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ON DISCONTINUOUS FINITE VOLUME APPROXIMATIONS

FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL

PROBLEMS

RUCHI SANDILYA AND SARVESH KUMAR

Abstract. In this article, we discuss and analyze discontinuous finite volume approximations of

the distributed optimal control problems governed by a class of semilinear parabolic partial dif-
ferential equations with control constraints. For the spatial discretization of the state and costate

variables, piecewise linear elements are used and an implicit finite difference scheme is used for

time derivatives; whereas, for the approximation of the control variable, three different strategies
are used: variational discretization, piecewise constant and piecewise linear discretization. A pri-

ori error estimates (for these three approaches) in suitable L2-norm are derived for state, co-state

and control variables. Numerical experiments are presented in order to assure the accuracy and
rate of the convergence of the proposed scheme.

Key words. Semilinear parabolic optimal control problems, variational discretization, piecewise
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1. Introduction

1.1. Scope. The purpose of this paper is to introduce discontinuous finite volume
methods for the approximations of control, state and co-state variables involved in
a semilinear parabolic optimal control problems. As it is well known that optimal
control problems governed by a class of partial differential equations (introduced
in [20], [34]) have various applications in scientific and engineering-related problems.
For instance, heat conduction, diffusion, electromagnetic waves, fluid flows, freezing
processes, and many other physical phenomena can be put forward as models based
on partial differential equations. In particular, parabolic optimal control problems
are used in describing a controlled heat transfer process for optimal cooling of steel
profiles. The optimization of semilinear heat equations represent mathematical
model for many physical applications, e.g. laser hardening, welding of steel, laser
thermotherapy (used for cancer treatment) etc.

Due to the computational simplicity, efficiency and robustness of finite element
methods, these methods are extensively employed for the approximation of optimal
control problems. For instance, the finite element error analysis for elliptic optimal
control problems has been established in [8, 9, 13, 32, 35] and references therein. In
addition to that finite element approximations for parabolic optimal control prob-
lems have been discussed in [26, 27, 33, 36] and references cited in these articles. In
most of these articles, the state and costate variables were approximated by con-
forming (continuous) finite element methods in which piecewise linear polynomials
are used and control variable by piecewise constant or piecewise linear polynomials.
For control variable, the rate of convergence is of O(h) and O(h3/2) for piecewise
constant and piecewise linear discretization, respectively. For discretization of the
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control which is the primary variable, a variational approach is proposed by Hinze
in which control set is not discretized explicitly but discretized by a projection (to
be defined later) and obtained improved convergence of O(h2), for more details, we
refer to [14].

The typical inter-element continuity criteria which is usually imposed on fi-
nite dimensional trial spaces involved in conforming and even nonconforming finite
element methods in order to make the resulting system well-posed is no longer
required for discontinuous Galerkin (DG) methods. Apart from this, other intrin-
sic attractive features of DG methods are: suitability for local mesh adaptivity,
element-wise conservative, they allow high degree polynomials in different elements
and can easily handle non-standard boundary conditions. For more details regard-
ing DG methods, we refer to [1, 2, 30, 31] and references therein. In the context
of control problems, DG methods have also been employed for parabolic optimal
control problems, for instance see [26, 27, 29].

On the other hand, finite volume element (FVE) methods can be considered
as Petrov-Galerkin methods in which the finite dimensional trial space consists of
piecewise linear polynomials and piecewise constant functions are used in the test
space. We can expect the computational advantages of FVE methods over finite ele-
ment methods, as the test space associated with the dual grid is piecewise constant.
In addition, the desirable feature of FVE methods is conservation of a quantity of in-
terest, e.g., mass, momentum or energy. Due to this property of local conservation,
finite volume element methods are widely used in computational fluid dynamics.
However, the low regularity used in the test space, demands high regularity on
given data or exact solution in order to achieve optimal L2-estimates. For instance,
for non-homogeneous elliptic problems, derivation of optimal L2-estimates requires
either an exact solution in H3 or a source term globally in H1 (see e.g. [12]). For
more details and advantages of FVE methods, kindly see the early work [7, 10] and
the recent review [19]. Recently, FVE methods have been employed in [24, 25] for
the approximation of the state and costate variables appeared in linear elliptic and
parabolic problems. In these articles, for discretization of the control variable, a
variational discretization approach is used and optimal order of convergence has
been shown.

