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ASSESSMENT OF TWO APPROXIMATION METHODS

FOR THE INVERSE PROBLEM OF

ELECTROENCEPHALOGRAPHY

A. ALONSO-RODRÍGUEZ, J. CAMAÑO, R. RODRÍGUEZ, AND A. VALLI

Abstract. The goal of this paper is to compare two computational models for the inverse
problem of electroencephalography: the localization of brain activity from measurements of the
electric potential on the surface of the head. The source current is modeled as a dipole whose
localization and polarization has to be determined. Two methods are considered for solving the
corresponding forward problems: the so called subtraction approach and direct approach. The
former is based on subtracting a fundamental solution, which has the same singular character of
the actual solution, and solving computationally the resulting non-singular problem. Instead, the
latter consists in solving directly the problem with singular data by means of an adaptive process
based on an a posteriori error estimator, which allows creating meshes appropriately refined around
the singularity. A set of experimental tests for both, the forward and the inverse problems, are
reported. The main conclusion of these tests is that the direct approach combined with adaptivity
is preferable when the localization of the dipole is close to an interface between brain tissues with
different conductivities.
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1. Introduction

Electroencephalography (EEG) is a diagnostic procedure which measures the
electrical activity of the brain, by means of electrodes placed on the scalp. This
non-invasive technique can be used for localizing current sources in the human brain
[13].

Electromagnetic cerebral activity is due to the motion of ions in the active regions
of the brain. This movement generates the so called impressed current (or primary
current) that in turn creates ohmic currents in the surrounding environment called
return currents. We are interested in determining the impressed current.

The reconstruction of the position and of some physical characteristics of the
current density that gives rise to the EEG measurements is called the inverse prob-
lem. For an accurate reconstruction of the primary current it is important to be
able to model realistically tissue conductivity inhomogeneities.

Since the frequency spectrum for electrophysiological signals in EEG is below
1,000 Hz, often between 0.1 and 100 Hz, most theoretical works on biomedical
applications such as [8, 10, 22, 14] use the static approximation of the Maxwell
equations in which the time variation of both electric and magnetic fields are dis-
regarded. The static model is not the only possible simplification of the Maxwell
equations. Other models that can be taken into account are the electro-quasistatic
model, in which the time variation of the magnetic induction is not considered and
the magneto-quasistatic model or eddy current equations, which are derived from
the Maxwell equations by neglecting the time derivative of the electric field. It
is also possible to study the problem using the full system of Maxwell equations.
Some references on these approaches are [2, 1, 4, 11].
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We focus on the static model which leads to the electrostatics problem. We
consider two strategies to approximate the potential for the electrostatics problem
by using FEM. One of them is the “subtraction approach” which has been studied
in [21, 22, 12, 9, 6, 19, 16], for example. In this formulation it is necessary to assume
that the dipole is located in a region with a homogeneous conductivity. Then, it
is possible to consider a more regular unknown, namely, the difference between
the total potential and the fundamental solution with constant conductivity, which
allows us to overcome the difficulties arising from the singularity of the source. Let
us remark that this is a frequently used finite element approach for the numerical
modeling in EEG.

The other method is the “direct approach”, in which the unknown is the total
potential and the dipole source is incorporated directly in the weak formulation
which is solved by a finite element method. These two approaches have been com-
pared in [5] in terms of computational complexity and accuracy. More recently, the
direct approach was further analyzed in [3], where an a posteriori error estimate
and an adaptive scheme which allows improving its efficiency were also introduced.

In this paper we report some numerical computations in order to compare the
two methods: the well-known subtraction approach and the direct approach with
adaptivity. The former is usually less expensive in terms of computational cost,
because its solution does not present singularities and, consequently, coarse uniform
meshes can be used for its finite element solution. However, we show that this is
not always the case. In particular, we use them for the approximation of the inverse
problem when the conductivity has a jump across the interface between different
tissues (we recall that this is the case in the real physiological framework). We study
in particular the case of a dipolar source located close to the interface between two
regions with different conductivities (which again is physiologically realistic). The
reported tests show that, in such a case, the subtraction approach can suffer from
severe instabilities, while the direct approach is fairly stable. The instability of the
subtraction approach is evident even for a two-dimensional problem with a simple
geometry, and it seems that can be cured only on very fine meshes. Therefore,
the instability clearly becomes more important when the problem is set in three
dimensions on a more complex geometrical situation, since in that case very fine
meshes are significantly more difficult to handle.

The paper is organized as follows: in Section 2 we introduce the methods and
the assumptions to obtain well-posed problems, we establish some a priori error
estimates and, finally, we introduce the a posteriori error estimator for the direct
approach. In Section 3, we analyze the performances of the subtraction method
and the direct approach with adaptivity for the corresponding forward problem. In
Section 4 we explain in detail how we solve the inverse problem. In Section 5 we
focus on how we generate reliable measurements for the simulations. In Section 6
we report numerical results for the inverse problem and, finally, in Section 7 we
draw some conclusions.

2. Two approximation methods

We start introducing the equations.

2.1. Continuous problem. In almost all the studies concerning the neural gen-
eration of electromagnetic fields the static approximation of Maxwell equations is
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considered:

(1)































divD = ρ ,

curlE = 0 ,

curlH = J ,

divB = 0 ,

where E and D are the electric field and electric displacement, respectively, ρ the
electric charge density and J the electric current density. By H and B we denote
the magnetic field and the magnetic induction, respectively. A detailed justification
of the choice of the static model in this context can be found for instance in Plonsey
& Heppner [17].

For biological tissues, the linear constitutive equations D = εE and B = µH

can be assumed (see, for instance, [4, 1]), where ε and µ correspond to the electric
permittivity and the magnetic permeability, respectively.

From the second equation of (1), we conclude that there exists a scalar potential
u such that E = −∇u. From Ohm law, the total current density J is the sum of
the impressed current plus the return currents

J = Jp + σE = Jp − σ∇u ,

where σ is the conductivity, which is a uniformly positive definite matrix valued
function with L∞ entries.

