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A PRIORI ERROR ESTIMATES OF A SIGNORINI CONTACT

PROBLEM FOR ELECTRO-ELASTIC MATERIALS

SALAH BOURICHI1, EL-HASSAN ESSOUFI1 AND RACHID FAKHAR2

Abstract. We consider a mathematical model for a static process of frictionless unilateral contact
between a piezoelectric body and a conductive foundation. A variational formulation of the model,
in the form of a coupled system for the displacements and the electric potential, is derived. The
existence of a unique weak solution for the problem is established. We use the penalty method
applied to the frictionless unilateral contact model to replace the Signorini contact condition, we
show the existence of a unique solution, and derive error estimates. Moreover, under appropriate
regularity assumptions of the solution, we have the convergence of the continuous penalty solution
as the penalty parameter ǫ vanishes. Then, the numerical approximation of a penalty problem by
using the finite element method is introduced. The error estimates are derived and convergence
of the scheme is deduced under suitable regularity conditions.

Key words. Piezoelectric, variational inequality, Signorini condition, penalty method, fixed
point process, finite element approximation, error estimates.

1. Introduction

In recent years, piezoelectric materials have triggered intensive studies to fulfill
their potential applications in a variety of fields due to include the coupling between
the mechanical and electrical material properties. Indeed, there is a considerable
interest in frictional or frictionless contact problems involving piezoelectric mate-
rials, see, e.g., [1, 2, 4, 7, 8, 9, 11] and the references therein. Here, we consider a
mathematical model which describes the frictionless contact between an piezoelec-
tric body and a foundation, within the framework of small deformations theory.
The material’s behavior is modeled with a linear electroelastic constitutive law,
the process is static and the foundation is assumed to be electrically conductive.
Contact is described with the Signorini contact conditions and a regularized elec-
trical conductivity condition. The numerical approximation of a static unilateral
contact problems with or without friction for piezoelectric materials can be found
in [1, 2, 5, 7].

In the present work, the numerical approximations were based on variational
inequalities modeling unilateral contact in piezoelectricity. Here, a penalty method
is employed to replace the Signorini contact condition. This approach was used
previously by F. Chouly and P. Hild [3] to numerically approximate the solution of
contact problems in linear elasticity. The novelty of the paper is in dealing with
a model which couples the piezoelectric properties of the material with the electri-
cal conductivity conditions on the contact surface. Consideration of the electrical
contact condition leads to nonstandard boundary conditions on the contact sur-
face and supplementary nonlinearities in the problem. Because of the latter and
piezoelectric effect, the mathematical problem is formulated as a coupled system
of the variational inequality for the displacement field and non-linear variational
equation for the electric potential. In this paper, We analyze both the continuous
and discrete (using continuous conforming piecewise linear finite element methods)
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problems. We show that the theoretical convergence of the penalty method gives
the best results when ǫ = h, where ǫ is the penalty parameter, and h is the mesh
size. We note that the convergence is limited by the same terms involved when
considering the direct approximation of the variational inequality without penalty.

The paper is organized as follows. In Section 2 we present the models of elec-
troelastic frictionless unilateral contact with the electrical contact condition. list
the assumptions on the data, derive the variational formulation of each model, and
state the existence and uniqueness result. In Section 3 we introduce the penalty
problem and show that it has a unique solution. In Section 4, we describe the finite
element approximation of the penalty problem and we present the results of some
error estimates for the numerical approximation. finally, The proof of the main
result is provided in Section 5.

2. Setting of the problem and variational formulation

2.1. The contact problem. In this section we describe the problem of unilateral
frictionless contact between a piezoelectric body and a conductive foundation.
The physical setting is the following : we consider an elasto-piezoelectric body which
initially occupies an open bounded domain Ω ⊂ Rd, d = 2, 3 with a sufficiently
smooth boundary ∂Ω = Γ. The body is acted upon by a volume forces of density
f0 and has volume electric charges of density q0. It is also constrained mechanically
and electrically on the boundary. To describe these constraints we decompose Γ
into three mutually disjoint open parts ΓD, ΓN and ΓC , on the one hand, and a
partition of ΓD ∪ ΓN into two open parts Γa and Γb, on the other hand, such that
meas(ΓD) > 0 and meas(Γa) > 0. The body is clamped on ΓD and a surface
tractions of density f2 act on ΓN . Moreover, the electric potential vanishes on Γa
and the surface electric charge of density q2 is prescribed on Γb. On ΓC the body
may come into contact with a conductive obstacle, the so called foundation. We
assume that the foundation is electrically conductive and its potential is maintained
at ϕF . The contact is frictionless unilateral and there may be electrical charges on
the contact surface. The indices i, j, k, l run between 1 and d. The summation
convention over repeated indices is adopted and the index that follows a comma
indicates a partial derivative with respect to the corresponding component of the
spatial variable, e.g., ui,j = ∂ui/∂xj. Everywhere below we use Sd to denote the
space of second order symmetric tensors on Rd while “ ·” and ‖ ·‖ will represent the
inner product and the Euclidean norm on Rd and Sd, that is ∀u, v ∈ Rd, ∀σ, τ ∈ Sd,

u · v = ui · vi, ‖v‖ = (v · v)
1
2 , and σ · τ = σij · τij , ‖τ‖ = (τ · τ)

1
2 .

We denote by u : Ω → Rd the displacement field, by σ : Ω → Sd, σ = (σij) the
stress tensor and by D : Ω → Rd, D = (Di) the electric displacement field. We
also denote E(ϕ) = (Ei(ϕ)) the electric vector field, where ϕ : Ω → R is an electric
potential such that E(ϕ) = −∇ϕ. We shall adopt the usual notations for normal
and tangential components of displacement vector and stress : vn = v · n, vτ =
v − vnn, σn = (σn) · n, στ = σn − σnn , where n denote the outward normal
vector on Γ. Moreover, let ε(u) = (εij(u)) denote the linearized strain tensor given
by εij(u) = 1

2 (ui,j + uj,i), and “Div ”, “ div ” denote respectively the divergence
operators for tensor and vector valued functions, i.e. Div σ = (σij,j), divD =
(Dj,j).

Under the previous assumption, the classical model for this process is the fol-
lowing.
Problem P . Find a displacement field u : Ω → Rd, a stress field σ : Ω → Sd, an
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electric potentiel ϕ : Ω → R and an electric displacement field D : Ω → Rd such
that

σ = Fε(u)− E∗E(ϕ) in Ω,(1)

D = Eε(u) + βE(ϕ) in Ω,(2)

Divσ(u, ϕ) + f0 = 0 in Ω,(3)

divD = q0 in Ω,(4)

u = 0 on ΓD,(5)

σn = f2 on ΓN ,(6)

σn ≤ 0, un ≤ 0, σnun = 0, στ = 0 on ΓC ,(7)

ϕ = 0 on Γa,(8)

D · n = q2 on Γb,(9)

D · n = ψ(un)φL(ϕ− ϕF ) on ΓC ,(10)

Here and below, in order to simplify the notation, we do not indicate explicitly
the dependence of various functions on the spatial variable x ∈ Ω. Equations (1)
and (2) represent the electro-elastic constitutive law of the material in which F

denotes the elasticity operator, E represents the third order piezoelectric tensor,
E∗ is its transpose and β denotes the electric permittivity tensor. Equations (3)
and (4) represent the equilibrium equations for the stress and electric displace-
ment fields, respectively. Relations (5) and (6) are the displacement and traction
boundary conditions, respectively, and (8), (9) represent the electric boundary con-
ditions. The frictionless unilateral boundary conditions (7) represent the Signorini
law. Finally, (10) represent the regularization electrical contact condition on ΓC ,
which was considered in [6], where ψ and φ are a regularization function and the
truncation function, respectively, such that

φL(s) =





−L if s < −L,

s if − L ≤ s ≤ L,

L if s > L,

ψ(r) =





0 if r < 0,

kδr if 0 ≤ r ≤ 1
δ ,

k if r > 1
δ ,

in which L is a large positive constant, δ > 0 denotes a small parameter and k ≥ 0
is the electrical conductivity coefficient. Note also that when ψ ≡ 0, then (10) leads
to

(11) D · n = 0 on ΓC .

The condition (11) models the case when the obstacle is a perfect insulator.

2.2. Variational formulation. To present the variational formulation of Prob-
lem P we need some additional notation and preliminaries. We start by introducing
the spaces

H = L2(Ω)d, H1 = H1(Ω)d,

H = {τ = (τij) | τij = τji ∈ L2(Ω)}, H1 = {σ ∈ H | Div σ ∈ H}.