In order to make use of desirable properties of DG methods and FVE methods,
we will focus on a hybrid scheme discontinuous finite volume methods (DFVM) for
the approximation of the distributed parabolic semilinear optimal control problems.
These methods were originally introduced by [38] for elliptic problems and later with
some modifications these methods were applied to elliptic, Stokes and parabolic
problems and fluid flow problems, see [4, 6, 16, 17, 22, 37, 40, 39]. Recently, in [18]
Kumar proposed a stabilized DFVM formulation for more general Stokes problems.
However, up-to to our knowledge, there are hardly any results available on DFVM
for the approximation of semilinear parabolic optimal control problems. Therefore,
in this article an attempt has been made to introduce a fully discrete discontinuous
finite volume methods for the approximation of the parabolic control problems. In
addition, we use three different approaches: variational discretization (introduced
in [14]), piecewise linear and piecewise constant discretization to approximate the
control.

For the solvability of the optimal control problems, in literature, there are two
different approaches: one is discretize-then-optimize and another one is optimize-
then-discretize. In the discretize-then-optimize approach, one first discretizes the
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continuous problem and then accordingly derive for the optimality conditions;
whereas, in the optimize-then-discretize approach, optimality condition on the con-
tinuous level is formulated first and then discretized. These two approaches coincide
provided the discrete formulation is symmetric; however, this may not be true if the
formulation is not symmetric, for more details we refer to [3] and references therein.
We would like to mention that in general, FVE formulation is not symmetric (ex-
cept if the matrix is constant) even if the coefficient matrix is symmetric, see [15].
In [24, 25], authors have used optimize-then-discretize approach together with FVE
methods to approximate elliptic and parabolic control problems. We stress that
our resulted DFVE scheme also leads to a nonsymmetric formulation (see Section
2), and therefore, in view of the articles [24, 25], in this article we have also opted
for optimize-then-discretize technique.

We have organized this paper in the following manner. The remaining part of
this section deals with primary notations used for Sobolev spaces and statement
of the governing problems. Section 2 deals with finite dimensional formulation of
the proposed control problems with details of DFV formulation for state and co-
state variables and discretization approaches for control variable. This section also
recalls the optimality conditions and some primary auxiliary results required for
subsequent sections. In Section 3, we derive a priori error estimates in suitable
L2-norm for state, co-state and control variables. In Section 4, we present some
numerical experiments to justify the convergence rates derived in Section 3. Finally,
based on computational and theoretical results, some concluding remarks are made
in Section 5.

Notations. In this article, we denote Ω ⊂ R2 as a bounded convex polygonal
domain with boundary ∂Ω. Also, we adopt the standard notations for the Lebesgue
spaces Lp(Ω) and the Sobolev Spaces Hs(Ω) defined over Ω with associated norms
‖ · ‖s,Ω and seminorms | · |s,Ω. Further, as usual, we write H0(Ω) := L2(Ω) and for
simplicity we drop Ω whenever its possible. Throughout this article, C denotes a
generic positive constant independent from the mesh size h (to be defined in the
next section) but may depend on the size of Ω and can take different values at
different places. In addition we denote by Lp(0, T ;Hs(Ω)), 1 ≤ p, q ≤ ∞, s ≥ 0,
the space of functions ψ(t) : [0, T ] −→ Hs(Ω) such that ‖ψ(t)‖s,p,Ω ∈ Lp(0, T ) with
the following norm

‖ψ‖Lp([0,T ];Hs(Ω)) :=

(∫ T

0

‖ψ‖ps

)1/p

s ∈ [1,∞).