From the third equation in (1) it follows that

0 = divJ = div(Jp − σ∇u) .

Hence u is solution of the equation

div(σ∇u) = divJp .

We consider a domain Ω, open, connected and bounded, with Lipschitz contin-
uous boundary ∂Ω included in R

d, where d = 2 or d = 3 (Ω represents the human
head for d = 3 or a two-dimensional section for d = 2). We define n to be the
outer unit normal vector on ∂Ω. We assume that Jp is supported in Ω. Since
J |Ω · n = J |

Rd\Ω · n = 0 on the interface ∂Ω and Jp · n = 0 on ∂Ω, it follows that

(σ∇u) · n = 0 on ∂Ω. Then, we obtain this problem:
{

div(σ∇u) = divJp in Ω ,
(σ∇u) · n = 0 on ∂Ω .

Let us assume that there is a small activated region centered at a point x0 and
that the observation points are far from it. In this case the primary current Jp

is typically modeled as a dipole pδx0
, where δx0

is the Dirac delta distribution
centered at x0 (see [22]). So, in the following, we consider the electrostatic problem
above with a dipole source term:

(2)

{

div(σ∇u) = div(p δx0
) in Ω ,

(σ∇u) · n = 0 on ∂Ω ,

where x0 is an inner point of Ω, and p 6= 0 is the polarization vector. In [18] the
existence and uniqueness of solution u ∈ Lp(Ω), 1 < p < 3/2, of this problem (for
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d = 3) has been studied under the assumption of some additional regularity of σ
in a vicinity of x0. We recall that for p ≥ 1,

Lp(Ω) :=

{

v : Ω → R :

∫

Ω

|v|p <∞
}

is a vector space endowed with the norm

‖v‖0,p,Ω :=

(∫

Ω

|v|p
)1/p

.

We will give more details below.
The singularity of the dipole source can be treated by using the so-called sub-

traction approach. In what follows we explain this technique. For using it, we need
to assume that there exists a nonempty open subdomain Ω0 ⊂ Ω around the source
position x0 with constant conductivity σ0 (in general, a matrix). The conductivity
σ is then split into two parts,

(3) σ = σ0 + σs ,

so that σ0 is constant over the whole domain Ω and σs vanishes in the subdomain
Ω0. The total potential u is also split into two parts:

(4) u = u0 + us,

where u0 satisfies

(5) div(σ0∇u0) = div(p δx0
).

An analytic formula for u0 in the case of a homogeneous conductivity σ0 is
known (see [15]) :

u0(x) =























ptσ−1
0 (x− x0)

2π
√
detσ0(x− x0)tσ

−1
0 (x− x0)

, if d = 2 ,

ptσ−1
0 (x− x0)

4π
√
detσ0

(

(x− x0)tσ
−1
0 (x− x0)

)3/2
, if d = 3 .

The above expression simplifies as follows when the medium is isotropic (i.e.,
σ0 = σ0I with σ0 a constant) :

u0(x) =



















pt(x− x0)

2πσ0|x− x0|2
, if d = 2 ,

pt(x− x0)

4πσ0|x− x0|3
, if d = 3 .

Replacing (3) and (4) in (2) and using that u0 satisfies (5), we obtain

div[(σ0 + σs)∇(u0 + us)] = div(p δx0
) = div(σ0∇u0) ,

and hence

div(σ∇us) = div[(σ0 + σs)∇us] = − div(σs∇u0) .
On the other hand, since

0 = (σ∇u) · n = (σ∇(u0 + us)) · n on ∂Ω ,

we derive the Neumann boundary condition

(σ∇us) · n = −(σ∇u0) · n on ∂Ω .

In conclusion, us solves the boundary value problem
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(6)



















div(σ∇us) = − div(σs∇u0) in Ω ,

(σ∇us) · n = −(σ∇u0) · n on ∂Ω ,
∫

Ω

us = 0 .

The last condition of (6) filters out additive constants and therefore is suitable
for ensuring uniqueness of the solution us. In practice, any other condition with
the same property could be alternatively used.

The goal of this formulation is to obtain a problem with a more regular source,
in order to eliminate the singularity of the solution at x0. Noting that the potential
u0 has a singularity at x = x0 but is smooth for x 6= x0, we see that the Neumann
datum in (6) is smooth and, moreover, since σs vanishes in Ω0, we have that
σs∇u0 ∈ [L∞(Ω)]d. Thus we are able to write the following variational formulation
of problem (6):

Find us ∈ H1(Ω) :














∫

Ω

σ∇us · ∇v = −
∫

Ω

σs∇u0 · ∇v −
∫

∂Ω

σ0∇u0 · n v ∀ v ∈ H1(Ω) ,
∫

Ω

us = 0 .

An alternative approach which allows relaxing the assumption that σ has to be
constant in a neighborhood of x0 is the direct approach studied in [18]. It is based
on a direct ultra weak formulation of problem (2), valid for sufficiently smooth test
functions ϕ:

∫

Ω

u div(σ∇ϕ) = −p · ∇ϕ(x0).

Under the assumption that the conductivity σ is sufficiently smooth in a neigh-
borhood of x0, it was proved in [3] that the following problem has a unique solution:
Find u ∈ Lp(Ω) such that

(7)















∫

Ω

u div(σ∇ϕ) = −p · ∇ϕ(x0) ∀ϕ ∈ X ,
∫

Ω

u = 0 ,

where

X := {ϕ ∈ H1(Ω) : ϕ ∈ C1(Br∗(x0)), div(σ∇ϕ) ∈ Lq(Ω), and (σ∇ϕ)·n = 0 on ∂Ω},

being r∗ a fixed number such that 0 < r∗ < r0. Moreover, here and thereafter
1
p + 1

q = 1. The proof in [18] is for d = 3, but it also holds true for d = 2, as shown

in [3].
We summarize these results in the following theorem:

Theorem 2.1. There exists a unique solution to (7), which belongs to Lp(Ω) for
1 < p < 3/2 in 3D (or 1 < p < 2 in 2D).

