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IMPROVED ADI PARALLEL DIFFERENCE METHOD FOR

QUANTO OPTIONS PRICING MODEL

XIAOZHONG YANG, FAN ZHANG, AND LIFEI WU

Abstract. The quanto options pricing model is a typical two-dimensional Black-Scholes equation
with a mixed derivative term, and it has been increasingly attracting interest over the last decade.
A kind of improved alternating direction implicit methods, which is based on the Douglas-Rachford
(D-R ADI) and Craig-Sneyd (C-S ADI) split forms, is given in this paper for solving the quanto
options pricing model. The improved ADI methods first split the original problem into two
separate one-dimensional problems, and then solve the tri-diagonal matrix equations at each
time-step. There are several advantages in this method such as: parallel property, unconditional
stability, convergency and better accuracy. The numerical experiments show that this kind of
methods is very efficient compared to the existent explicit finite difference method. In addition,
because of the natural parallel property of the improved ADI methods, the parallel computing is
very easy, and about 50% computational cost can been saved. Thus the improved ADI methods
can be used to solve the multi-asset option pricing problems effectively.

Key words. Quanto options pricing model, two-dimensional Black-Scholes equation, improved
ADI method, parallel computing, numerical experiments.

1. Introduction

In today’s financial market, option is one of the most important financial deriva-
tives. With the rapid development of financial market, it is difficult to meet the
needs of the financial traders by only using European, American and other single
asset options. Therefore, the financial institution designs many multi-asset options.

The name “quanto” is, in fact, derived from the variable notional amount, and
is short for “quantity adjusting options”. A quanto is a type of derivative in which
the underlying is denominated in one currency, but the instrument itself is settled
in another currency at some fixed rate. Generally, the value of the quanto options
depends not only on the option’s intrinsic value in the foreign currency, but also
on the foreign currency exchange rate. Therefore, the qunato options pricing is
relatively complex. This paper is mainly devoted to the two-dimensional (2D)
Black-Scholes equation of quanto options pricing model [1, 2, 3]
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Here, V, S1, S2, r1, r2, σ
2
1 , σ

2
2 , ρ, q and T are the price of the quanto options,

price of foreign risk asset, exchange rate of foreign currency against domestic one,
domestic risk-free rate, foreign risk-free rate, variance of the rate of return on S1,

Received by the editors May 10, 2013 and, in revised form, December 9, 2013.
2000 Mathematics Subject Classification. 65Y05, 91B24.

569



570 X. YANG, F. ZHANG, AND L. WU

variance of the rate of return on S2, correlation coefficient, interest rate and time
to expiration, respectively. The quanto options pricing model has the following
analytic solution (cf. [1, 2, 3])
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Although the quanto options pricing model has an analytic solution (1), it can-
not satisfy the application requirements due to the computing complexity of the
expression (1). For more general settings, we usually use the numerical method
instead, such as the Monte-Carlo method [4] and Binomial Tree method (cf.[5]),
but because a large amount of numerical simulations are needed for getting a high
accuracy, the calculation efficiency of the above methods are not better than that
of the finite difference method, which consists of replacing the partial derivatives
by numerical differentiation and then solving the resulting discretized problem.

So far, the finite difference methods used for solving the option pricing problems
have got a lot of progresses. M. Gilli et al.(2002) [6] investigated an explicit-implicit
difference scheme for multi-asset option pricing model, but the solution of a large
block triangular linear system was required and the calculation was relatively com-
plex in this method; X.Z. Yang et al.(2007) [7] proposed a general difference scheme
for solving the one-dimensional Black-Scholes equation, but they did not consider
the multi-dimensional ones; A.Q.M. Khaliq et al.(2008) [8] put forward a new finite
difference method for solving the 2D Black-Scholes equation, but it also needed
the using of penalty approach method which was not very convenient to calculate
by computers; X.Z. Yang and G.X. Zhou (2011) [9] used the additive operator
splitting(AOS) method for solving the quanto options pricing model, but because
the approximation to the mixed derivative term was not efficient, the accuracy of
this method was not very well. R.Company et al. (2008)[10] and D.Y.Tangman
(2008) [11] put forward high-order finite difference schemes for solving the nonlinear
Black-Scholes equation, but the computational efficiency was not very well.