Governing equations. Keeping in mind the applications (mentioned earlier) of
parabolic optimal control problems, we are interested in finding the numerical so-
lution of the following semilinear parabolic optimal control problem: For a given
desired state yd and data f , find the state variable y and the control variable u
satisfying

min
u(t,x)∈Uad

J(y, u) :=
1

2

T∫
0

∫
Ω

(y(t, x)− yd(t, x))2dxdt+
α

2

T∫
0

∫
Ω

u(t, x)2dxdt,(1)

subject to

∂ty(t, x)−∇ · (A∇y(t, x)) + φ(y(t, x))

= Bu(t, x) + f(t, x), in (0, T )× Ω,(2)
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y(t, x) = 0, on (0, T )× ∂Ω,(3)

y(0, x) = y0(x), x ∈ Ω.(4)

Here, α > 0 is the regularization parameter, B is a bounded linear operator and A =
(aij(x))2×2 denotes a real valued, symmetric and uniformly positive definite matrix
in Ω, i.e., there exists a positive constant α0 such that ξTAξ ≥ α0ξ

T ξ, ∀ξ ∈ R2.
The space of admissible controls Uad is defined by
(5)
Uad := {u(t, x) ∈ L2(I;L2(Ω)) : a ≤ u(t, x) ≤ b, a.e. (t, x) ∈ (0, T )×Ω; a, b ∈ R; }.

In addition for our analysis, we require the following assumptions on the given
data: we assume that the desired state yd and the source term f ∈ L2(I;L2(Ω))
or L2(I;H1(Ω)) with I = (0, T ). Also, for any l > 0 we have φ(·) ∈ W 2,∞(−l, l);
φ′(y) ∈ L2(Ω) and φ′(y) ≥ 0 for y ∈ L2(I;H1

0 (Ω)).
Moreover, with the help of control-to-state mapping G (as introduced in [29]) with
G(u) = y, the above problem (1)-(4) can be reduced to:

(6) min
u∈Uad

j(u) := min
u∈Uad

J(G(u), u).

Also under some extra assumptions on φ, listed in [29], the existence of at least
one optimal control u ∈ Uad with associated state y = G(u) for the optimal control
problem (6) has been demonstrated in [29]. However, for our further analysis, we
also would require the notion of the local solution in the following sense: A control
ū ∈ Uad is said to be the local solution of (6), if there exists a constant λ > 0 such
that

(7) j(v) ≥ j(ū), ∀v ∈ Uad with ‖v − ū‖L2(I;L2(Ω)) ≤ λ.

We also assume that the local solution ū satisfies the first-order necessary and sec-
ond order-sufficient optimality conditions.
The following first-order optimality condition corresponding to the parabolic opti-
mal control problem has been established in [34] (see also [26, 27, 29]):

(8) j′(u)(v − u) ≥ 0, ∀v ∈ Uad,

which can also be rewritten in the form
T∫

0

(αu+B∗p, v − u) ≥ 0, ∀v ∈ Uad.(9)

Here p is called adjoint state (or costate) associated with u and solves the adjoint
state equation

− ∂tp−∇ · (A∇p) + φ′(y)p = y − yd, in I × Ω,(10)

p = 0, in I × ∂Ω,(11)

p(T, x) = 0, x ∈ Ω.(12)

We assume that the local solution ū ∈ Uad satisfies the first-order necessary opti-
mality condition (8) and the following standard second-order sufficient condition
(see [29]). There exists a constant C > 0 such that

(13) j′′(ū)(v, v) ≥ C ‖v‖2L2(I;L2(Ω)) , ∀v ∈ L2(I;L2(Ω)).

If we define the following pointwise projection operator on the admissible set Uad
(see, e.g. [14]):

P[a,b](g(t, x)) = max(a,min(b, g(t, x))),
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then the optimality condition (9) can be expressed as

u(t, x) = P[a,b]

(
−1

α
B∗p(t, x)

)
.