2.2. Discrete problem. In the remainder of this paper, we will focus on the 2D
problem, for simplicity. However, the analysis extends readily to 3D problems.

Also for simplicity we assume that Ω is a polygon. We consider a regular family
of triangular meshes Th of Ω (see, for instance, [7]). As usual, h denotes the mesh
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size: h := maxT∈Th
hT , hT being the diameter of T . We consider the standard

space of Lagrange finite elements of degree one:

Vh := {vh ∈ C(Ω) : vh|T ∈ P1 ∀T ∈ Th} .
The finite element approximation of the subtraction approach in [22] reads: find
us,h ∈ Vh such that

(8)















∫

Ω

σ∇us,h · ∇vh = −
∫

Ω

σs∇u0 · ∇vh −
∫

∂Ω

σ0∇u0 · n vh ∀ vh ∈ Vh ,
∫

Ω

us,h = 0 .

To prove the convergence of us,h to us is straightforward (see [22]).
On the other hand, the finite element approximation of the direct approach reads:

find uh ∈ Vh such that

(9)















∫

Ω

σ∇uh · ∇vh = p · ∇(vh|T0
)(x0) ∀ vh ∈ Vh ,

∫

Ω

uh = 0 ,

where T0 is the triangle in Th that contains x0. If there is more than one triangle
containing x0, anyone of them can be chosen as T0.

Remark 2.2. Since we are using piecewise linear elements, ∇(vh|T0
) is a constant

vector on the whole T0. Therefore, the solution uh of problem (9) is insensitive to
the specific location of the point x0 ∈ T0.

Under certain restrictive assumptions the following a priori error estimate has
been proved in [3]:

Theorem 2.3. Let Th be a quasiuniform family of subdivisions of a convex Lipschitz
polygon Ω and assume that σi,j ∈ C1(Ω), for each i, j = 1, 2. Let u and uh be the
respective solutions to problems (7) and (9). Then, there exists h0 > 0 and q0 > 2
such that

‖u− uh‖0,p,Ω ≤ Ch2/p−1

for all 0 < h < h0 and for all p such that q0
q0−1 < p < 2. Moreover, for 1 ≤ p ≤ q0

q0−1

there holds

‖u− uh‖0,p,Ω ≤ Chs

for all 0 < h < h0 and for all s with 0 < s < 1− 2
q0
.

The value q0 > 2 in this theorem is the maximal regularity exponent of the dual
problem to (7), namely, the maximal value q0 such that, given ψ ∈ Lq(Ω) with
q ∈ (2, q0), the solution ϕ to























div(σ∇ϕ) = ψ − 1

|Ω|

∫

Ω

ψ in Ω ,

(σ∇ϕ) · n = 0 on ∂Ω ,
∫

Ω

ϕ = 0 ,

belongs to W 2,q(Ω).
As stated above, the only aim of the last equation in problems (8), (9) is to have

uniqueness of solution for these problems. However, in practice it is more reasonable
to consider an alternative. Since typically the measurements in EEG are electric
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potential differences with respect to one fixed electrode, it is more realistic (and
simpler) to use

u(xref ) = 0

as the condition to determine a unique solution of these problems, where xref is
the localization of the fixed electrode.

We can improve the results obtained with the direct approach by using meshes
properly refined around x0. For the direct approach, the following residual-type
a posteriori error estimator in Lp(Ω)-norm has been proposed in [3] for the finite
element approximation error ‖u− uh‖0,p,T .

For all T ∈ Th we define

εT,p :=



h2pT ‖ div(σ∇uh)‖p0,p,T +
1

2

∑

ℓ∈E(T )∩Eh,i

|ℓ|p+1‖[[σ∇uh · n ]]‖p0,p,ℓ

+
∑

ℓ∈E(T )∩Eh,e

|ℓ|p+1‖σ∇uh · n‖p0,p,ℓ





1/p

,

where Eh,i is the set of all the inner edges of the triangulation Th, Eh,e is the set of
boundary edges, E(T ) is the set of the edges of T and [[ g ]] denotes the jump of g
across an edge. We define the local a posteriori error indicator ηT,p for all T ∈ Th
as follows:

(10) ηT,p :=

{

(

h2−p
0 + εpT,p

)1/p

if T = T0 ,

εT,p otherwise ,

where we denote by T0 the triangle containing the point x0 used in (9) and by h0
its diameter.

Next, we define the global error estimator from these indicators as follows:

ηp :=

(

∑

T∈Th

ηpT,p

)1/p

.

Under suitable assumptions, among them σ ∈ [C1(Ω)]2×2 and Ω a convex poly-
gon, it has been proved in [3] that this estimator is reliable and efficient for any

p ∈
(

q0
q0−1 , 2

)

. Let us remark that the efficiency was actually proved for all p < 2

and that, for any such p, the error estimator is well defined and can be safely used.
The main goal of this paper is to solve an inverse problem corresponding to

problem (2). More precisely, we consider this problem for a generic unknown dipole
source p δx0

; notice that both the polarization p and the localization x0 are un-
known. To determine these two unknowns we have at our disposal a set of measured
values of the solution to problem (2) at a certain number of fixed points on ∂Ω.
The aim of our inverse problem is to determine p and x0 such that the difference
between the values of the solution of problem (2) and the corresponding measured
values achieves a minimum in a proper way. The inverse problem is solved in an
iterative fashion. At each step of the iteration it is necessary to solve the forward
problem (2) for tentative values of the unknowns p and x0. Therefore, it is essential
to have an efficient solver of this forward problem.