In the numerical analysis, the alternating direction implicit(ADI) method is
mostly notable for solving the partial differential equation in two or more dimen-
sion (cf. [12, 13, 14]). I.J.D. Craig and A.D. Sneyd(1988) [15] first put forward an
ADI scheme for N-dimensional parabolic equations with a mixed derivative term,
but the scheme was conditionally stable and less effective; S. McKee et al.(1996)
[16] introduced a new ADI scheme which was capable of solving a general para-
bolic equation in two dimension with mixed derivative and convective terms and
was proved to be unconditionally stable, but the equation they considered did not
include the one degree term; In addition, D. Jeong, J. Kim(2013) [17] used the
ADI difference scheme on multi-dimensional Black-Scholes option pricing models,
however the scheme was not unconditionally convergent. Similar researches also
have been done for solving the parabolic equations and other types of equations(cf.
[22, 23, 24, 25, 32, 33]). For these reasons, this paper gives an improved ADI dif-
ference scheme that is capable of solving the quanto options pricing model with
unconditional stability and good convergency properties.
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2. The 2D Black-Scholes equation of quanto options pricing model

With the usual perfect market and European option assumptions, we consider
that each asset price follows the geometric Brownian motion and there are no
dividends. By the ∆-hedging principle, we can get the 2D Black-Scholes equation
of quanto options pricing model [1, 2, 3]
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q̂1 = r1 − r2 + q + ρσ1σ2,
q̂2 = r2.

In theory, the equation (2) is defined on the following domain

Ω = {(S1, S2, t)|0 < S1 < ∞, 0 < S2 < ∞, t ∈ [0, T ]}.

But in the actual transaction, the price of the underlying asset will not always
appear to be zero or infinity. Therefore, the financial institution provides a small
enough value Smin(Smin > 0) as the lower boundary and a large enough value
Smax(Smax > 0) as the upper boundary. Then, the pricing problem can be solved
on a finite domain

Ω1 = {(S1, S2, t)|S1min < S1 < S1max, S2min < S2 < S2max, t ∈ [0, T ]}.

Assume that the underlying asset is a call option, the initial and boundary
conditions of equation (2) are constructed under this assumption. As the option
pricing is a backward problem, the initial condition is

V (S1, S2, T ) = S2 max{S1 −K, 0},

and the boundary conditions are

V (S1min, S2, t) = 0, V (S1max, S2, t) = S2(S1max −K),

V (S1, S2min, t) = 0, V (S1, S2max, t) = S2maxmax{S1 −K, 0}.

And if the underlying asset is a put option, the initial conditional will be

V (S1, S2, T ) = S2 max{K − S1, 0},

and the boundary conditions will be

V (S1min, S2, t) = S2(K − S1min) , V (S1max, S2, t) = 0,

V (S1, S2min, t) = 0 , V (S1, S2max, t) = S2max max{K − S1, 0}.

With the following transforms

x = lnS1, y = lnS2, τ = T − t, U(x, y, τ) = V (S1, S2, t),

equation (2) can be transformed into an initial-boundary value problem of partial
differential equation with constant coefficients as follows

(3)
∂U

∂τ
− F2(U, x, y)−G2(U, x, y) + r1U = 0,
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Then the initial condition can be written as

U(x, y, 0) = ey max{ex −K, 0},
with boundary conditions

U(xmin, y, τ) = 0, U(xmax, y, τ) = ey(exmax −K),
U(x, ymin, τ) = 0, U(x, ymax, τ) = eymax max{ex −K, 0}.

Similarly, we can get the initial and boundary conditions of the quanto options
pricing model when the underlying asset is a put option.

3. The D-R ADI method for the quanto options pricing model

3.1. Construction of the D-R ADI difference scheme. The ADI method
which proposed by Peaceman and Rachford in 1950’s is a common method for solv-
ing the 2D parabolic equation [18]. Its main idea is that a 1D implicit discretization
at x and y direction is done successively on one time level, then get the numerical
solution of the next time level by solving two tri-diagonal sets of equations. The

model they studied was the standard parabolic equation
∂U
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∂x2
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∂2U

∂y2
. For

the quanto options pricing model (3), the improved D-R ADI difference scheme is
constructed as follows.