Here, B∗ is the adjoint operator of B. We also note that the projection P[a,b]

satisfies the regularity property (see [29])

(14)
∥∥∇(P[a,b](v))(t)

∥∥
L∞(Ω)

≤ ‖∇v(t)‖L∞(Ω) , ∀v ∈ L2(I,W 1,∞(Ω)),

for almost all t ∈ I.

2. Finite dimensional formulation

2.1. Discontinuous finite volume discretization. We would like to seek nu-
merical approximation of the state and costate variables by discontinuous finite
volume method and for spatial discretization we proceed as follows. Let τh be a reg-
ular, quasi-uniform triangulation of Ω̄ into closed triangles K with h = max

K∈τh
(hK),

where hK is the diameter of the triangle K. The set of all interior edges in τh is
denoted by Eh.
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(b) A triangular partition and its dual.

Figure 1

The dual partition τ∗h of τh is constructed as follows: divide each triangle K ∈ τh
into three subtriangles, say (T ∗i )

3
i=1 by joining the barycenter B and the vertices

of K as shown in Figure 1, for more details see [38]. Let τ∗h consists of all these
triangles T ∗i . Figure 1 indicates that the elements T ∗i of the the dual partition
have the support in the triangle in which they belong, whereas in the case of
continuous FVE methods, the elements of the dual partition may have support
in the neighboring triangles, see [7]. The high localizability of the dual elements
provide an advantage for parallel computing and implementation of adaptive FVE
methods. The advantages of DFV methods (in terms of small support of the control
volume and other aspects of the computational issues) over the other numerical
methods are clearly mentioned in [6, 38]. Now, we define the finite dimensional
trial and test spaces associated with τh and τ∗h , respectively as follows:

Vh = {vh ∈ L2(Ω) : vh|K ∈ P1(K) ∀K ∈ τh},
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Wh = {wh ∈ L2(Ω) : wh|T∗ ∈ P0(T ∗) ∀T ∗ ∈ τ∗h},

where Pn(K) or Pn(T ∗) denotes the space of all polynomials of degree less than or
equal to n defined on K or T ∗, respectively. Let V (h) = Vh +H2(Ω) ∩H1

0 (Ω).

To connect the trial and test spaces, we define a transfer operator γ : V (h) −→
Wh as:

γv|T∗ =
1

he

∫
e

v|T∗ds, T ∗ ∈ τ∗h ,

where e is an edge in K, T ∗ is the dual element in τ∗h containing e, and he is the
length of the edge e. The operator γ satisfies the following technical result, see [16].

Lemma 2.1. The following results hold true for vh ∈ Vh∫
e

(vh − γvh)ds = 0;

∫
K

(vh − γvh)dx = 0; ‖vh − γvh‖0,K ≤ ChK ‖vh‖1,K .(15)

Also, let e be an interior edge shared by two elements K1,K2 ∈ τh, and let n1

and n2 be unit normal vectors on e pointing exterior to K1 and K2, respectively.
The average 〈.〉 and jump [[·]] on e for scalar q and vector r are defined respectively
as:

〈q〉 =
1

2
(q1 + q2), [[q]] = q1n1 + q2n2,

〈r〉 =
1

2
(r1 + r2), [[r]] = r1 · n1 + r2 · n2,

where qi = (q �Ki
) �e, ri = (r �Ki

) �e.
For boundary edge with outward normal vector n, we define

〈q〉 = q, [[q]] = qn,

〈r〉 = r, [[r]] = r · n.

For our future analysis we also define the following natural mesh-dependent norms
for all vh ∈ V (h):

|||vh|||2h :=
∑
K∈Th

|vh|21,K +
∑
e∈Eh

h−1
e ‖[[vh]]‖20,e .

The following inequality has been proved in [38]:

‖vh‖2 ≤ C

[ ∑
K∈Th

|vh|21,K +
∑
σ∈Eh

[[γvh]]2σ

]
∀vh ∈ Vh.

