximation by suitably hybridizing it with existing
non-oscillatory schemes.

4.5. 1D Systems. We consider the Euler equation of Gas dynamics given by

(41)
∂U

∂t
+
∂F

∂x
= 0

where vector U =

 ρ
ρu
E

 and F =

 ρu
ρu2 + p
u(E + p)

. The variables ρ, u,E represents

density, velocity and energy of the system. The pressure p is related to conserved
quantities through the equation of state. p = (γ − 1)(E − 1

2ρu
2) with γ = 1.4.

Since the hybrid scheme 4.1, is a centered, therefore the extension for the system
(41) is straight forward and with out using any expansive Riemann solver. The
characteristics speed for system (41) is approximated through

(42) aj
i+ 1

2

=


F j

i+1−F
j
i

Uj
i+1−U

j
i

uji+1 − u
j
i 6= 0

σ(Ai+ 1
2
) else,

j = 1, 2 . . . l,

where σi+ 1
2

is the spectrum of eigen values of the flux Jacobian matrix Ai+ 1
2

=

F′(U). In above computation (42) the nonphysical discrete wave speed due to

numerical overflow while U ji+1 ≈ U ji are corrected using the wave speed correction
technique proposed in [27].

4.5.1. Sod shock tube test [25]. Consider (41) with initial condition

(43) (ρ, u, p) =
(1 kg/m3, 0 m/s, 100, 000 N/m2) x < 0
(0.125 kg/m3, 0 m/s, 10, 000 N/m2) x ≥ 0;

, x ∈ [−10, 10].

In this test case the contact and shock are very close which cause a smeared approx-
imation to the middle contact discontinuity. In Figure 11, Density,Pressure and ve-
locity plots obtained by approach 4.1 are compared with Local Lax Friedrichs(LLF)
scheme. Results show that FTCSLLF not only give oscillations free results but also
yields much crisper resolution to the smooth rarefaction compared to LLF. Also
contact discontinuity and moving shock is captured nicely at right location.

4.5.2. Lax shock tube test [29]. Consider 41 with initial condition

(44) (ρ, u, p) =
(0.445 kg/m3, 0.698 m/s, 3.528 N/m2) x < 1,
(0.5 kg/m3, 0 m/s, 0.571 N/m2) x ≥ 1;

x ∈ [0, 2].

Compared to Sod tube test, the shock in this case is very strong and many shock
capturing schemes shows oscillatory approximation for it. In Figure 12 numerical
results obtained by FTCSLLF are given and compared with LLF. It can be seen
that that the method capture the contact and the rarefaction wave with higher
resolution compared to LLF and does not show oscillations for strong shock.

4.5.3. Shu-Osher shock tube test [26].

(45) (ρ, u, p) =
(3.857143, 2.629369, 10.3333) x < −4.0,
(1 + 0.2 sin(5x), 0, 1) x ≥ −4.0.

This test depicts shock interaction with a sine wave in density and the main chal-
lenge is to capture both the complex small-scale smooth flow and shocks. In Fig-
ure 13 results are presented an again compared with LLF scheme. It is evident
from results that the FTCSLLF yields oscillation free approximation for shock with
higher resolution compared to LLF for complex oscillatory solution region between
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Figure 11. Solution plot for Sod shock tube problem, N =
200, CFL = 0.45
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Figure 12. Solution plot for Sod shock tube problem, N =
200, CFL = 0.45

[0.5, 2.5]. It also capture the smooth region in around [−3, 0.5] with out clipping
or flattening error which is due to improved approximation of smooth extrema and
steep gradient region.
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Figure 13. Numerical solution of shock density wave interaction
CFL = 0.8, N = 2000 at time t = 1.8. High resolution of smooth
extrema and steep gradient region.

5. Conclusion

A classification of data type is done to obtain non-oscillatory stability bounds
on initial data profile for unconditionally unstable (in von-Neumann sense) FTCS
scheme and also numerically verified. An extension of this preliminary study and
idea of DDS for other existing schemes for non-linear hyperbolic problem is being
carried out for a generalized separate work.
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