First, for convenience, equation (3) is written as follows
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can always keep u > 0, v > 0 if we do some linear transforms on variables x and
y. So the coefficients mentioned above satisfy the following equalities:

a > 0, b2 < 4ac, c > 0, u > 0, v > 0, w > 0.

Let us make a mesh partition on the area Ω1, we consider the function U(x, y, τ)
at the discrete set of points

xi = lnS1min + (i − 1)h, i = 1, 2, . . . ,m1 + 1,
yj = lnS2min + (j − 1)h, j = 1, 2, . . . ,m2 + 1,
τn = (n− 1)k, n = 1, 2, . . . , N + 1,

where h is the spatial grid step, k is the time step and m1 + 1,m2 + 1, N + 1 are
the number of grid points in the x, y and τ direction, respectively.

Then for the parabolic equation (4), we propose the improved ADI difference
scheme given in Douglas-Rachford split form [19]

(5)





Y0 = Un + k[Ax(τn, Un) +Ay(τn, Un) +Axy(τn, Un)],
Y1 = Y0 +

1
2k[Ax(τn, Y1)−Ax(τn, Un)],

Y2 = Y1 +
1
2k[Ay(τn, Y2)−Ay(τn, Un)],

Un+1 = Y2,
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here,
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And we make the following difference discretization
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with corresponding definitions for δ2y and∇y. Then the operators can be substituted
as
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The scheme (5) can be written as follows
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And the scheme (8) is the improved ADI difference scheme given in the Douglas-
Rachford split form (D-R ADI) for the quanto options pricing model (3).
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3.2. Parallel realization of the D-R ADI difference scheme. We first intro-
duce the following symbols for convenience:

a1 =
1

2
ar +

1

2
up, b1 = ar +

1

2
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1

2
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2
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2
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b3 = b1 + 2b2 − wk, b4 =
1

4
br,

here, a, b, c, u, v, w, r, p and k are the same as mentioned above. Defining the
vectors
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2,j, U
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n
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)T ,

then scheme (6) and (7) can be written as follows
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. . .

C1 C2 C3

C1 C2




l×l

,



ADI PARALLEL DIFFERENCE METHOD FOR QUANTO OPTIONS PRICING MODEL 575
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fn
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n
2,3, · · · , fn
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)
T
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n
i,1, 0, · · · , 0, c2Un
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, i = 2, · · · ,m1.

gn2 = (gn2,2, 0, · · · , 0, gn2,m2
)
T
, gn2,2 = (C1(A

n
1 )

T
)
T
, gn2,m2

= (C3(A
n
m2+1)

T
)
T
.

And gn2,j, j = 3, 4, · · · ,m2 − 1 are m1 − 1 dimensional zero vectors.
It is obvious that there are actually m2 − 1, m1 − 1 independent systems in

scheme (9) and (10) respectively, and they all have tri-diagonal coefficient matrices.
Instead of solving (m1−1)×(m2−1) coupled linear equations with a penta-diagonal
coefficient matrix, we now only need to solve m2 − 1, m1 − 1 independent systems
[20, 21].

Thus a complete D-R ADI method step can now be given as follows:
Step 1. Solve the m2 − 1 independent linear equation systems with tri-diagonal
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coefficient matrices in scheme (9) to get A
n+ 1

2

i , i = 2, 3, · · · ,m2.

for i = 2 : m2

for j = 1 : m1 + 1

Set fn
1,i,j, f

n+ 1

2

1,i,j , gn1,i,j and gn2,i,j defined by scheme (9);

end

Solve (I + C)(A
n+ 1

2

i )
T

= −C1(A
n
i−1)

T
+ (I − C2)(A

n
i )

T − C3(A
n
i+1)

T
+ Fn

1,i;

end

Step 2. Reorder the grid points.

for i = 1 : m1 + 1

for j = 1 : m2 + 1

B
n+ 1

2

i,j = A
n+ 1

2

j,i ;

end

end

Step 3. Solve the m1 − 1 independent linear equation systems with tri-diagonal
coefficient matrices in scheme (10) to get Bn+1

i , i = 2, 3, · · · ,m1.