A repeated application of Cauchy-Schwarz inequality yields

[[γvh]]2e = h−2
e

(∫
e

[[vh]]e ds

)2

ds ≤ h−2
e

(∫
e

ds

)(∫
e

[[vh]]2e ds

)
= h−1

e

∫
e

[[vh]]2e ds.

(16)

Therefore, we have the following discrete Poincaré-Friedrichs type inequality

(17) ‖vh‖ ≤ C |||vh|||h ∀vh ∈ Vh.

For the approximation of the time derivative, let 0 = t0 < t1 < ... < tM = T
be a partition of time interval [0, T ] into subintervals Im = (tm−1, tm] with length
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km = tm − tm−1 for m = 1, 2, ...M and k = max
1≤m≤M

km. Now we use the backward

Euler scheme which is defined as follows:

∂tv
m :=

(vm − vm−1)

km
,

where vm = v(tm, x). Then we define the following discrete time-dependent norms
to be used for further analysis

‖v‖L2(I;L2(Ω)) :=

(
M∑
m=1

km ‖vm‖2
) 1

2

, ‖v‖L∞(I;L2(Ω)) := max
1≤m≤M

‖vm‖ .

Similarly we denote time and mesh dependent norms as

‖v‖L2(I;V (h)) :=

(
M∑
m=1

km |||vm|||2h

) 1
2

, ‖v‖L∞(I;V (h)) := max
1≤m≤M

|||vm|||h .

Discretization techniques for control variable. For discretization of control
variable we describe here three different approaches. Let Uh be a finite dimensional
subspace of L2(I;L2(Ω)), we introduce the discrete admissible space for control as

Uh,ad = Uh ∩ Uad.

(1) Variational approach. In this approach, control variables are not dis-
cretized explicitly and the discrete admissible space Uh,ad coincides with
the space Uad.

(2) Piecewise linear discretization. Other natural way for seeking approx-
imation of the control variable in the similar space used for the approxi-
mation of the state and co-state variables, i.e, piecewise linear subspace on
triangulation which is defined as

Uh = {uh(., t) ∈ L2(I;L2(Ω)) : uh(., t)|K ∈ P1(K) ∀K ∈ τh, t ∈ I}.
We stress that the state space Vh coincides with control space Uh in the
case of homogeneous Neumann boundary conditions and is a subspace of it
in presence of Dirichlet boundary conditions.

Now, for each time interval Im, let us define a function vmh ∈ Uh,ad on
an arbitrary triangle K ∈ τh by

vmh =


a if min

x∈K
u(tm, x) = a,

b if max
x∈K

u(tm, x) = b,

Ĩhu
m else,

where Ĩhu
m be the linear interpolate of um. To avoid the ambiguity, we

choose the mesh size h sufficiently small such that min
x∈K

u(tm, x) = a and

max
x∈K

u(tm, x) = b cannot happen simultaneously in the same triangle K.

Moreover, the triangles K ∈ τh are grouped into three sets τh = τ1
h,m ∪

τ2
h,m∪τ3

h,m with τ ih,m∩τ
j
h,m = φ for i 6= j according to the value of u(tm, x)

on K. The sets are defined as follows:

τ1
h,m = {K ∈ τh : u(tm, x) = a or u(tm, x) = b ∀x ∈ K},
τ2
h,m = {K ∈ τh : a < u(tm, x) < b ∀x ∈ K},
τ3
h,m = τh \ (τ1

h,m ∪ τ2
h,m).
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For our further analysis, we impose the following assumption on the above
described discretization approach:
Assumption 1. ∃ a positive constant C independent of k, h and m such
that

(18)
∑

K∈τ3
h,m

|K| ≤ Ch, m = 1, 2, ...,M.