These are real Hilbert spaces endowed with the inner products

(u, v)H =

∫

Ω

uivi dx, (u, v)H1 = (u, v)H + (ε(u), ε(v))H,

(σ, τ)H =

∫

Ω

σijτij dx, (σ, τ)H1 = (σ, τ)H + (Div σ,Div τ)H,

and the associated norms ‖ · ‖H , ‖ · ‖H1 , ‖ · ‖H and ‖ · ‖H1 , respectively.
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Let HΓ = H1/2(Γ)d and let γ : H1 → HΓ be the trace map. For every element
v ∈ H1, we also use the notation v to denote the trace γv of v on Γ.

Let H
′

Γ be the dual of HΓ and let 〈·, ·〉 denote the duality pairing between H
′

Γ

and HΓ. For every σ ∈ H1, σn can be defined as the element in H
′

Γ which satisfies

(12) 〈σn, γv〉 = (σ, ε(v))H + (Div σ, v)H , ∀v ∈ H1.

Moreover, If σ is continuously differentiable on Ω, then

(13) 〈σn, γv〉 =

∫

Γ

σn · v da.

for all v ∈ H1, where da is the surface measure element. Keeping in mind the
boundary condition (5), we introduce the closed subspace of H1 defined by

V = {v ∈ H1 | v = 0 on ΓD},

and K be the set of admissible displacements

K = {v ∈ V | vn ≤ 0 on ΓC}.

Since meas(ΓD) > 0 and Korn’s inequality (see, e.g., [10]) holds,

(14) ‖ε(v)‖H ≥ ck‖v‖H1 , ∀v ∈ V,

where ck > 0 is a constant which depends only on Ω and ΓD. Over the space V we
consider the inner product given by

(15) (u, v)V = (ε(u), ε(v))H, ‖u‖V = (u, u)
1
2

V ,

and let ‖·‖V be the associated norm. It follows from Korn’s inequality (14) that the
norms ‖ · ‖H1and ‖ · ‖V are equivalent on V . Therefore (V, ‖ · ‖V ) is a Hilbert space.
Moreover, by the Sobolev trace theorem, (14) and (15) there exists a constant
c0 > 0 which only depends on the domain Ω, ΓC and ΓD such that

(16) ‖v‖L2(Γ)d ≤ c0‖v‖V , ∀v ∈ V.

We also introduce the spaces

W = {ψ ∈ H1(Ω) |ψ = 0 on Γa},

W = {D = (Di) ∈ H1(Ω) | (Di) ∈ L2(Ω), divD ∈ L2(Ω)}.

The spaces W and W are real Hilbert spaces with the inner products

(ϕ, ψ)W = (ϕ, ψ)H1(Ω), (D,E)W = (D,E)L2(Ω)d + (divD, divE)L2(Ω).

The associated norms will be denoted by ‖ · ‖W and ‖ · ‖W , respectively. Notice
also that, since meas(Γa) > 0, the following Friedrichs-Poincar inequality holds:

(17) ‖∇ψ‖W ≥ cF ‖ψ‖W , ∀ψ ∈ W,

where cF > 0 is a constant which depends only on Ω and Γa. Moreover, by the
Sobolev trace theorem, there exists a constant c1, depending only on Ω, Γa and ΓC ,
such that

(18) ‖ξ‖L2(ΓC) ≤ c1‖ξ‖W , ∀ξ ∈ W.

When D ∈ W is a sufficiently regular function, the following Green’s type formula
holds,

(19) (D,∇ξ)L2(Ω)d + (divD, ξ)L2(Ω) =

∫

Γ

D · νξ da, ∀ξ ∈ H1(Ω).
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As usual, we denote by (Hs(Ω))d, s ∈ R, d = 1, 2, 3, the Sobolev spaces in one,
two or three space dimensions. The Sobolev norm of (Hs(Ω))d (dual norm if s < 0)
is denoted by ‖ · ‖s,Ω and we keep the same notation when d = 1, 2 or 3.

Recall also that the transposite E∗ is given by

E∗ = (e∗ijk), where e∗ijk = ekij ,

(20) Eσv = σE∗v, ∀σ ∈ S
d, v ∈ R

d.

In the study of problem (1)-(10) We will need the following hypotheses.

(h1) The elasticity operator F : Ω× Sd → Sd satisfies f = (fijkl), fijkl = fjikl =
flkij ∈ L∞(Ω) and fijkl(x) ξkξl ≥ αa ‖ξ‖2 ∀ξ ∈ Sd , ∀x ∈ Ω with αa > 0.

(h2) The piezoelectric tensor E : Ω× Sd → Rd satisfies E = (eijk), eijk = eikj ∈
L∞(Ω).

(h3) The electric permittivity tensor β : Ω × Rd → Rd satisfies β = (βij),
βij = βji ∈ L∞(Ω) and βij ξiξj ≥ αb ‖ξ‖

2 for all ξ = (ξi) ∈ Rd and x ∈ Ω,
with αb > 0.

(h4) The surface electrical conductivity ψ : ΓC×R → R+ is a bounded function
by a constant Mψ > 0, such as, x → ψ(x, u) is measurable on ΓC , for all
u ∈ R and is zero for all u ≤ 0.

(h5) The function u → ψ(x, u) is a Lipschitz function on R for all x ∈ ΓC ;
|ψ(x, u1)− ψ(x, u2)| ≤ Lψ|u1 − u2| ∀u1, u2 ∈ R, with Lψ > 0.

(h6) f0 ∈ L2(Ω)d, f2 ∈ L2(ΓN )d,
(h7) q0 ∈ L2(Ω), q2 ∈ L2(Γb).
(h8) ϕF ∈ L2(ΓC).

Next, we use Riesz’s representation theorem, consider the elements f ∈ V , and
q ∈W given by

(f, v)V =

∫

Ω

f0 · v dx+

∫

ΓN

f2 · v da, ∀v ∈ V,(21)

(q, ξ)W =

∫

Ω

q0ξ dx −

∫

Γb

q2ξ da, ∀ξ ∈ W,(22)

and, we define the mapping ℓ : V ×W ×W → R by

(23) ℓ(u, ϕ, ξ) =

∫

ΓC

ψ(un)φL(ϕ− ϕF )ξ da, ∀u ∈ V, ∀ϕ, ξ ∈W,

Keeping in mind assumptions (h4)-(h8) it follows that the integrals in (21)-(23)
are well-defined. Using Grenn’s formula (12), (13) and (19) it is straightforward to
see that if (u, σ, ϕ, D) are sufficiently regular function which satisfy (3)-(10) then

(σ(u, ϕ), ε(v) − ε(u))H ≥ (f, v − u)V , ∀v ∈ K,(24)

(D,∇ξ)L2(Ω)d = ℓ(u, ϕ, ξ)− (q, ξ)W , ∀ξ ∈W.(25)

We plug (1) in (24), (2) in (25) and use the notation E = −∇ϕ to obtain the
following variational formulation of Problem P , in the terms of displacement field
and electric potential.

Problem PV Find a displacement field u ∈ K and an electric potential ϕ ∈ W
such that :

(26) (Fε(u), ε(v)− ε(u))H + (E∗∇ϕ, ε(v)− ε(u))L2(Ω)d ≥ (f, v − u)V , ∀v ∈ K,

(27) (β∇ϕ,∇ξ)L2(Ω)d − (Eε(u),∇ξ)L2(Ω)d + ℓ(u, ϕ, ξ) = (q, ξ)W , ∀ξ ∈W.
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2.3. Existence and uniqueness of the solution. The existence of the solution
to Problem PV is given by the following result.

Theorem 2.1. Assume that (h1)-(h4) and (h8) hold. Then :

(1) Problem (PV ) has at least one solution (u, ϕ) ∈ K ×W ;
(2) Under the assumption (h5), there exists L

∗ > 0 such that if LψL+Mψ < L∗.
Then Problem (PV ) has a unique solution.

Proof. The proof of Theorem 2.1 will be carried out in several steps. We suppose
in the sequel that the assumption of Theorem 2.1 are fulfilled and we consider the
product space X = V ×W which is a Hilbert space endowed with the inner product

(x, y)X = (u, v)V + (ϕ, ξ)W , for all x = (u, ϕ) and y = (v, ξ) ∈ X,(28)

The corresponding norm is denoted by ‖ ·‖X . Let U = K×W be non-empty closed
convex subset of X . We also introduce the operator A : X → X , the functions j
on X and the element fe ∈ X by equalities:

(Ax, y)X = (Fε(u), ε(v))H + (β∇ϕ,∇ξ)L2(Ω)d + (E∗∇ϕ, ε(v))L2(Ω)d

− (Eε(u),∇ξ)L2(Ω)d , ∀x = (u, ϕ), y = (v, ξ) ∈ X,(29)

j(x, y) =

∫

ΓC

ψ(un)φL(ϕ− ϕF )ξ da, ∀x = (u, ϕ), y = (v, ξ) ∈ X,(30)

fe = (f, q) ∈ X.(31)

We start by the following equivalence result

Lemma 2.2. The couple x = (u, ϕ) is a solution to problem (PV ) if and only if:

(32) (Ax, y − x)X + j(x, y − x) ≥ (fe, y − x)X , ∀y = (v, ξ) ∈ U.