for i = 2 : m1

for j = 1 : m2 + 1

Set fn
2,i,j and fn+1

2,i,j defined by scheme (10);

end

Solve (I +D)(Bn+1
i )

T
= (B

n+ 1

2

i )
T

+D(Bn
i )

T
+ Fn

2,i;

end

Similar to (9) and (10), a complete step of the improved D-R ADI difference
scheme needs the solution of two sets of independent equation systems. A straight-
forward implementation of this scheme on parallel computers or multi-core com-
puters would be, assuming the number of processors is smaller than m1 − 1 and
m2 − 1, to assign different tri-diagonal equation systems to different processors, so
that Ui,j can be solved simultaneously [26, 27, 28]. Thus, compared to the serial
difference schemes, the improved ADI difference scheme is easy to realize parallel
computing, and it improves the calculation efficiency and reduces the calculation
time greatly.

4. Existence and uniqueness of the solution of D-R ADI method for

quanto options pricing model

In order to prove the existence and uniqueness of the solution of D-R ADI dif-
ference scheme (8), it is sufficient to show that the solution of scheme (9) or (10) is
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unique. According to the existence and uniqueness theorem for the system of linear
equations, we only need to prove that matrix I +H1 and I +H2 are nonsingular.

From the expression of H1, it is obvious that we now need to prove that I + C
is a nonsingular matrix.

I + C =




1 + b1 −c1
−a1 1 + b1 −c1

. . .
. . .

. . .

−a1 1 + b1 −c1
−a1 1 + b1




(m1−1)×(m1−1)

,

here, 1 + b1 = 1 + ar +
1

2
up+

1

2
wk, −a1 = −1

2
ar − 1

2
up, and −c1 = −1

2
ar . It is

clear that |1 + b1| > | − a1|+ | − c1|, that is I +C is a master diagonal domination
matrix. Thus, I + C is nonsingular. And from this, we could get the conclusion
that scheme (9) has a unique solution.

In the same way, we could also prove that scheme (10) has a unique solution.
Therefore we could get the following theorem.

Theorem 1 The solution of the improved alternating direction implicit difference
scheme given in the Douglas-Rachford split form (D-R ADI) (8) of quanto options
pricing model (3) is existing and unique.

5. Stability and convergence of the D-R ADI method for quanto options

pricing model

We use the traditional von Neumann method to analyze the stability of the
improved D-R ADI difference scheme (8). The solution to the difference scheme (8)
given by

Un
i,j = Geα(n−1)ke

√
−1β(i−1)he

√
−1γ(j−1)h,

where α, β and γ are constant wavenumbers [15]. Then the von Neumann condition
requires |eαk| ≤ 1 for all β, γ. It is straightforward to show that

δ2xU
n
i,j = 2[cos(βh)− 1]Un

i,j,

δ2yU
n
i,j = 2[cos(γh)− 1]Un

i,j,

δxyU
n
i,j = −4 sin(βh) sin(γh)Un

i,j ,

∇xU
n
i,j = [1− cos(βh) +

√
−1 sin(βh)]Un

i,j ,

∇yU
n
i,j = [1− cos(γh) +

√
−1 sin(γh)]Un

i,j ,

which, upon substitution into the scheme (8), yield the amplification factor

|eαk| = |z1z2 + z0
z3z4

| ,
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here,

z0 = 4wk − 4br sin(βh) sin(γh),

z1 = 2− wk − (2ar + up)[1− cos(βh)] −
√
−1up sin(βh),

z2 = 2− wk − (2cr + vp)[1− cos(γh)]−
√
−1vp sin(γh),

z3 = 2 + wk + (2ar + up)[1− cos(βh)] +
√
−1up sin(βh),

z4 = 2 + wk + (2cr + vp)[1− cos(γh)] +
√
−1vp sin(γh).