3. Forward problem

To prove existence and uniqueness of the solution, some regularity of σ in a
vicinity of x0 has been assumed. From a physiological point of view, σ is regular
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in each region of the head (scalp, skull and the different tissues of the brain) and
x0 is located in the brain but typically close to the skull, where the conductivity
is around eighty times smaller than the conductivity in the brain. After some
experiments, we have seen that the subtraction approach is an excellent method
when the dipole is located far enough from the interfaces, but it has an oscillating
behavior when the dipole position lies closer and closer to the interface between two
regions with different conductivities. We will show evidence of this fact below. We
start describing the physical assumptions and the geometry where we will do the
analysis. As shown in Figure 1 (left), the domain Ω is a multilayer square centered
at (0, 0); its dimensions are shown in the same figure. The conductivity σ is assumed
isotropic on each layer and given by σ|Ω1

= σ|Ω3
= 0.33 and σ|Ω2

= 0.0042. We
will use these data in all the experiments.

Figure 1. Domain Ω.

We will report a comparison between point values of the solutions obtained by
using the direct approach with adaptivity (DAA) and the subtraction approach
(SA) on uniformly refined meshes. Figure 1 (right) shows the coarsest used mesh
in both cases. We have considered separately two locations for the point x0 ∈ Ω3,
one far from the interface and the other one close. In both cases the unit vector
p = (−0.2425, 0.9701) has been taken as polarization.

Figures 2 and 3 show the values of the solution at the point (−0.75, 1), on the
boundary, computed with SA and DAA. In Figure 2 we have taken the localiza-
tion point x0 = (0.012634, −0.004012) (far from the interface), whereas Figure 3
corresponds to x0 = (0.012634, 0.86) (close to the interface). We see from Figure
2 that SA is stable in the case of x0 far from an interface, whereas DAA is a lit-
tle bit oscillating at the coarser meshes, but stable in the finer. The situation is
completely different when x0 is close to the interface, as can be seen from Figure
3 which shows that SA has a thoroughly unstable behavior on the coarser meshes,
unlike DAA. Indeed, we observe that while the error on the initial mesh (shown
in Figure 2, right) ranges between 1% and 5% for DAA, that for SA is below 1%
when x0 is far from the interface (as in Figure 2), but is larger than 400% when x0

is close to it (as in Figure 3).
Let us remark that the point on the boundary (−0.75, 1) has been chosen as for it

the instability of SA on coarse meshes is clearly seen. However, the behavior shown
in Figures 2 and 3 is qualitatively similar for all the points on the boundary. Thus,
from our experimental information we may conclude that SA is not robust when
x0 is located close to the interface. A theoretical analysis about this statement
can be found in [22, Lemma 3.10]. On the contrary, DAA is fairly stable when the
dipole position is in any region, near to or far from an interface. These conclusions
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suggest that DAA could be a solution to fix this deficiency of SA. Anyway, we must
not forget that when x0 is an internal point far from an interface, SA is a precise
method, even better than DAA.
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Figure 2. Forward problem. Point values of the solutions ob-
tained by using SA and DAA with a dipole position x0 =
(0.012634, −0.004012) far from the interface.
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Figure 3. Forward problem. Point values of the solutions ob-
tained by using SA and DAA with a dipole position x0 =
(0.012634, 0.86) close to the interface.

4. Inverse problem

In this section we discuss how to solve the inverse problem. Since we assume
that the primary source to be determined is a single dipole, in principle we need
to find four parameters x = (x1, x2) and q = (q1, q2) that minimize the objective
function

φ(x, q) := ‖m(x, q)−mmeas‖22 , x ∈ Ω, q ∈ R
2.

In the expression above

m(x, q) :=









u(P1)

...

u(Pn)









,
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where P1, ..., Pn ∈ ∂Ω are the observation points and u is the solution to problem
(7) with polarization q and localization x, namely, u ∈ Lp(Ω) is such that

(11)















∫

Ω

u div(σ∇ϕ) = −q · ∇ϕ(x) ∀ϕ ∈ X ,
∫

Ω

u = 0 .

In its turn,

mmeas :=









umeas(P1)

...

umeas(Pn)









is the vector of corresponding measured values at the same points P1, ..., Pn.
For each x ∈ Ω we can determine the optimal polarization p

x
as follows: if we

write q = q1e1 + q2e2, where e1 and e2 are the Cartesian unit vectors, then, being
problem (11) linear with respect to the polarization, we can decompose

m(x, q) = q1m(x, e1) + q2m(x, e2) = M (x)q,

where M(x) is the n× 2 matrix





m(x, e1) m(x, e2)






.

Thus, given x ∈ Ω, to find p
x

= q ∈ R
2 that minimizes φ(x, q) = ‖M(x)q −

mmeas‖22 is equivalent to determining the solution p
x

of the normal equations,
namely, solving the 2× 2 system

(12) M t(x)M (x)p
x
= M t(x)mmeas .

Therefore, the objective function φ reduces to a function ψ only of x:

(13) ψ(x) := ‖M(x)p
x
−mmeas‖22 ,

p
x
being the solution of (12). The next step is to choose an efficient optimization

algorithm for this function.

4.1. Minimization algorithm. To find the optimal dipole position, we need to
choose an optimization method. With this aim, we start analyzing the objective
function ψ to determine the possible existence of local minima. With this purpose
we have computed the objective function in a particular case. We have chosen
x0 = (0.012634, 0.8696) and p = (−0.2425, 0.9701) and computed very accurately
“measured” values mmeas = (umeas(P1), ..., u

meas(P30)) with P1, ..., P30 as shown in
Figure 4.

Then, we have evaluated the objective function ψ(x) with u computed by means
of the direct approach on the mesh shown in Figure 5. Let us recall that this ap-
proach leads to constant values of u on each triangle of the mesh and, consequently,
also to constant values of ψ.

Figure 5 shows the objective function ψ. It is possible to appreciate in the figure
the existence of local minima, although in Ω1. Because of physiological reasons, we
are interested in solving the inverse problem for x in the most internal region of
the geometry, Ω3 (which corresponds to the brain), where in this case there are not
local minima.