Proof. Let x = (u, ϕ) ∈ U be a solution to problem PV and let y = (v, ξ) ∈ U . We
use the test function ξ − ϕ in (27), add the corresponding inequality to (26) and
use (28) and (29)-(31) to obtain (32). Conversely, let x = (u, ϕ) ∈ U be a solution
to the elliptic variational inequalities (32). We take y = (v, ϕ) in (31) where v is an
arbitrary element of K and obtain (26). Then for any ξ ∈ W , we take successively
y = (v, ϕ + ξ) and y = (v, ϕ− ξ) in (32) to obtain (27), which concludes the proof
of lemma 2.2. �

Let η ∈ L2(ΓC) be given, and we define the closed convex set

K = {η ∈ L2(ΓC) / ‖η‖L2(ΓC) ≤ κ},

where the constants k is given by

κ = Mψ Lmeas(ΓC)
1
2 .(33)

In the next step we prove the following existence and uniqueness result

Lemma 2.3. For any η ∈ K, assume that (h1)-(h3) hold. Then, there exists a
unique solution xη = (uη, ϕη) ∈ U such that

(34) (Axη , y − xη)X ≥ (feη , y − xη)X , ∀ y = (v, ξ) ∈ U.

Where

jη(ξ) =

∫

ΓC

η ξda, ∀ξ ∈ W,(35)

(feη , y − xη)X = (fe, y − xη)X − jη(ξ) ∀ y = (v, ξ) ∈ U.(36)
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Proof. Consider two elements x1 = (u1, ϕ1), x2 = (u2, ϕ2) ∈ X , using (29), (20),
(18), (h1) and (h3) there exists mA > 0 which depends only on αa, β, Ω and Γa
such that

(Ax1 − Ax2, x1 − x2)X ≥ mA(‖u1 − u2‖
2
V + ‖ϕ1 − ϕ2‖

2
W ),

and, keeping in mind (28), we obtain

(37) (Ax1 −Ax2, x1 − x2)X ≥ mA‖x1 − x2‖
2
X .

In the same way, using (h1)-(h3), after some algebra it follows that there exists
cA > 0 which depends only on F, β and E such that

(Ax1 −Ax2, y)X ≤ cA
(
‖u1 − u2‖V ‖v‖V + ‖ϕ1 − ϕ2‖W ‖v‖V

+‖u1 − u2‖V ‖ξ‖W + ‖ϕ1 − ϕ2‖W ‖ξ‖W
)
,

for all y = (v, ξ) ∈ X . We use (28) and the previous inequality to obtain

(Ax1 −Ax2, y)X ≤ 4cA(‖x1 − x2‖X ‖y‖X), ∀ y ∈ X,

and, taking y = Ax1 −Ax2 ∈ X , we find

(38) ‖Ax1 −Ax2‖X ≤MA‖x1 − x2‖X ,

where MA = 4cA. Moreover, using (35) and (31) it is easy to see that the function
feη defined by (36) is an element of X . Lemma 2.3 result now from (54), (55) and
standard arguments of elliptic variational inequalities. �

We now consider the operator Λ : L2(ΓC) → L2(ΓC) such that for all η ∈ L2(ΓC),
we have

(39) Λη = ψ(uηn)φL(ϕη − ϕF ), ∀ η ∈ L2(ΓC),

it follows from assumptions (h4) that the operator Λ is well-defined. In order to
prove that Λ has a fixed point, we will need the following result

Lemma 2.4. The mapping η → xη, where xη is the solution to PVη, is weakly
continuous from L2(ΓC) to X.

Proof. Let a sequence (ηk) in L
2(ΓC) converging weakly to η, we denote by xηk =

(uηk , ϕηk) ∈ U the solution of (34) corresponding to ηk, then we have

(40) (Axηk , y − xηk)X ≥ (feηk , y − xηk )X , ∀ y = (v, ξ) ∈ U,

where

(feηk , y − xnηk )X = (f, v − uηk)V + (q, ξ − ϕηk)W − jηk(ξ − ϕηk),

taking y = 0 in (40) and using (54), (18) and S ≥ 0, we deduce

‖xηk‖X ≤ c
(
‖f‖V + ‖q‖W + ‖ηk‖L2(ΓC)

)
,

that is, the sequence (xηk) is bounded in X , then, there exists x̃ = (ũ, ϕ̃) ∈ X and
a subsequence, denote again (xηk), such that

xηk ⇀ x̃ ∈ X, as k → +∞.

Moreover, U is closed convex set in a real Hilbert space X , therefor U is weakly
closed, then x̃ ∈ U .

We next prove that x̃ is solution of (40). First we prove that

(41) (feηk , y − xǫηk)X → (feη , y − x̃)X , as k → +∞·
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We have

|jηk(ξ − ϕ̃)− jηk(ξ − ϕηk)| ≤ ‖ηk‖L2(ΓC)‖ϕ̃− ϕηk‖L2(ΓC)

≤ ‖ ηk︸︷︷︸
bounded

‖L2(ΓC)‖x̃− xηk‖L2(ΓC)×L2(ΓC).

Since the trace map γ : X → L2(ΓC)
d × L2(ΓC) is compact operator, from the

weak convergence xηk ⇀ x̃ in X , we obtain the convergence xηk → x̃ strongly in
L2(ΓC)

d × L2(ΓC). So we have (41).
Now, from (40), we have

(Axηk , y − xηk)X ≥ (feηk , y − xηk)X , ∀y = (v, ξ) ∈ U.

By pseudomonotonicity of A and (40)-(41), we get

(42)

{
x̃ ∈ U

(Ax̃, y − x̃)X + j̃g(y)− j̃g(x̃) ≥ (fη, y − x̃)X , ∀y = (v, ξ) ∈ U,

from (42) we find that x̃ is a solution of problem PVη and from the uniqueness of
the solution for this variational inequality we obtain x̃ = xη. Since xη is the unique
weak limit of any subsequence of (xηk), we deduce that the whole sequence (xηk ) is
weakly convergent in X to xη, ensures that the weak continuous mapping η → xη,
from L2(ΓC)× L2(ΓC) to X . �

Lemma 2.5. Λ is an operator of K into itself and has at least one fixed point.

Proof. Let η ∈ K, i.e.

‖η‖L2(ΓC) ≤ κ.

By (39), we have

‖Λη‖L2(ΓC) ≤ ‖ψ(uη,n)φL(ϕη − ϕF )‖L2(ΓC),

using the properties of ψ and φL we obtain

‖Λη‖L2(ΓC) ≤Mψ Lmeas(ΓC)
1
2 ,

and keeping in mind (33), we get

‖Λη‖L2(ΓC) ≤ κ,

then Λ is an operator of K into itself, and note that K is a nonempty, convex and
closed subset of L2(ΓC). Since L2(ΓC) is a reflexive space, K is weakly compact.
Using continuity of φL, ψ and lemma 2.4, we deduce that Λ is weakly continuous.
Hence, by Schauder’s fixed point theorem the operator Λ has at least one fixed
point. �

Proof of theorem 2.1 :

1) Existence. Let η∗ be the fixed point of operator Λ. We denote by (u∗, ϕ∗) the
solution of the variational problem (34) for η = η∗. Using (34) and (39), it is easy
to see that (u∗, ϕ∗) is a solution of PV . This proves the existence part of theorem
2.1.

2) Uniqueness. We show next that if LψL+Mψ < L∗ the solution is unique.
Let x1 = (u1, ϕ1), x2 = (u2, ϕ2) ∈ U the solution of problem (32) we have

(43) (Ax1, y − x1)X + j(x1, y − x1) ≥ (fe, y − x1)X ,

(44) (Ax2, y − x2)X + j(x2, y − x2) ≥ (fe, y − x2)X .



NUMERICAL ANALYSIS OF A PIEZOELECTRIC CONTACT PROBLEM 635

We take y = x2 in the first inequality, y = x1 in the second, and add the two
inequality to obtain

(A1x1 −Ax2, x1 − x2)X ≤ j(x1, x2 − x1) + j(x2, x1 − x2).