Clearly, the von Neumann condition for stability may be equivalently written as
F := |z3z4|2 − |z1z2 + z0|2 ≥ 0 for all β and γ. Evaluating F gives

F (a, b, c, u, v, w, r, p, k, θ, ϕ)

= [
1

2
wk + (2ar + up) sin2

θ

2
]v2p2 sin2 ϕ+ [

1

2
wk + (2cr + vp) sin2

ϕ

2
]u2p2 sin2 θ

+4[wk + (2ar + up) sin2
θ

2
+ (2cr + vp) sin2

ϕ

2
]{1 + 1

2
wk[(2ar + vp) sin2

ϕ

2

+(2cr + vp) sin2 ϕ

2
] + (2ar + up)(2cr + vp) sin2

θ

2
sin2

ϕ

2
+

1

4
w2k2}

+(br sin θ sinϕ− wk){2[1− 1

2
wk − (2ar + up) sin2

θ

2
][1− 1

2
wk

−(2cr + vp) sin2 ϕ

2
]− 1

2
uvp2 sin θ sinϕ− (br sin θ sinϕ− wk)},

where we have introduced

θ = βh, ϕ = γh .

Writing

F (a, b, c, u, v, w, r, p, k, θ, ϕ)
= [F (a, b, c, u, v, w, r, p, k, θ, ϕ)− F (a, b, c, u, v, 0, r, p, k, θ, ϕ)]
+F (a, b, c, u, v, 0, r, p, k, θ, ϕ)
= D(a, b, c, u, v, w, r, p, k, θ, ϕ) + F (a, b, c, u, v, 0, r, p, k, θ, ϕ),

to demonstrate unconditional stability of the scheme (8), it is sufficient to show
that both terms of the sum in the expression above are non-negative. However,
in the case w = 0, the scheme reduces to the Mckee scheme and this scheme is
demonstrated to be unconditionally stable [16], or equivalently

F (a, b, c, u, v, 0, r, p, k, θ, ϕ) ≥ 0 .

Thus we only need to show that

D(a, b, c, u, v, w, r, p, k, θ, ϕ)
= F (a, b, c, u, v, w, r, p, k, θ, ϕ)− F (a, b, c, u, v, 0, r, p, k, θ, ϕ) ≥ 0 .
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It is straightforward to show that D(a, b, c, u, v, w, r, p, k, θ, ϕ) takes the form

D(a, b, c, u, v, w, r, p, k, θ, ϕ)

=
1

2
wku2p2 sin2 θ +

1

2
wkv2p2 sin2 ϕ+ 2wk{1 + 1

2
wk[(2ar + up) sin2

θ

2

+(2cr + vp) sin2
ϕ

2
] + (2ar + up)(2cr + vp) sin2

θ

2
sin2

ϕ

2
+

1

4
w2k2}+ wk{wk

+2[(2ar + up) sin2
θ

2
+ (2cr + vp) sin2

ϕ

2
] +

1

2
uvp2 sin θ sinϕ+ br sin θ sinϕ}

+4[(2ar + up) sin2
θ

2
+ (2cr + vp) sin2

ϕ

2
]{1
4
w2k2 +

1

2
wk[(2ar + up) sin2

θ

2

+(2cr + vp) sin2
ϕ

2
]}+ br sin θ sinϕ{−wk +

1

2
w2k2 + wk[(2ar + up) sin2

θ

2
+(2cr + vp) sin2

ϕ

2
]},

In order to demonstrate D(a, b, c, u, v, w, r, p, k, θ, ϕ) ≥ 0, we need the following two
inequalities:

Lemma 1 u2p2 sin2 θ + v2p2 sin2 ϕ+ uvp2 sin θ sinϕ ≥ 0.

u2p2 sin2 θ + v2p2 sin2 ϕ+ uvp2 sin θ sinϕ
≥ u2p2 sin2 θ + v2p2 sin2 ϕ− 2uvp2| sin θ|| sinϕ|
= (up| sin θ| − vp| sinϕ|)2
≥ 0.

Lemma 2 4ar sin2
θ

2
+ 4cr sin2

ϕ

2
+ br sin θ sinϕ ≥ 0.

4ar sin2
θ

2
+ 4cr sin2

ϕ

2
+ br sin θ sinϕ

= 4ar sin2
θ

2
+ 4cr sin2

ϕ

2
+ 4br sin

θ

2
cos

θ

2
sin

ϕ

2
cos

ϕ

2

≥ 4[(
√
ar| sin θ

2
|)2 − 2

√
acr| sin θ

2
|| sin ϕ

2
|+ (

√
cr| sin ϕ

2
|)2]

= 4(
√
ar| sin θ

2
| −

√
cr| sin ϕ

2
|)2

≥ 0.