We have chosen the simulated annealing algorithm which is an excellent opti-
mization method to solve the inverse problem, specially in presence of local minima.
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Figure 4. Observation points on the boundary.
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Figure 5. Objective function evaluated in the triangles of the mesh.

This method is a probabilistic algorithm based on an analogy to the thermodynamic
process known as annealing, consisting of the slow cooling of a substance from a liq-
uid to a solid state. In our code, we use the MATLAB command simulannealbnd,
which corresponds to this method. Moreover, since in practice the localization x0

necessarily lies in Ω3 (brain), we constrain the optimization to values of x in this
subdomain.

4.2. Adaptive strategy of minimization. The main goal of this paper is to
compare the performances of the direct approach and SA to solve the inverse prob-
lem. In the case of the former, as described above, the objective function takes
constant values on each triangle of the mesh. Therefore, for an accurate determi-
nation of x0, it is necessary to use meshes properly refined in the vicinity of this
(unknown) point. Moreover, the solution to the underlying forward problem (11)
presents a strong singularity at x, which makes necessary to use meshes highly
refined around this (varying) point. Given x, such refined meshes can be obtained
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Table 1. Algorithm of minimization.

Algorithm 1 Adaptive strategy of minimization

DATA: an initial coarse meshT 0
h and a randomly chosen x

(0)
0 ;

1: for k = 0, 1, 2, ...

2: simulannealbnd(T k
h ,x

(k)
0 ), OUTPUT: x

(k+1)
0 ;

3: four steps of adaptive refinement process, OUTPUT: T k+1
h ;

4: until the stopping criterion is reached.

by using the a posteriori error indicator ηT,p (cf. (10)). We will only report the
results of the tests made with p = 1.25. However, the conclusions of our analysis
are independent of the chosen value of p. On the other hand, let us remark that
the location of x changes through the minimization process. Therefore, we need
to derive a strategy that combines both processes, the minimization and the mesh
refinement.

With this aim, we designed an algorithm to solve the inverse problem that con-
sists in the following: first, we use an initial coarse mesh T 0

h and a randomly chosen

x
(0)
0 . Then, we enter in a loop which has as stopping criterion that the objective

function decreases below a certain threshold. Within this loop, the first step is to
minimize the objective function ψ computed by direct approach, by using the com-

mand simulannealbndwhich receives as input: T 0
h and x

(0)
0 . As output we obtain a

new approximation of the localization, x
(1)
0 , that we use to compute the correspond-

ing polarization p
(1)
x0

by solving (12). Next, we perform four steps of the adaptive

refinement process to solve problem (11) with right hand side −p
(1)
x0

·∇ϕ(x(1)
0 ), the

final mesh T 1
h being the output of this stage. Then, we perform a new minimization

step by using now x
(1)
0 and T 1

h instead of x
(0)
0 and T 0

h . We continue with the process
until the stopping criteria is reached. The algorithm is summarized in Table 4.2.

The reason for the random choice of x
(0)
0 is to avoid using any a priori information

about the location of the dipole source. In practice, if such a priori information were
available, it could be used to speed up the process. However, even for a random
choice, we have always observed convergence of the above algorithm.

Let us recall that the accuracy of direct approach to solve the inverse problem is

limited by the meshsize of the triangle containing the dipole location x
(k+1)
0 . In fact,

the values at the observation points computed with direct approach only depend

on which is the triangle T0 containing x
(k+1)
0 , but not on the position of x

(k+1)
0 in

T0 (see Remark 2.2). Thus, in this case, we will take as x
(k+1)
0 the barycenter of

this triangle T0.

5. Simulation of measurements

To solve the inverse problem, it is necessary to know the measured valuesmmeas =
(umeas(P1), ..., u

meas(Pn)) at the observation points P1, ..., Pn. In practice, these val-
ues are actually measured through EEG. In the following section we will simulate
this process in order to compare the performances of DAA and SA. To do this, we
need to have at our disposal accurately simulated “measured” values. Since we do
not have an analytical solution of the forward problem, we will use numerical meth-
ods on extremely fine meshes to obtain these “measurements”. In this section we
will discuss which methods can be safely used to simulate these “measurements”,
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depending of the localization of x0. We will focus in determining the “measure-
ments” in three cases: with the dipole position in Ω3, far, close and very close to
the interface with Ω2. More precisely, in our case in which the domain is a square of
the order of the unit, we have taken the dipole position separated from the closest
interface 0.6285 (far), 0.01 (close) and 0.0004 (very close). In all cases, we consider
the thirty observation points shown in Figure 4.

In the case that the dipole position is a point far from an interface, we know
that it is possible to solve the forward problem very accurately with the SA using
FEM on a very fine mesh. However, we need to determine the number of decimal
digits that are reliable. To this end, we also computed the “measured” values by
using DAA and we compared both results.

First, we consider the dipole position x0 = (0.15231, 0.24150) and polarization,
p = (−0.2425, 0.9701). For SA, we used a sequence of twelve successively refined
uniform meshes, where the coarser one contains 362 d.o.f and the finer 2,923,631
d.o.f. In Table 2 we report values of the solution at five of the observation points
computed with SA on some of these meshes. We observe that the computed values
clearly converge for each observation point and that at least four decimal digits are
reliable. This table is a sample of what happens with any of the thirty points and
all the meshes.

Table 2. Convergence for SA when x0 = (0.15231, 0.24150) is far
from the interface.

Observation points

d.o.f. (-1, -0.75) (-1, 0.5) (-0.75, 1) (0, 1) (1, 0.25)
1,879 0.01274 0.68858 0.96247 1.17484 0.21499
4,180 0.01368 0.68837 0.96369 1.17566 0.21467
21,338 0.01455 0.68812 0.96463 1.17634 0.21444
110,528 0.01485 0.68807 0.96491 1.17659 0.21438
569,434 0.01494 0.68805 0.96499 1.17665 0.21436
1,290,999 0.01496 0.68805 0.96500 1.17667 0.21436

“Exact” values 0.0150 0.6881 0.9650 1.1767 0.2144

Although in this case SA leads to a reliable determination of the “measure-
ments”, we also computed them with DAA. We report in Figure 6 error curves
(the Euclidean norm of the vector of errors at all the observation points for both
methods). To compute the plotted errors, we have taken as “exact” values those
obtained with SA on an extremely fine mesh (2,923,631 d.o.f.).
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Figure 6. Error curves for SA and DAA when x0 =
(0.15231, 0.24150) is far from the interface.