From (23), we find

(A1x1 −Ax2, x1 − x2)X ≤

∫

ΓC

ψ(u2,n)
(
φL(ϕ2 − ϕF )− φL(ϕ1 − ϕF )

)(
ϕ1 − ϕ2

)
da

+

∫

ΓC

φL(ϕ2 − ϕF )
(
ψ(u2,n)− ψ(u1,n)

)(
ϕ1 − ϕ2

)
da,

thus, by using (h5), the bounds |φL(ϕ2 − ϕF )| ≤ L, the Lipschitz continuity of the
function φL, (16), (18) and (28) we deduce

(A1x1 −Ax2, x1 − x2)X ≤ (Mψ c
2
1 + LLψ c0 c1)‖x1 − x2‖

2
X .

Using (54) hence there exists a constant c∗ > 0 such that

‖x1 − x2‖
2
X ≤ c∗(Lψ L+Mψ) ‖x1 − x2‖

2
X .

Let L∗ =
1

c∗
, then if Lψ L+Mψ < L∗ therefore x1 = x2. �

3. The penalty problem PVǫ

Let ǫ > 0 be a small parameter, Find a displacement field uǫ : Ω → R
d, an

electric potentiel ϕǫ : Ω → R such that

(Fε(uǫ), ε(v))H + (E∗∇ϕǫ, ε(v))H +
1

ǫ
〈[uǫ,n]+, vn〉ΓC = (f, v)V ,(45)

(β∇ϕǫ,∇ξ)L2(Ω)d − (Eε(uǫ),∇ξ)L2(Ω)d + ℓ(uǫ, ϕǫ, ξ) = (q, ξ)W ,(46)

for all v ∈ V, ξ ∈ W . Where 〈·〉ΓC stands for the duality product between W ′ and
W . Note that this formulation is obtained by setting the condition σn(uǫ, ϕǫ) =
− 1
ǫ [uǫ,n]+ with ∀a ∈ R, a+ = a if a ≥ 0 and a+ = 0 if a ≤ 0.

We have the following results

Theorem 3.1. Assume that (h1)-(h8) hold. Then there exists L∗ > 0 such that if
LψL+Mψ < L∗, then The problem PVǫ has a unique solution such that (uǫ, ϕǫ) ∈
V ×W .

Proof. The proof of Theorem 3.1 will be carried out in several steps, based on a
fixed point argument. For this purpose, we introduce the operator Aǫ : X → X
defined by

(47) (Aǫx, y)X = (Ax, y)X +
1

ǫ
〈[uǫ,n]+, vn〉ΓC ,

for all x = (u, ϕ), y = (v, ξ) ∈ X , where A given by (29).
Using (54) and observe that

(48) 〈[u1]+, u1 − u2〉ΓC − 〈[u2]+, u1 − u2〉ΓC ≥ 0, ∀u1, u2 ∈ V,

we find

(49) (Aǫx1 −Aǫx2, x1 − x2)X ≥ mA‖x1 − x2‖
2
X .

We use now (55), (16) and the inequality |[u1]+ − [u2]+| ≤ |u1 − u2|, we obtain

(50) ‖Aǫx1 −Aǫx2‖X ≤ (MA +
1

ǫ
c20)‖x1 − x2‖X .
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It follows that the operator Aǫ : X → X is strongly monotone and Lipschitz
continuous.

Let η ∈ L2(Γ3) be given, and we construct the following intermediate problem.

Problem PV ηǫ . Let η ∈ L2(Γ3) be given, find uǫη ∈ V and ϕǫη ∈ W such that for
all v ∈ V , ξ ∈ W

(Fε(uǫη), ε(v))H − (E∗∇ϕǫη, ε(v))L2(Ω)d +
1

ǫ
〈[uǫ,n]+, vn〉ΓC = (f, v)V ,(51)

(β∇ϕǫη,∇ξ)L2(Ω)d − (Eε(uǫη),∇ξ)L2(Ω)d = (q, ξ)W − ℓη(ξ).(52)

Using (47), (35) and (36), it is easy to see that xǫη = (uǫη, ϕǫη) is a solution to
problem PV ηǫ if and only if

(53) (Aǫxǫη, y)X = (feη , y)X , ∀y = (v, ξ) ∈ X.

We now use (53) to obtain the following existence and uniqueness result.

Lemma 3.2. For any η ∈ L2(Γ3), assume that (h1)-(h3) hold. Then, the problem
PV ηǫ has a unique solution xǫη = (uǫη, ϕǫη) ∈ X.

Proof. For all fixed ǫ > 0, it follows from (49), (50), feη ∈ X and a standard result on
nonlinear variational equation that there exists a unique element xǫη = (uǫη, ϕǫη) ∈
X which satisfies (53). �

The rest of the proof follows from arguments of fixed point, similar to those used
in the proof of Theorem 2.1. �

4. Finite element approximation and error estimates

In this section we introduce the finite element approximation of the variational
problem PVǫ and derive an error estimate on them. To this end, for any given dis-
cretization parameter h > 0, let τh be a regular family of triangular finite element
partitions of Ω that are compatible with the partition of the boundary decomposi-
tions Γ = ΓD∪ΓN ∪ΓC and Γ = Γa∪Γb∪ΓC , that is, any point when the boundary
condition type changes is a vertex of the partitions, then the side lies entirely in
ΓD ∪ ΓN ∪ ΓC , and Γa ∪ Γb ∪ ΓC . Then we consider two finite-dimensional spaces
V h ⊂ V and Wh ⊂W , approximating the spaces V and W , respectively, that is

V h = {vh ∈ C(Ω)d, vh|T ∈ P1(T )
d, T ∈ τh, vh = 0 on ΓD},

Wh = {ψh ∈ C(Ω), ψh|T ∈ P1(T ), T ∈ τh, ψh = 0 on Γa}.

Here P1(T ) represents the space of polynomial functions of global degree less or
equal to 1 in an element T of the triangulation. We also introduce X h(ΓC), the
space of normal traces on ΓC for discrete functions in V h

X h(ΓC) = {µh ∈ C(ΓC) : ∃vh ∈ V h ∀T ∈ T h, vh.n = µh}.

Thus, the discrete approximation of Problem PVǫ is the following.

Problem PV hǫ : Find uhǫ ∈ V h and ϕhǫ ∈ Wh such that, for all vh ∈ V h and
ξh ∈Wh,

(Fε(uhǫ ), ε(v
h))H + (E∗∇ϕhǫ , ε(v

h))H +
1

ǫ
〈[uhǫ,n]+, v

h
n〉ΓC = (f, vh)V ,(54)

(β∇ϕhǫ ,∇ξ
h)L2(Ω)d − (Eε(uhǫ ),∇ξ

h)L2(Ω)d + ℓ(uhǫ , ϕ
h
ǫ , ξ

h) = (q, ξh)W .(55)
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Applying Theorem 3.1, for the case when V and W are replaced by V h and
Wh, respectively, we find that the problem PV hǫ has a unique solution (uhǫ , ϕ

h
ǫ ) ∈

V h ×Wh.
We have the following results.

Theorem 4.1. Suppose that u ∈
(
H

3
2+ν(Ω)

)d
and ϕ ∈ H

3
2+ν(Ω) with ν ∈ (0, 12 ].

Let (uhǫ , ϕǫ) be the solution of problem PV hǫ . We have:

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uhǫ,n]+

∥∥∥∥
−ν,ΓC

(56)

≤ C

(
hν
∥∥∥∥σn(u, ϕ) +

1

ǫ
[uhǫ,n]+

∥∥∥∥
0,ΓC

+ hν−
1
2 (
∥∥u− uhǫ

∥∥
1,Ω

+
∥∥ϕ− ϕhǫ

∥∥
1,Ω

)

)
,

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uǫ,n]+

∥∥∥∥
−ν,ΓC

(57)

≤ C

(
ǫν
∥∥∥∥σn(u, ϕ) +

1

ǫ
[uǫ,n]+

∥∥∥∥
0,ΓC

+ ǫν−
1
2 (‖u− uǫ‖1,Ω + ‖ϕ− ϕǫ‖1,Ω)

)
,

with C a constants independent of u, uhǫ , h and ǫ.

Theorem 4.2. Suppose that u ∈
(
H

3
2+ν(Ω)

)d
and ϕ ∈ H

3
2+ν(Ω) with ν ∈ (0, 12 ].

Let (uǫ, ϕǫ) be the solution of problem PVǫ. We have:

‖u− uǫ‖1,Ω ≤ Cǫν+
1
2

(
‖u‖ 3

2+ν,Ω
+ ‖ϕ‖ 3

2+ν,Ω

)
,(58)

‖ϕ− ϕǫ‖1 ≤ Cǫν+
1
2

(
‖u‖ 3

2+ν,Ω
+ ‖ϕ‖ 3

2+ν,Ω

)
,(59)

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uǫ,n]+

∥∥∥∥
0,ΓC

≤ Cǫν
(
‖u‖ 3

2+ν,Ω
+ ‖ϕ‖ 3

2+ν,Ω

)
,(60)

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uǫ,n]+

∥∥∥∥
−ν,ΓC

≤ Cǫ2ν
(
‖u‖ 3

2+ν,Ω
+ ‖ϕ‖ 3

2+ν,Ω

)
,(61)

with C > 0 a constant, independent of ǫ and u.