As the expression of D(a, b, c, u, v, w, r, p, k, θ, ϕ) may be rearranged as

D(a, b, c, u, v, w, r, p, k, θ, ϕ)

=
1

2
wk(u2p2 sin2 θ + v2p2 sin2 ϕ+ uvp2 sin θ sinϕ) +

1

2
w2k2(4ar sin2

θ

2

+4cr sin2
ϕ

2
+ br sin θ sinϕ) + wk[(2ar + up) sin2

θ

2
+ (2cr + vp) sin2

ϕ

2
]

(br sin θ sinϕ+ 4ar sin2
θ

2
+ 4cr sin2

ϕ

2
) + 2wk{(1 + 1

2
wk +

1

4
w2k2)

+[(2ar + up) sin2
θ

2
+ (2cr + vp) sin2

ϕ

2
](1 + up sin2

θ

2
+ vp sin2

ϕ

2
)

+(2ar + up)(2cr + vp) sin2
θ

2
sin2

ϕ

2
}+ w2k2[(2ar + 2up) sin2

θ

2
+(2cr + 2vp) sin2

ϕ

2
],

which, using the results of Lemmas 1 and 2, is clearly non-negative and hence the
scheme (8) is unconditionally stable. Therefore we can get the following theorem.

Theorem 2 The improved alternating direction implicit difference scheme given
in the Douglas-Rachford split form (D-R ADI) (8) of quanto options pricing model
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(3) is unconditionally stable.

In addition, due to the Lax Theorem [29], we can get:

Corollary 1 The improved alternating direction implicit difference scheme based
on the Douglas-Rachford split form (D-R ADI) (8) of quanto options pricing model
(3) is convergent.

6. Accuracy of the D-R ADI method for quanto options pricing model

Now we will give the error analysis of the scheme (8). In the special case when
u, v, w are identically zero, the scheme (8) is consistent to order O(k + h2). And
more generally when only w = 0, the order is O(k + h) [16]. Now we consider the
case when u, v, w are not identically zero. Using the difference of the two sides of
the scheme (8), we get the principle part of the truncation error as follows:

Rn
i,j = −1

2
uhk

∂2U

∂x2
− 1

2
vhk

∂2U

∂y2
− bwk2

∂2U

∂x∂y
+

1

6
uhk

∂3U

∂x3
+

1

6
vhk

∂3U

∂y3

−buk2
∂3U

∂x2∂y
− bvk2

∂3U

∂x∂y2
− 1

12
ah2k

∂4U

∂x4
− 1

12
ch2k

∂4U

∂y4
+ abk2

∂4U

∂x3∂y

+b2k2
∂4U

∂x2∂y2
+ bck2

∂4U

∂x∂y3
− 1

6
bh2k

∂4U

∂x∂y3
− 1

6
bh2k

∂4U

∂x3∂y
+O(hαkβ),

here, α + β = 3. From the expression of the truncation error, we can see that the
difference scheme (8) has one order accuracy. So we get the following theorem.

Theorem 3 The improved alternating direction implicit difference scheme given
in the Douglas-Rachford split form (D-R ADI) (8) of quanto options pricing model
(3) is consistent to order O(k + h), and it is compatible with the quanto options
pricing model (3) unconditionally.

7. The improved ADI method given in the Craig-Sneyd split form

Similarly, we can give the improved ADI difference scheme given in the Craig-
Rachford split form (C-S ADI) of quanto options pricing model (3). Its construction
is based on the improved D-R ADI difference scheme (8). After achieving the first
set of correction steps, a new starting solution is used to the same procedure again
[14]:

(11)





Y0 = Un + k[Ax(τn, Un) +Ay(τn, Un) +Axy(τn, Un)],
Y1 = Y0 + θk[Ax(τn, Y1)−Ax(τn, Un)],
Y2 = Y1 + θk[Ay(τn, Y2)−Ay(τn, Un)],