We can see from Figure 6 that, in this case, SA exhibits a better performance
than DAA, although the latter converges to the same values. By repeating several
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times this experiment, we conclude that such a behavior is typical for any dipole
localization x0 far from the interfaces. However, we will show below that this is
not the case when x0 is close to an interface.

Secondly, we considered as dipole localization x0 = (0.012634, 0.86). Notice
that this point is at a distance 0.01 from the interface. We repeated the procedure
described above. We include in Table 3 and Figure 7 the corresponding information.
We also report in Table 3 the values computed with DAA.

Table 3. Convergence for SA and DAA when x0 =
(0.012634, 0.86) is close to the interface.

Observation points

Method d.o.f. (-1, -0.75) (-1, 0.5) (-0.75, 1) (0, 1) (1, 0.25)
SA 1,879 0.30696 0.69807 1.09337 1.80180 -0.00942

4,180 0.11748 0.85576 1.96375 5.46707 0.10636
21,338 0.18911 0.59929 1.11234 2.43831 0.02676
110,528 0.19220 0.59723 1.10051 2.38082 0.02512
569,434 0.19210 0.59738 1.10157 2.38411 0.02521
1,290,999 0.19210 0.59735 1.10156 2.38439 0.02521

DAA 1,637 0.19101 0.59649 1.08818 2.37749 0.02467
3,745 0.19124 0.59589 1.09465 2.38222 0.02491
25,141 0.19185 0.59711 1.10004 2.38397 0.02501
116,299 0.19204 0.59731 1.10126 2.38418 0.02519
156,175 0.19205 0.59731 1.10137 2.38419 0.02520

“Exact” values 0.1921 0.5974 1.1016 2.3843 0.0252
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Figure 7. Error curves for SA and DAA when x0 =
(0.012634, 0.86) is close to the interface.

It can be clearly seen from Figure 7 and Table 3 that SA yields very inaccurate
computations in this case for the coarser meshes. Indeed, the computed values
are not close to the “exact” ones until the number of degrees of freedom is larger
than 20, 000 which, for a two-dimensional test like this, corresponds to a highly
refined mesh. According to our experiments, it is typical of SA that it yields
accurate results only when the mesh size is smaller than the distance from x0 to
the interface. Thus, SA becomes fairly stable only for sufficiently fine meshes.
Instead, DAA yields accurate values even for the coarsest meshes. Moreover, the
behavior of this approach looks much more stable.

Finally, we considered a dipole localization extremely close to the interface: x0 =
(0.012634, 0.8696), which is at a distance 0.0004. Let us remark that it is not
rare in EEG that the primary current occurs practically on the interfaces, so that
to consider such an x0 makes perfect sense. We repeated once more the same
procedure and report the computed values in Table 4 and the corresponding error
curves in Figure 8.

It can be clearly seen that, in this case, SA fails completely to converge. Such
a behavior agrees with what was observed in the previous case: SA yields accurate
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results only if the meshsize is smaller than the distance from x0 to the interface.
Notice that, in this case, we would need a mesh with more that 109 d.o.f. for
attaining such a threshold (in spite of the two-dimensional character of the test).

In order to have an alternative to double check the values computed with DAA,
we have also used in this case a hybrid approach: we have solved the problem with
SA on the meshes adaptively created with the direct approach. Although the error
indicator used to create these meshes depends on the error of the direct approach,
it leads to meshes highly refined in the vicinity of x0. Therefore, the threshold of
SA is attained at least in this vicinity. We labelled the results obtained with this
hybrid procedure as SAA (subtraction approach with adaptivity). We include these
results in Table 4 and Figure 8 in which a very accurate agreement between SAA
and DAA can be seen. Let us remark that this agreement supports the possibility
of designing a proper error estimate for SA to drive an adaptive scheme based on
this method. Although we will not pursue this approach in this paper, it will be
the subject of some future research.

Table 4. Convergence for SA, SAA and DAA when x0 =
(0.012634, 0.8696) is very close to the interface.

Observation points

Method d.o.f. (-1, -0.75) (-1, 0.5) (-0.75, 1) (0, 1) (1, 0.25)
SA 1,879 -2.70522 6.36421 23.29707 85.52184 2.36181

4,180 -0.04099 1.58093 4.23547 13.82857 0.33094
21,338 -3.04040 4.76241 20.30180 76.39359 2.16830
110,528 -0.61454 1.97822 6.84558 23.71393 0.61727
569,434 -0.36542 1.45897 4.82940 16.42804 0.41847
1,290,999 -0.06074 0.84485 2.41737 7.66346 0.17806

SAA 1,386 0.18985 0.60796 1.14112 2.65156 0.02691
4,510 0.19369 0.59594 1.10786 2.50092 0.02344
26,184 0.19663 0.59314 1.09734 2.44863 0.02228
105,992 0.19680 0.59334 1.09820 2.44730 0.02238
186,197 0.19681 0.59332 1.09826 2.44717 0.02238

DAA 1,386 0.19574 0.59222 1.08442 2.43143 0.02186
4,510 0.19575 0.59272 1.09336 2.44287 0.02240
26,184 0.19669 0.59306 1.09695 2.44579 0.02227
105,992 0.19681 0.59332 1.09810 2.44674 0.02237
186,197 0.19681 0.59333 1.09825 2.44685 0.02239

“Exact” values 0.1968 0.5933 1.0983 2.4472 0.0224
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Figure 8. Error curves for SA, SAA and DAA when x0 =
(0.012634, 0.8696) is very close to the interface.