Theorem 4.3. Suppose that u ∈
(
H

3
2+ν(Ω)

)d
and ϕ ∈ H

3
2+ν(Ω) with ν ∈ (0, 12 ].

Let (uhǫ , ϕ
h
ǫ ) be the solution of problem PV hǫ satisfies the following error estimates

in two space dimensions:

‖u− uhǫ ‖1,Ω + ‖ϕ− ϕhǫ ‖1,Ω + ǫ
1
2 ‖σn(u, ϕ) +

1

ǫ
[uhǫ,n]+‖0,ΓC

≤ C





(
h

1
2+

ν
2+ν

2

+ hνǫ
1
2 + hν−

1
2 ǫ
)(

‖u‖ 3
2+ν,Ω

+ ‖ϕ‖ 3
2+ν,Ω

)
if 0 < ν < 1

2 ,

(
h| lnh|

1
2 + (hǫ)

1
2 + ǫ

)(
‖u‖2,Ω + ‖ϕ‖2,Ω

)
if ν = 1

2 ,

(62)
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‖σn(u, ϕ) +
1

ǫ
[uhǫ,n]+‖−ν,ΓC

≤ C






(
h

1
2+

3ν
2 +ν2

ǫ
−1
2 + h

3ν
2 +ν2

+ h2ν−
1
2 ǫ

1
2 + h2ν−1ǫ

)(
‖u‖ 3

2+ν
+ ‖ϕ‖ 3

2+ν

)

if 0 < ν < 1
2 ,

(
h

3
2 | lnh|

1
2 ǫ

−1
2 + h| lnh|

1
2 + (hǫ)

1
2 + ǫ

)(
‖u‖2;Ω + ‖ϕ‖2,Ω

)

if ν = 1
2 ,

(63)

With C > 0 a constant, independent of ǫ, h and u.

In three space dimensions, the terms h
1
2+

ν
2 +ν

2

(resp. h| lnh|
1
2 ) in (62) have to be

replaced with h
1
2+

ν
2 (resp.h

3
4 ).

Corollary 4.4. Suppose that u ∈
(
H

3
2+ν(Ω)

)d
and ϕ ∈ H

3
2+ν(Ω) with ν ∈ (0, 12 ].

Suppose also that the parameter is chosen as ǫ = h.The solution uhǫ of the discrete
penalty problem PV hǫ satisfies the following error estimates in two space dimensions:

‖u− uhǫ ‖1,Ω + ‖ϕ− ϕhǫ ‖1,Ω + h
1
2

∥∥σn(u, ϕ) +
1

ǫ
[uhǫ,n]+

∥∥
0,ΓC

+ h
1
2−ν
∥∥σn(u, ϕ) +

1

ǫ
[uhǫ,n]+

∥∥
−ν,ΓC

≤ C





h

1
2+

ν
2 +ν

2
(
‖u‖ 3

2+ν,Ω
+ ‖ϕ‖ 3

2+ν

)
if 0 < ν < 1

2 ,

h| lnh|
1
2

(
‖u‖2,Ω + ‖ϕ‖2,Ω

)
if ν = 1

2 ,
(64)

With C > 0 a constant, independent of h and u.

In three space dimensions, the terms h
1
2+

ν
2 +ν

2

(resp. h| lnh|
1
2 ) in (64) have to be

replaced with h
1
2+

ν
2 (resp.h

3
4 ).

5. Proof of Theorems 4.1, 4.2 and 4.3

5.1. Proof of theorem 4.1. Let Ph : L2(ΓC) → X h(ΓC) denote the L2(ΓC)-
projection operator onto X h(ΓC). We suppose that the mesh associated to X h(ΓC)
and the mesh contact boundary are quasi-uniforme.
We recall now some results: there exists a constant C > 0 such that

- ∀ s ∈ [0, 1], ∀ v ∈ Hs(ΓC),

‖Phv‖s,ΓC ≤ C‖v‖s,ΓC , ‖v − Phv‖0,ΓC ≤ Chs‖v‖s,ΓC .

- ∃Rh : X h(ΓC) → V h, ∀vh ∈ X h(ΓC),

Rh(vh)|ΓC .n = vh, ‖Rh(vh)‖1,Ω ≤ C‖vh‖ 1
2 ,ΓC

.

Keeping in made

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uhǫ,n]+

∥∥∥∥
−ν,ΓC

= sup
v∈H−ν(ΓC)

〈σn(u, ϕ) +
1
ǫ [u

h
ǫ,n]+, v〉ΓC

‖v‖ν,ΓC
,
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we have
∥∥∥∥σn(u, ϕ) +

1

ǫ
[uhǫ,n]+

∥∥∥∥
−ν,ΓC

≤ sup
v∈Hν (ΓC)

〈σn(u, ϕ) +
1
ǫ [u

h
ǫ,n]+, v − Phv〉ΓC

‖v‖ν,ΓC
+ sup
v∈Hν(ΓC)

〈σn(u, ϕ) +
1
ǫ [u

h
ǫ,n]+,P

hv〉ΓC
‖v‖ν,ΓC

≤
∥∥σn(u, ϕ) +

1

ǫ
[uhǫ,n]+

∥∥
0,ΓC

sup
v∈Hν (ΓC)

‖v − Phv‖0,ΓC
‖Phv‖ν,ΓC

+ C sup
v∈Hν(ΓC)

〈σn(u, ϕ) +
1
ǫ [u

h
ǫ,n]+,P

hv〉ΓC
‖Phv‖ν,ΓC

≤ Chν‖σn(u, ϕ) +
1

ǫ
[uhǫ,n]+‖0,ΓC + sup

v∈Hν(ΓC)

〈σn(u, ϕ) +
1
ǫ [u

h
ǫ,n]+,P

hv〉ΓC
‖Phv‖ν,ΓC

.

On other ship we have:
{

(Fε(u), ε(v))H + (E∗∇ϕ, ε(v))H = 〈σn(u, ϕ), vn〉ΓC + (f, v)V ; v ∈ V
(Fε(uǫ), ε(v))H + (E∗∇(ϕǫ), ε(v))H = 〈− 1

ǫ [uǫ,n]+, vn〉ΓC + (f, v)V ; v ∈ V

Hence

(65) 〈σn(u, ϕ) +
1

ǫ
[uǫ,n]+, vn〉ΓC = (Fε(u− uǫ), ε(v))H + (E∗∇(ϕ− ϕǫ), ε(v))H,

for all v ∈ V . When we replace V by V h we find

〈σn(u, ϕ)+
1

ǫ
[uhǫ,n]+, v

h
n〉ΓC = (Fε(u−uhǫ ), ε(v

h))H+(E∗∇(ϕ−ϕhǫ ), ε(v
h))H, v

h ∈ V h.

and using the continuity of (u, v) → (Fε(u), ε(v))H and (ϕ, v) → (∇(ϕ), Eε(v))H , it
results

sup
v∈Hν (ΓC)

〈σn(u, ϕ) +
1
ǫ [u

h
ǫ,n]+,P

hv〉ΓC
‖Phv‖ν,ΓC

= sup
v∈Hν (ΓC)

〈σn(u, ϕ) +
1
ǫ [u

h
ǫ,n]+,R

h(Phv)|ΓC .n〉ΓC

‖Phv‖ν,ΓC

= sup
v∈Hν (ΓC)

(Fε(u− uhǫ ), ER
h(Phv))H + (∇(ϕ − ϕhǫ ), ER

h(Phv))H
‖Phv‖ν,ΓC

≤ C(‖u− uhǫ ‖1,Ω + ‖ϕ− ϕhǫ ‖1,Ω) sup
v∈Hν (ΓC)

‖Rh(Phv)‖1,Ω
‖Phv‖ν,ΓC

≤ C(‖u− uhǫ ‖1,Ω + ‖ϕ− ϕhǫ ‖1,Ω) sup
v∈Hν (ΓC)

‖Phv‖ 1
2 ,ΓC

‖Phv‖ν,ΓC
.