Ỹ0 = Y0 + σk[Axy(τn, Y2)−Axy(τn, Un)],

Ỹ1 = Ỹ0 + θk[Ax(τn, Ỹ1)−Ax(τn, Un)],

Ỹ2 = Ỹ1 + θk[Ay(τn, Ỹ2)−Ay(τn, Un)],

Un+1 = Ỹ2,

here, 0 < θ, σ < 1. We take the difference discretization

∇xUi,j = Ui+1,j − Ui−1,j ,

∇yUi,j = Ui,j+1 − Ui,j−1,
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and

AxUi,j = a
1

h2
δ2xUi,j − u

1

2h
∇xUi,j − wUi,j ,

AyUi,j = c
1

h2
δ2yUi,j − v

1

2h
∇yUi,j − wUi,j ,

δ2xUi,j , δ
2
yUi,j and AxyUi,j are defined the same as above. Denote z0 = kAxy, z1 =

kAx, z2 = kAy, z = z1 + z2, F = (1 − θz1)(1 − θz2), scheme (11) can be written in
the non-split form

(12) F 2Un+1 = [F 2 + F (z0 + z) +
1

2
z0(z0 + z)]Un.

And the scheme (12) is the improved alternating direction implicit difference scheme
given in the Craig-Sneyd split form (C-S ADI) for the quanto options pricing model
(3).

It can be verified, through Taylor expansion, the C-S ADI scheme (12) is con-
sistent to one order. However, the precision can be improved to one order in time
and two order in space if we take θ = σ = 1

2 . And it can also be proved that the
C-S ADI scheme is unconditionally stable and convergent. Thus we can get the
following theorem.

Theorem 4 The improved alternating direction implicit difference scheme given
in the Craig-Sneyd split form (C-S ADI) (12) of quanto options pricing model (3)
is consistent to order O(k + h) and unconditionally stable and convergent; it is
consistent to order O(k + h2) if θ = σ = 1

2 .

8. Numerical experiments

Example 1. We consider an American investor buys a Nikkei index put option.
Assuming the current price of Nikkei is 20,000 yen, interest rate is 0.03, volatility
of the Nikkei is 0.2, exchange rate of Japanese yen against dollar is 0.01, volatility
of the exchange rate is 0.1, correlation coefficient is 0.2, risk-free rates of American
and Japan are 0.08 and 0.04, respectively. And the strike price of option is 19,000
yen. Consider the deadline of the option is 3, 6, 9 and 12 months, and the final
exchange rate is the spot exchange rate [3, 30, 31].

Here, we use the 4-core CPU for computing, and do numerical experiments under
the Matlab R2011 environment. The comparison among the Monto-Carlo solution,
which is used to substitute the exact solution similarly, and the numerical solutions,
such as the results of the Crank-Nicolson difference scheme and the improved ADI
difference scheme is shown as follows.

Table 1. Comparison of Monto-Carlo solution and numerical solutions.

`
`
`
`
`
`
`
`

`
`
`
`

Price($)
Time(mon)

3 6 9 12 Relative error

Monto-Carlo solution 3.6449 6.3482 8.4081 10.0941 0
Crank-Nicolson scheme 3.0153 5.4280 7.4140 9.1139 0.1366

D-R ADI scheme 3.3645 5.9680 7.9110 9.3906 0.0679
C-S ADI scheme 3.3600 5.9771 7.9784 9.5669 0.0578

Example 2. Similarly, we consider the case that the underlying asset is a call
option, and the values of the variables are the same as that in Example 1. Consider
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Figure 1. Comparison of Monto-Carlo solution and numerical solutions.

the deadline of the option is 3, 6, 9 and 12 months, and the final exchange rate is
the spot exchange rate.

First, we give the plots of the option price surface U(S1, S2, T ) under the Monto-
Carlo solution, Crank-Nicolson difference scheme and improved ADI difference
scheme. Here S1 ∈ [19980, 20040], S2 ∈ [0.010, 0.020], and the deadline T = 12
months.

0.01
0.012

0.014
0.016

0.018
0.02

1.998

1.999

2

2.001

2.002

2.003

x 10
4

16

18

20

22

24

26

28

30

Exchange rate

Stock price(JPY)

O
p

ti
o

n
 p

ri
c
e

($
)

Figure 2. The solu-
tion of Monto-Carlo
method.
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Figure 3. Ths solu-
tion of Crank-Nicolson
scheme.
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Figure 4. The solu-
tion of D-R ADI
scheme.
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Figure 5. The solu-
tion of C-S ADI
scheme.
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Then we give the comparison among the Monto-Carlo solution and numerical
solutions, and the result is shown as follows.