6. Numerical experiments

In this section, we focus on the inverse problem and compare the two strate-
gies, SA and DAA. To this end, we consider the same geometry and assess the
performance of each strategy depending on how close the dipole location is to an
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interface. We will show that also for the inverse problem both approaches behaves
similarly when the dipole is located far enough from an interface, but that DAA is
clearly preferable when the dipole is close to an interface. Finally, we will discuss
the robustness of DAA with respect to measurements errors.

6.1. Test 1. This experiment consists in reconstructing the position and the po-
larization of the dipole source from boundary measurements by using the afore-
mentioned methods when the dipole location in Ω3 is far from the interface. We
considered in this test x0 = (0.15231, 0.24150) as dipole position and the same
polarization used in all the other cases: p = (−0.2425, 0.9701).

We define the percentage errors e(x) and e(p
x
) as follows:

e(x) := 100
‖x0 − x‖2
‖x0‖2

and e(p
x
) := 100

‖p− px‖2
‖p‖2

,

where x and p
x
correspond to the approximations of x0 and p obtained by solving

the inverse problem.
In Table 5 we report the localization and polarization obtained by solving the

inverse problem by using SA in four different uniform meshes as well as the cor-
responding percentage errors. We also include columns with the number of d.o.f.,
the value of the objective function ψ to be minimized and the CPU time for each
mesh. Finally, we include the exact values x0 and p in the last row of the table.

Table 5. Test 1. Results obtained by solving the inverse prob-
lem with SA: localization, polarization, percentage errors, objec-
tive function and CPU time (in seconds).

d.o.f. x e(x) p
x

e(p
x
) ψ(x) CPU time

362 (0.1524, 0.2509) 3.30 (-0.2437, 0.9784) 0.83 0.040 19.37
829 (0.1520, 0.2453) 1.33 (-0.2426, 0.9718) 0.17 0.012 37.78
1,879 (0.1524, 0.2431) 0.58 (-0.2426, 0.9710) 0.08 0.006 48.69
4,180 (0.1519, 0.2427) 0.45 (-0.2425, 0.9706) 0.04 0.003 185.13

Exact (0.1523, 0.2415) - (-0.2425, 0.9701) - - -

On the other hand, in Table 6.1 we present the same information for several
iterations of DAA, which allows us to see the evolution of this process. The behavior
of each strategy can be better appreciated in Figures 9 and 10, which show log-log
plots of the errors e(x) and e(p

x
), respectively. We observe from these two figures

that both strategies lead to very accurate results, SA being more stable than DAA,
which presents a less monotonic behavior. On the other hand, it can be seen in
Tables 5 and 6.1 that in this case SA is less expensive.

Table 6. Test 1. Results obtained by solving the inverse problem
with DAA: localization, polarization, percentage errors, objective
function and CPU time (in seconds).

Iteration d.o.f. x e(x) p
x

e(p
x
) ψ(x) CPU time

1 362 (0.1623, 0.2513) 4.90 (-0.2318, 0.9780) 1.33 0.101 8.36
5 595 (0.1508, 0.2535) 4.25 (-0.2436, 0.9789) 0.88 0.048 71.86
10 1,847 (0.1509, 0.2442) 1.07 (-0.2418, 0.9711) 0.11 0.016 203.30
15 4,380 (0.1518, 0.2425) 0.39 (-0.2423, 0.9697) 0.05 0.008 520.08

Exact (0.1523, 0.2415) - (-0.2425, 0.9701) - - -

Figure 11 shows some of the successively refined meshes created in the process
driven by DAA. Figure 12 shows two zooms around the singularity of the finer mesh
in Figure 11. The second figure is a 200% zoom and the third one is an 800% zoom
of the first one. In the last figure the evidence of the process of search generated by
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DAA can be appreciated by the location of the points around which the adaptive
process leads to refinement.
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Figure 9. Test 1. Percentage error curves for the localization x0

of the solution of the inverse problem by using SA and DAA.
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Figure 10. Test 1. Percentage error curves for the polarization p

of the solution of the inverse problem by using SA and DAA.

iter=1, d.o.f.=362 iter=8, d.o.f.=956 iter=12, d.o.f.=1,935

Figure 11. Test 1. Meshes obtained in the process driven by DAA.

6.2. Test 2. This experiment is totally similar to Test 1. The only difference is the
position of the dipole source in Ω3, which now is taken very close to the interface
with Ω2. We used the same dipole position as in Section 4: x0 = (0.012634 , 0.8696).
The polarization is the same as in the experiment above: p = (−0.2425, 0.9701).

We report in Tables 7 and 8 and Figures 13 and 14 the same information as in
the previous test. In this case, it can be clearly seen that the performance of DAA
is significantly better than that of SA. In fact, for the latter, no convergence can
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iter=12, d.o.f.=1,935

Figure 12. Test 1. Meshes obtained in the process driven by
DAA. Successive zooms of the mesh for iter=13.

be appreciated for the polarization p. In its turn the location x0 can be computed
with a percentage error of around 1% on a rather coarse mesh, although this cannot
be improved with finer meshes. Instead DAA behaves in a much more stable way
and allows us to compute both x0 and p with significantly smaller errors.

Figure 15 shows a zoom of the domain in which we report some successive posi-
tions and polarizations obtained by means of DAA. We also include the exact x0

and p. The number nearby each point corresponds to the iteration number. Let us
remark that the errors of all the localization shown in this zoom are smaller than
2.5%.

As a consequence of these two tests we can assert that DAA is clearly prefer-
able when the dipole is located close to an interface. Moreover, in such a case SA
even fails to converge. On the other hand, when the dipole is far from an inter-
face, although SA exhibits a better performance, DAA is fairly stable and leads to
competitive results.