We make use of the inverse inequality

‖Phv‖ 1
2 ,ΓC

≤ Chν−
1
2 ‖Phv‖ν,ΓC ,

we get

sup
v∈Hν (ΓC)

〈σn(u, ϕ) +
1
ǫ [u

h
ǫ,n]+,P

hv〉ΓC
‖v‖ν,ΓC

≤ Chν−
1
2 (‖u− uhǫ ‖1,Ω + ‖ϕ− ϕhǫ ‖1,Ω).
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So we finally obtain:
∥∥∥∥σn(u, ϕ) +

1

ǫ
[uhǫ,n]+

∥∥∥∥
−ν,ΓC

≤ C

(
hν
∥∥∥∥σn(u, ϕ) +

1

ǫ
[uhǫ,n]+

∥∥∥∥
0,ΓC

+ hν−
1
2 (
∥∥u− uhǫ

∥∥
1,Ω

+
∥∥ϕ− ϕhǫ

∥∥
1,Ω

)

)
.

Now, we introduce V ǫ a fictitious finite element space, defined identically as V h

and with the choice of mesh size h = ǫ. We note simply Pǫ : L2(ΓC) → X ǫ(ΓC)
the L2(ΓC)-projection operator onto X ǫ(ΓC). Therefore, we obtain

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uhǫ,n]+

∥∥∥∥
−ν,ΓC

≤ C

(
ǫν
∥∥∥∥σn(u, ϕ) +

1

ǫ
[uhǫ,n]+

∥∥∥∥
0,ΓC

+ ǫν−
1
2

( ∥∥u− uhǫ
∥∥
1,Ω

+
∥∥ϕ− ϕhǫ

∥∥
1,Ω

)

)
.

5.2. Proof of theorem 4.2. From (27) and (46) we find

(β∇(ϕ − ϕǫ),∇ξ)L2(Ω)d − (Eε(u− uǫ),∇ξ)L2(Ω)d + ℓ(u, ϕ, ξ)− ℓ(uǫ, ϕǫ, ξ) = 0,

this implies

(Eε(u− uǫ),∇(ϕ− ϕǫ))L2(Ω)d

= (β∇(ϕ− ϕǫ),∇(ϕ− ϕǫ))L2(Ω)d + ℓ(u, ϕ, ϕ− ϕǫ)− ℓ(uǫ, ϕǫ, ϕ− ϕǫ).

We know that

(Fε(u), ε(v)− ε(u))H +(E∗∇ϕ, ε(v)− ε(u))H = 〈σn(u, ϕ), vn−un〉ΓC +(f, v− u)V ,

hence

(F(ε(u)− ε(uǫ)), ε(u)− ε(uǫ))H + (β∇(ϕ − ϕǫ),∇(ϕ− ϕǫ))L2(Ω)d

= 〈σn(u, ϕ) +
1

ǫ
[uǫ,n]+, un − uǫ,n〉ΓC + ℓ(uǫ, ϕǫ, ϕ− ϕǫ)− ℓ(u, ϕ, ϕ− ϕǫ).(66)

We denote by a : V × V → R and b : W ×W → R the following bilinear and
symmetric applications

a(u, v) = (F(ε(u)), ε(v))H,

b(ϕ, ξ) = (β∇(ϕ),∇(ξ))L2(Ω)d ,
(67)

By the assumptions (h1) and (h3) it is easy to see that a and b are coercive and
continuous forms. Moreover,

αa ‖u− uǫ‖
2
1,Ω + αb ‖ϕ− ϕǫ‖

2
1,Ω

≤ a(u− uǫ, u− uǫ) + b(ϕ− ϕǫ, ϕ− ϕǫ)

= a(u, u− uǫ) + b(ϕ, ϕ− ϕǫ)− a(uǫ, u− uǫ)− b(ϕǫ, ϕ− ϕǫ)

= 〈σn(u, ϕ) +
1

ǫ
[uǫ,n]+, un − uǫ,n〉ΓC + ℓ(uǫ, ϕǫ, ϕ− ϕǫ)− ℓ(u, ϕ, ϕ− ϕǫ)

= 〈σn(u, ϕ), un〉ΓC + 〈
1

ǫ
[uǫ,n]+, un〉ΓC − 〈σn(u, ϕ), uǫ,n〉ΓC − 〈

1

ǫ
[uǫ,n]+, uǫ,n〉ΓC

+ ℓ(uǫ, ϕǫ, ϕ− ϕǫ)− ℓ(u, ϕ, ϕ− ϕǫ),
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where αa > 0, αb > 0 the ellipticy constants.
Due to the contact conditions (7) on ΓC , we observe that

{
〈σn(u, ϕ), un〉ΓC = 0,

〈1ǫ [uǫ,n]+, un〉ΓC ≤ 0.

Then

(68)
−〈σn(u, ϕ), uǫ,n〉ΓC ≤ −〈σn(u, ϕ), [uǫ,n]+〉ΓC

〈1ǫ [uǫ,n]+, uǫ,n〉ΓC = 〈1ǫ [uǫ,n]+, [uǫ,n]+〉ΓC .

We apply this result to the previous inequality and obtain

αa ‖u− uǫ‖
2
1,Ω + αb ‖ϕ− ϕǫ‖

2
1,Ω ≤ −〈σn(u, ϕ) +

1

ǫ
[uǫ,n]+, [uǫ,n]+〉ΓC +R,

where

(69) R = ℓ(uǫ, ϕǫ, ϕ− ϕǫ)− ℓ(u, ϕ, ϕ− ϕǫ).

We have

αa ‖u− uǫ‖
2
1,Ω + αb ‖ϕ− ϕǫ‖

2
1,Ω

≤ −〈ǫ(σn(u, ϕ) +
1

ǫ
[uǫ,n]+),

1

ǫ
[uǫ,n]+〉ΓC +R

≤ −〈ǫ(σn(u, ϕ) +
1

ǫ
[uǫ,n]+),

1

ǫ
[uǫ,n]+ + σn(u, ϕ)− σn(u, ϕ)〉ΓC +R

= −ǫ

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uǫ,n]+

∥∥∥∥
2

0,ΓC

+ ǫ〈σn(u, ϕ) +
1

ǫ
[uǫ,n]+, σn(u, ϕ)〉ΓC +R

From σn(u, ϕ) ∈ Hν(ΓC), we obtain

〈σn(u, ϕ) +
1

ǫ
[uǫ,n]+, σn(u, ϕ)〉ΓC ≤

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uǫ,n]+

∥∥∥∥
−ν,ΓC

‖σn(u, ϕ)‖ν,ΓC .

With δ ∈ [0, 1] and β > 0 we have

αa ‖u− uǫ‖
2
1,Ω + αb ‖ϕ− ϕǫ‖

2
1,Ω

≤ −ǫ

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uǫ,n]+

∥∥∥∥
2

0,ΓC

+ ǫδ
∥∥∥∥σn(u, ϕ) +

1

ǫ
[uǫ,n]+

∥∥∥∥
−ν,ΓC

ǫ1−δ ‖σn(u, ϕ)‖ν,ΓC +R

≤ −ǫ

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uǫ,n]+

∥∥∥∥
2

0,ΓC

+
ǫ2δ

2β

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uǫ,n]+

∥∥∥∥
2

−ν,ΓC

+
βǫ2−2δ

2
‖σn(u, ϕ)‖

2
ν,ΓC

+R.

From (57) we find

αa ‖u− uǫ‖
2
1,Ω + αb ‖ϕ− ϕǫ‖

2
1,Ω ≤ −ǫ(1− C

ǫ2(δ+ν)−1

β
)

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uǫ,n]+

∥∥∥∥
2

0,ΓC

+ C
ǫ2(δ+ν)−1

β

(
‖u− uǫ‖

2
1,Ω + ‖ϕ− ϕǫ‖

2
1,Ω

)
+
βǫ2−2δ

2
‖σn(u, ϕ)‖

2
ν,ΓC

+R,
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which implies

(αa − C
ǫ2(δ+ν)−1

β
) ‖u− uǫ‖

2
1,Ω + (αb − C

ǫ2(δ+ν)−1

β
) ‖ϕ− ϕǫ‖

2
1,Ω

+ ǫ(1− C
ǫ2(δ+ν)−1

β
)

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uǫ,n]+

∥∥∥∥
2

0,ΓC

≤
βǫ2−2δ

2
‖σn(u, ϕ)‖

2
ν,ΓC

+R

(70)

On the other hand, it follows from (69) and (23) that

R =

∫

ΓC

ψ(uǫ,n)φL(ϕǫ − ϕF )(ϕ − ϕǫ) da−

∫

ΓC

ψ(un)φL(ϕ − ϕF )(ϕ− ϕǫ) da

=

∫

ΓC

ψ(uǫ,n)(φL(ϕǫ − ϕF )− φL(ϕ− ϕF )(ϕ − ϕǫ) da

+

∫

ΓC

(ψ(uǫ,n)− ψ(un))φL(ϕ− ϕF )(ϕ− ϕǫ) da.(71)

Then

|R| ≤ Mψ ‖ϕ− ϕǫ‖
2
0,ΓC

+ LψL ‖uǫ,n − un‖0,ΓC ‖ϕ− ϕǫ‖0,ΓC

≤ (Mψ +
LψL

4γ
) ‖ϕ− ϕǫ‖

2
0,ΓC

+ γLψL ‖uǫ,n − un‖
2
0,ΓC

≤ (Mψ +
C

4γ
) ‖ϕ− ϕǫ‖

2
1,Ω + Cγ ‖uǫ − u‖

2
1,Ω ,(72)

with γ > 0. Then

(αa − γC − C
ǫ2(δ+ν)−1

β
) ‖u− uǫ‖

2
1,Ω

+ (αb − C
ǫ2(δ+ν)−1

β
−Mψ −

C

4γ
) ‖ϕ− ϕǫ‖

2
1,Ω

+ ǫ(1− C
ǫ2(δ+ν)−1

β
)

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uǫ,n]+

∥∥∥∥
2

0,ΓC

≤
βǫ2−2δ

2
‖σn(u, ϕ)‖

2
ν,ΓC

,

(73)

where C > LψL a constant.
We know that αa and αb are sufficiently large then we can find C a constant
sufficiently large.