Table 2. Comparison of Monto-Carlo solution and numerical solutions.

`
`
`
`
`
`
`
`
`
`
`
`

Price($)
Time(mon)

3 6 9 12 Relative error

Monto-Carlo solution 11.7751 14.8058 17.2481 19.3743 0
Crank-Nicolson scheme 12.1937 15.3263 17.8029 19.9721 0.0318

D-R ADI scheme 11.8990 15.0555 17.4871 19.4817 0.0118
C-S ADI scheme 11.6622 14.7964 17.2051 19.1790 0.0055
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Figure 6. Comparison of Monto-Carlo solution and numerical solutions.

From the Table 2 and Figure 6, it is clear to show that the solutions of improved
ADI difference schemes are sufficiently close to the Monto-Carlo solution. And we
can also see that the improved ADI difference schemes have a higher accuracy than
the Crank-Nicolson difference scheme. Thus the schemes given by this paper can
be a kind of unconditionally stable finite difference schemes which approximate
to equation (3). What’s more, as the natural parallel property of improved ADI
difference scheme, the calculation time is reduced greatly. The computing time is
shown as follows.

Table 3. Computing time of the C-N and improved ADI schemes.

h
h
h
h
h
h
h
h
h
h
h
h
h
hh

Time(min)
Points’ number

1120 1240 1360 1480 1600

Crank-Nicolson scheme 1.7763 2.4331 3.2297 4.0633 4.9922
D-R ADI scheme 0.7243 0.9761 1.2674 1.5814 1.9834
C-S ADI scheme 1.4439 1.9569 2.5305 3.2055 3.9641

D-R ADI time saving 59.22% 59.88% 60.76% 61.08% 60.27%
C-S ADI time saving 18.71% 19.57% 23.25% 21.11% 20.59%

From Table 3 and Figure 7, we can see the speed-up obtained by using the 4-
core CPU for computing. And with the amount of calculation data increasing, the
improved ADI parallel difference schemes’s time-saving property is very apparent.
The reason is, for the serial computing, the numerical arrays and the loop bodies are
executed in the same Matlab process, there is no data transmission problem. But
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Figure 7. Computing time of the C-N and improved ADI schemes.

for the parallel computing, the numerical arrays are executed in the Matlab client
while the loop bodies are in the Matlab worker. If the calculation data is fewer,
the data transmission will decrease the computing efficiency and thus the parallel
computing’s time-saving property is not very obvious. However, if the calculation
data amount is relatively large, the parallel execution of loop bodies will have much
more influence on the computing efficiency than the data transmission does. When
we use multi-core CPU for computing, Matlab will assign different loop bodies to
different processors and then execute the loops at the same time to get a relatively
fast calculation speed. So we could see from the Table 3 and Figure 7, when the
amount of calculation data is up to 1500, the computing time of the D-R ADI
parallel difference scheme is reduced to almost 40% of the serial scheme’s, and the
computing time of the C-S ADI parallel difference scheme is reduced to almost 80%.
Hence, the improved ADI difference schemes (8) and (12) given by this paper are
more efficient in solving the quanto options pricing problem.

9. Conclusion

Based on the Douglas-Rachford (D-R ADI) (8) and the Craig-Sneyd (C-S ADI)
(12) splitting forms, a kind of improved alternating direction implicit difference
schemes are constructed in this paper for solving the quanto options pricing model.
These schemes have been shown to be unconditionally stable, convergent and have
better computational accuracy than the existing Crank-Nicolson difference scheme.
And it not only avoids the severe restriction for the classical explicit scheme in
choosing the time step for ensuring the stability, but also reduces the computation
complexity of solving a penta-diagonal equation for the classical implicit scheme.

Moreover, the improved ADI difference schemes are easy to realize parallel com-
puting, so they improve the computational efficiency greatly. Thus compared to
the existing explicit, implicit and Crank-Nicolson difference schemes, the improved
ADI difference schemes have obvious advantages in solving the multi-asset option
pricing problems.
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