Table 7. Test 2. Results obtained by solving the inverse prob-
lem with SA: localization, polarization, percentage errors, objec-
tive function and CPU time (in seconds).

d.o.f. x e(x) p
x

e(p
x
) ψ(x) CPU time

362 (0.0186, 0.8518) 2.16 (-0.2531, -0.0219) 99.21 0.0720 30.84
829 (0.0679, 0.8673) 6.36 (1.1304, 0.4758) 145.92 0.0236 25.20
1,879 (0.0138, 0.8632) 0.75 (-0.1624, 0.4771) 49.95 0.0092 54.62
4,180 (0.0114, 0.8633) 0.74 (-0.2537, -0.0720) 104.22 0.0104 104.04
9,417 (0.0096, 0.8645) 0.68 (-0.2310, 0.0169) 104.22 0.0040 479.41

Exact (0.0126, 0.8696) - (-0.2425, 0.9701) - - -

Table 8. Test 2. Results obtained by solving the inverse problem
with DAA: localization, polarization, percentage errors, objective
function and CPU time (in seconds).

Iter. d.o.f. x e(x) p
x

e(p
x
) ψ(x) CPU time

1 362 (0.0210, 0.7915) 9.03 (-0.2585, 1.0222) 5.44 0.213 8.52
5 521 (-0.0007, 0.8644) 1.64 (-0.2464, 0.9953) 2.55 0.081 53.77
10 1,013 (0.0132, 0.8676) 0.24 (-0.2430, 0.9817) 1.16 0.020 146.60

Exact (0.0126, 0.8696) - (-0.2425, 0.9701) - - -

6.3. Test 3. We must have in mind that, in problems like this, the measurements
are always affected by errors. For this reason, it is important to analyze the ro-
bustness of the proposed method when the data is subjected to noise. With this
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Figure 13. Test 2. Percentage error curves for the localization
x0 of the solution of the inverse problem by using SA and DAA.
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Figure 14. Test 2. Percentage error curves for the polarization p

of the solution of the inverse problem by using SA and DAA.
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Figure 15. Test 2. Some of the successive positions and polar-
izations obtained by means of DAA.

aim, we have repeated the experiment of Test 2, but with the measurements per-
turbed by uniformly distributed errors with a maximum size of 5% of the maximum
value of the data (let us remark that this amounts to an average relative error of
around 10%). We report the obtained results in Table 9. We observe that these
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measurement errors produce percentage errors of 1.83% and 3.67% in the deter-
mination of the localization x0 and the polarization p, respectively, on the finer
meshes obtained with DAA.

Table 9. Test 3. Results obtained by solving the inverse problem
with DAA using perturbed measurements with 5% maximum error
size.

Iter. d.o.f. x p
x

e(x) e(p
x
)

1 362 (0.0210, 0.7915) (-0.2881, 0.9963) 9.03 5.26
5 511 (0.0242, 0.8538) (-0.2818, 0.9752) 2.25 3.96
10 1,222 (0.0225, 0.8572) (-0.2784, 0.9624) 1.83 3.67

Exact (0.0126, 0.8696) (-0.2425, 0.9701) - -

In order to study how the method depends on the size of the measurement
errors, we have repeated the previous experiment using different maximum error
sizes: 1%, 5% and 10% of the maximum value of the measurements. We plot
all the error curves for x0 on Figure 16 and for p on Figure 17. To allow for
comparison, the figures also include the data “0%” corresponding to the problem
without measurement errors. Finally, Table 10 shows the percentage error in the
determination of x0 and p on the finest mesh for the different maximum error sizes.

Let us remark that, in all cases, DAA converges. However, in presence of mea-
surements data errors, it converges to ‘wrong’ x0 and p; namely, it converges to
the correct values of x0 and p that are exact solution for the perturbed data. For
instance, it can be seen that when the maximum percentage data error is 5%, the
adaptive process converges to values of x0 and p with respective errors of 1.83%
and 3.67% according to Table 10. This is the reason why the corresponding error
curves in Figures 16 and 17 stall at these percentages.
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Figure 16. Test 3. Comparison between percentage error curves
for the localization x0 obtained by solving the inverse problem with
DAA using perturbed measurements with different maximum error
size.

7. Conclusions

We have analyzed two approximation methods for the inverse problem of elec-
troencephalography: subtraction approach (SA) on uniform meshes and direct ap-
proach with adaptivity (DAA). The study was done in a 2D framework, but the
conclusions should remain valid for 3D problems as well, the only challenge being
the significantly larger computational cost.
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Figure 17. Test 3. Comparison between percentage error curves
for the polarization p obtained by solving the inverse problem with
DAA using perturbed measurements with different maximum error
sizes.

Table 10. Test 3. Percentage errors in the determination of x0

and p on the finest mesh computed with DAA using perturbed
measurements with different maximum error size.

Measurement errors 0% 1% 5% 10%
x0 error 0.24% 0.74% 1.83% 8.26%
p error 1.16% 1.19% 3.67% 5.28%

We observed in the forward problem that both strategies are stable when the
dipole position is sufficiently far from an interface. However, when the dipole is close
to an interface, SA may yield unstable solutions. Instead, DAA does not exhibit
such a behavior. Therefore, we presume that the latter is a better candidate to be
used for solving the inverse problem.

From the experimental evidence we conclude that both methods yield accurate
results for the inverse problem when the dipole is far from the interfaces. Instead,
when the dipole is close to an interface, SA leads to reasonable results with respect
to the dipole position only for sufficiently fine meshes, whereas in all the numeri-
cal experiments the approximation of the polarization is quite inaccurate. In the
case of DAA the approximation of both, location and polarization are thoroughly
satisfactory. Finally, our experimental results allow us to conclude that DAA is a
robust strategy with respect to measurement errors to solve the inverse problem,
too.

The main advantage of DAA with respect to SA is the fact that it uses adaptively
created meshes that are appropriate to deal with the singular character of the
solution. Our preliminary experiments seem to show that adaptively refined meshes
could be useful for SA too [20]. This fact opens the possibility of designing an error
indicator for SA and creating an adaptive scheme based on this approach, which
will be a subject of future research.
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