We choose δ = 1
2 − ν and





β = C
(
1 + 1

αa
+ 1

αb−Mψ
)
)

γ = 1
C (αa −

C
β ) +

C
2(αb−Mψ−

C
β
)

in order to find






αa − γC − C ǫ2(δ+ν)−1

β > 0,

αb − C ǫ2(δ+ν)−1

β −Mψ − C
4γ > 0,

1− C ǫ2(δ+ν)−1

β > 0,

and using the estimate ‖σn(u, ϕ)‖ν,ΓC ≤ C
(
‖u‖ν+ 3

2 ,Ω
+ ‖ϕ‖ν+ 3

2 ,Ω

)
proves the

bounds (58),(59) and (60) . The bound (61) is a direct consequence of this last
result.
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5.3. Proof of theorem 4.3. We denote by Lh (resp.L′h) the Lagrange interpo-
lation operator mapping onto V h (resp.Wh). We first use the ellipticity and the
continuity of a(., .) and b(., .), as well as Youngs inequality, to obtain:

αa
∥∥u− uhǫ

∥∥2
1,Ω

+ αb
∥∥ϕ− ϕhǫ

∥∥2
1,Ω

≤ a(u− uhǫ , u− uhǫ ) + b(ϕ− ϕhǫ , ϕ− ϕhǫ )

= a(u− uhǫ , u− Lhu) + a(u− uhǫ ,L
hu− uhǫ ) + b(ϕ− ϕhǫ , ϕ− L′hϕ)

+ b(ϕ− ϕhǫ ,L
′hϕ− ϕhǫ )

≤ C
∥∥u− uhǫ

∥∥
1,Ω

∥∥u− Lhu
∥∥
1,Ω

+ a(u − uhǫ ,L
hu− uhǫ )

+ C
∥∥ϕ− ϕhǫ

∥∥
1,Ω

∥∥∥ϕ− L′hϕ
∥∥∥
1,Ω

+ b(ϕ− ϕhǫ ,L
′hϕ− ϕhǫ )

≤
αa
2

∥∥u− uhǫ
∥∥2
1,Ω

+
C

2αa

∥∥u− Lhu
∥∥2
1,Ω

+ a(u,Lhu− uhǫ )

− a(uhǫ ,L
hu− uhǫ ) +

αb
2

∥∥ϕ− ϕhǫ
∥∥2
1,Ω

+
C

2αb

∥∥∥ϕ− L′hϕ
∥∥∥
2

1,Ω

+ b(ϕ,L′hϕ− ϕhǫ )− b(ϕhǫ ,L
′hϕ− ϕhǫ ).(74)

We can transform the term

a(u,Lhu− uhǫ )− a(uhǫ ,L
hu− uhǫ ) + b(ϕ,L′hϕ− ϕhǫ )− b(ϕhǫ ,L

′hϕ− ϕhǫ ).

So we obtain

αa
2

∥∥u− uhǫ
∥∥2
1,Ω

+
αb
2

∥∥ϕ− ϕhǫ
∥∥2
1,Ω

≤ 〈σn(u, ϕ) +
1

ǫ
[uhǫ,n]+,L

hun − uhǫ,n〉ΓC

+ℓ(uhǫ , ϕ
h
ǫ ,L

′hϕ− ϕhǫ )− ℓ(u, ϕ,L′hϕ− ϕhǫ ).(75)

Because the 1D− Lagrange interpolation with piecewise linear polynomials pre-
serves the positivity, we have that (Lhu)n ≤ 0 on ΓC . This implies:

〈
1

ǫ
[uhǫ,n]+, (L

hu)n〉ΓC ≤ 0

We have again

(76)
−〈σn(u, ϕ), u

h
ǫ,n〉ΓC ≤ −〈σn(u, ϕ), [u

h
ǫ,n]+〉ΓC

〈1ǫ [u
h
ǫ,n]+, u

h
ǫ,n〉ΓC = 〈1ǫ [u

h
ǫ,n]+, [u

h
ǫ,n]+〉ΓC .

This results into

αa
2

∥∥u− uhǫ
∥∥2
1,Ω

+
αb
2

∥∥ϕ− ϕhǫ
∥∥2
1,Ω

≤
C

2αa

∥∥u− Lhu
∥∥2
1,Ω

+
C

2αb

∥∥∥ϕ− L′hϕ
∥∥∥
2

1,Ω
+ 〈σn((u, ϕ), (L

hu)n〉ΓC

−〈σn(u, ϕ) +
1

ǫ
[uhǫ,n]+, u

h
ǫ,n〉ΓC + ℓ(uhǫ ,L

′hϕhǫ , ϕ− ϕhǫ )− ℓ(u, ϕ,L′hϕ− ϕhǫ ).(77)



644 S. BOURICHI, EL-H. ESSOUFI AND R. FAKHAR

We bound the term: −〈σn(u, ϕ) +
1
ǫ [u

h
ǫ,n]+, [u

h
ǫ,n]+〉ΓC as follows

− 〈σn(u, ϕ) +
1

ǫ
[uhǫ,n]+, [u

h
ǫ,n]+〉ΓC

= −ǫ〈σn(u, ϕ) +
1

ǫ
[uhǫ,n]+,

1

ǫ
[uhǫ,n]+〉ΓC

= −〈ǫ(σn(u, ϕ) +
1

ǫ
[uhǫ,n]+),

1

ǫ
[uhǫ,n]+ + σn(u, ϕ)− σn(u, ϕ)〉ΓC

= −ǫ

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uhǫ,n]+

∥∥∥∥
2

0,ΓC

+ ǫ〈σn(u, ϕ) +
1

ǫ
[uhǫ,n]+, σn(u, ϕ)〉ΓC

≤ −ǫ

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uhǫ,n]+

∥∥∥∥
2

0,ΓC

+ ǫ

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uhǫ,n]+

∥∥∥∥
−ν,ΓC

‖σn(u, ϕ)‖ν,ΓC .

Hence

(78)

− 〈σn(u, ϕ) +
1

ǫ
[uhǫ,n]+, [u

h
ǫ,n]+〉ΓC

≤ −ǫ

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uhǫ,n]+

∥∥∥∥
2

0,ΓC

+
ǫ2

2β

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uhǫ,n]+

∥∥∥∥
2

−ν,ΓC

+
β

2
‖σn(u, ϕ)‖

2
ν,ΓC

.

With β > 0 a constant indepedant of h, ǫ, u and ϕ.

We bound now the term ℓ(uhǫ , ϕ
h
ǫ ,L

′hϕ− ϕhǫ )− ℓ(u, ϕ,L′hϕ− ϕhǫ )

∣∣∣ℓ(uhǫ , ϕhǫ ,L′hϕ− ϕhǫ )− ℓ(u, ϕ,L′hϕ− ϕhǫ )
∣∣∣

≤Mψ

∥∥ϕ− ϕhǫ
∥∥
0,ΓC

∥∥∥L′hϕ− ϕhǫ

∥∥∥
0,ΓC

+ LψL
∥∥uhǫ,n − un

∥∥
0,ΓC

∥∥∥L′hϕ− ϕhǫ

∥∥∥
0,ΓC

≤Mψ

∥∥ϕ− ϕhǫ
∥∥2
0,ΓC

+Mψ

∥∥ϕ− ϕhǫ
∥∥
0,ΓC

∥∥∥L′hϕ− ϕ
∥∥∥
0,ΓC

+ LψL
∥∥uhǫ,n − un

∥∥
0,ΓC

(∥∥∥L′hϕ− ϕ
∥∥∥
0,ΓC

+
∥∥ϕ− ϕhǫ

∥∥
0,ΓC

)

≤ (Mψ +
LψL+Mψ

4γ
)‖ϕ− ϕhǫ ‖

2
0,ΓC + 2γLψL

∥∥uhǫ,n − un
∥∥2
0,ΓC

+ (
LψL

4γ
+ γMψ)‖L

′hϕ− ϕ‖20,ΓC

≤ (MψL+
LψL+Mψ

4γ
)
∥∥ϕ− ϕhǫ

∥∥2
1,Ω

+ 2γLψL
∥∥uhǫ − u

∥∥2
1,Ω

+ (
LψL

4γ
+ γMψ)‖L

′hϕ− ϕ‖20,ΓC .

So we obtain:

(79)

∣∣∣ℓ(uhǫ , ϕhǫ ,L′hϕ− ϕhǫ )− ℓ(u, ϕ,L′hϕ− ϕhǫ )
∣∣∣

≤ (Mψ +
LψL+Mψ

4γ
)
∥∥ϕ− ϕhǫ

∥∥2
1,Ω

+ 2γLψL
∥∥uhǫ − u

∥∥2
1,Ω

+ (γMψ +
LψL

4γ
)‖L′hϕ− ϕ‖21,Ω.
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Now we combine (77), (78) and (79)

αa
2

∥∥u− uhǫ
∥∥2
1,Ω

+
αb
2

∥∥ϕ− ϕhǫ
∥∥2
1,Ω

≤
C

2αa

∥∥u− Lhu
∥∥2
1,Ω

+ (
C

2αb
+ γMψ +

LψL

4γ
)
∥∥∥ϕ− L′hϕ

∥∥∥
2

1,Ω
+ 〈σn(u, ϕ),L

hun〉ΓC

− ǫ

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uhǫ,n]+

∥∥∥∥
2

0,ΓC

+
ǫ2

2β

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uhǫ,n]+

∥∥∥∥
2

−ν,ΓC

+
β

2
‖σn(u, ϕ)‖

2
ν,ΓC

+ (Mψ +
LψL+Mψ

4γ
)
∥∥ϕ− ϕhǫ

∥∥2
1,Ω

+ 2γLψL
∥∥uhǫ − u

∥∥2
1,Ω

≤
C

2αa

∥∥u− Lhu
∥∥2
1,Ω

+ (
C

2αb
+ γMψ +

LψL

4γ
)
∥∥∥ϕ− L′hϕ

∥∥∥
2

1,Ω
+ 〈σn(u, ϕ),L

hun〉ΓC

− ǫ(1− C
ǫh2ν

2β
)

∥∥∥∥σn(u, ϕ) +
1

ǫ
[uhǫ,n]+

∥∥∥∥
2

0,ΓC

+ Ch2ν−1 ǫ
2

2β

(∥∥u− uhǫ
∥∥2
1,Ω

+
∥∥ϕ− ϕhǫ

∥∥2
1,Ω

)

+
β

2
‖σn(u, ϕ)‖

2
ν,ΓC

+ (Mψ +
LψL+Mψ

4γ
)
∥∥ϕ− ϕhǫ

∥∥2
1,Ω

+ 2γLψL
∥∥uhǫ − u

∥∥2
1,Ω

.

Then we have

(80)

(αa
2

− Ch2ν−1 ǫ
2

2β
− 2γLψL

) ∥∥u− uhǫ
∥∥2
1,Ω

+
(αb
2

− Ch2ν−1 ǫ
2

2β
−Mψ −

LψL+Mψ

4γ

) ∥∥ϕ− ϕhǫ
∥∥2
1,Ω

+ ǫ
(
1− C

ǫh2ν

2β

) ∥∥∥∥σn(u, ϕ) +
1

ǫ
[uhǫ,n]+

∥∥∥∥
2

0,ΓC

≤
C

2αa

∥∥u− Lhu
∥∥2
1,Ω

+ (
C

2αb
+ γMψ +

LψL

4γ
)
∥∥∥ϕ− L′hϕ

∥∥∥
2

1,Ω

+ 〈σn(u, ϕ),L
hun〉ΓC +

β

2
‖σn(u, ϕ)‖

2
ν,ΓC

.

We show now that β > 0 and γ > 0 exists such that the terms
αa
2 − Ch2ν−1 ǫ2

2β − 2γLψL,
αb
2 − Ch2ν−1 ǫ2

2β −Mψ −
LψL+Mψ

4γ and 1 − C ǫh2ν

2β are

positives,
it equivalent a





αa − 4γLψL > 0
β
C > h2ν−1ǫ2

αa−4γLψL

αb − 2Mψ >
LψL+Mψ

2γ
β
C > h2ν−1ǫ2

αb−2Mψ−
LψL+Mψ

2γ

β
C > h2νǫ

2

We know that αa and αb are sufficiently large then we can find C a constant
sufficiently large and we choose





LψL+Mψ

2(αb−2Mψ)
< γ < αa

4LψL

β = C

(
h2ν−1ǫ2( 1

αa−2Mψ
+ 1

αb−2Mψ−
LψL+Mψ

2γ

) + h2νǫ
2

)
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Using 1
αa−2Mψ

+ 1

αb−2Mψ−
LψL+Mψ

2γ

≤ 1,

it results that:

β

2
‖σn(u, ϕ)‖

2
ν,ΓC

≤ C(h2ν−1ǫ2 + h2νǫ) ‖σn(u, ϕ)‖
2
ν,ΓC

The estimation of the Lagrange interpolations in L2 and H1 norms on a domain D
is classical (see.e.g. [24]) For all s ∈ (1, 2] we have:

(81)
h−1

∥∥u− Lhu
∥∥
0,D

+
∥∥u− Lhu

∥∥
1,D

≤ Chs−1 ‖u‖s,D

h−1
∥∥∥ϕ− L′hϕ

∥∥∥
0,D

+
∥∥∥ϕ− L′hϕ

∥∥∥
1,D

≤ Chs−1 ‖ϕ‖s,D .

For s = 3
2 + ν we find :






∥∥u− Lhu
∥∥
1,Ω

≤ Ch
1
2+ν ‖u‖ 3

2+ν,Ω∥∥∥ϕ− L′hϕ
∥∥∥
1,Ω

≤ Ch
1
2+ν ‖ϕ‖ 3

2+ν,Ω
.

The contact term 〈σn(u, ϕ),L
hun〉ΓC can be estimated in two space dimensions

using results from [25] :
(82)

〈σn(u, ϕ), (L
hu)n〉ΓC ≤ C





h1+ν+2ν2
(
‖u‖

2
3
2+ν,Ω

+ ‖ϕ‖
2
3
2+ν,Ω

)
if 0 < ν < 1

2

h2| lnh|
(
‖u‖

2
2,Ω + ‖ϕ‖

2
2,Ω

)
if ν = 1

2 .

In three space dimension the bound is obtained in a straightforward way using (81)
for any 0 < ν ≤ 1

2

(83) 〈σn(u, ϕ),L
hun〉ΓC ≤ Ch1+ν

(
‖u‖23

2+ν,Ω
+ ‖ϕ‖23

2+ν,Ω

)
.

We combine the last estimations in two space dimension we prove that:
(84)∥∥u− uhǫ

∥∥2
1,Ω

+
∥∥ϕ− ϕhǫ

∥∥2
1,Ω

+ ǫ
∥∥σn(u, ϕ) + 1

ǫ [u
h
ǫ,n]+

∥∥2
0,ΓC

≤ C





(h1+ν+2ν2

+ h2ν−1ǫ2 + h2νǫ)
(
‖u‖23

2+ν,Ω
+ ‖ϕ‖23

2+ν,Ω

)
if 0 < ν < 1

2

(h2| lnh|+ ǫ2 + hǫ)
(
‖u‖

2
2,Ω + ‖ϕ‖

2
2,Ω

)
if ν = 1

2 .

Finally in two space dimension we prove that:

∥∥σn(u, ϕ) + 1
ǫ [u

h
ǫ,n]+

∥∥
−ν,ΓC

≤ C






(
h

1+ν
2 +ν2(

hνǫ−
1
2 + hν−

1
2

)
+ h2ν−

1
2 ǫ

1
2 + h2ν + h2ν−1ǫ

)(
‖u‖ 3

2+ν,Ω
+ ‖ϕ‖ 3

2+ν,Ω

)

if 0 < ν < 1
2(

h2| lnh|
1
2

(
h

1
2 ǫ−

1
2 + 1

)
+ h

1
2 ǫ

1
2 + ǫ+ h

)(
‖u‖2,Ω + ‖ϕ‖2,Ω

)

if ν = 1
2

Using h2ν ≤ h3
ν
2+ν

2

and h ≤ h| lnh|
1
2 ends the proof.
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