(3) Piecewise constant discretization. Another approach for the discretiza-
tion of the control variable is to use elementwise constant functions. In this
case, the discrete control space is defined as

Uh = {uh(., t) ∈ L2(I;L2(Ω)) : uh(., t)|K ∈ P0(K) ∀K ∈ τh, t ∈ I}.

2.2. Fully-discrete discontinuous finite volume formulation: On multiply-
ing (2) by γwh, integrating over the control volumes, applying Gauss divergence
methods and following the arguments used in [16] (see also [17]), we can obtain the
DFV formulation of the state equation (2)-(4) as:

(∂tyh, γwh) +Ah(yh, wh) + (φ(yh), γwh) = (Buh + f, γwh), ∀wh ∈ Vh,(19)

yh(0, x) = y0,h, x ∈ Ω,(20)

where, y0,h is a certain approximation of y0 to be defined later and the bilinear
form Ah(·, ·) : Vh × Vh −→ R is defined as (see [16])

Ah(Φh,Ψh) = −
∑
K∈τh

3∑
j=1

∫
Aj+1BAj

(A∇Φh · n)γΨhds+ θ
∑
e∈Eh

∫
e

[[γΦh]] · 〈A∇Ψh〉ds

−
∑
e∈Eh

∫
e

[[γΨh]] · 〈A∇Φh〉ds+
∑
e∈Eh

∫
e

αd

hβe
[[Φh]] · [[Ψh]]ds, ∀Φh,Ψh ∈ Vh,

where, A4 = A1, (see Figure 1(b)), and αd and β are penalty parameters. In general
θ ∈ [−1, 1] and different values of β are required for achieving the optimal rate of
convergence in the L2-norm for θ 6= −1, for more details kindly see [16]. But in
what follows, we assume θ = −1 which is known as symmetric interior penalty
Galerkin (SIPG) method in the context of discontinuous finite element methods.
The approximation of the optimal control problem (1)-(4) using DFV method is
given by: Find (yh(·, t), ph(·, t), uh(·, t)) ∈ Vh × Vh × Uh,ad; (0 < t < T ) such that

(∂tyh, γwh) + Ah(yh, wh) + (φ(yh), γwh)

= (Buh + f, γwh), ∀wh ∈ Vh,(21)

yh(0, x) = y0,h, x ∈ Ω,

−(∂tph, γqh) +Ah(ph, qh) + (φ′(yh)ph, γqh)

= (yh − yd, γqh), ∀qh ∈ Vh,(22)

ph(T, x) = 0, x ∈ Ω,
T∫

0

(αuh +B∗ph, vh − uh) ≥ 0, ∀vh ∈ Uh,ad.(23)

The above discrete optimal system admits a unique local optimal control uh with
the associated state yh and the associated costate ph, see [25, 29] for details. In the
light of the above mentioned discretization approaches for spatial and time domain,
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the backward Euler fully-discrete piecewise linear discontinuous finite volume for-
mulation of the parabolic control problem (1)-(4) read as follows (see also [23, 25]):
find (ymh , p

m−1
h , umh ) ∈ Vh × Vh × Uh,ad such that ∀wh, qh ∈ Vh

(∂ty
m
h , γwh) +Ah(ymh , wh) + (φ(ymh ), γwh)

= (Bumh + fm, γwh), m = 1, ...,M ;(24)

y0
h(x) = y0,h, x ∈ Ω,

−(∂tp
m
h , γqh) +Ah(pm−1

h , qh) + (φ′(ymh )pm−1
h , γqh)

= (ymh − ymd , γqh), m = M, ..., 1;(25)

pMh (x) = 0, x ∈ Ω,

(αumh +B∗pm−1
h , vh − umh ) ≥ 0 ∀vh ∈ Uh,ad, m = 1, ...,M.(26)

2.3. Some auxiliary results: For our further analysis, we would require the
following well known results.
Result 1. With help of technical lemma 15, one can easily show that the bilinear
form Ah(·, ·) is bounded and coercive with respect to the norm ‖·‖h, i.e, there exist
positive constants β0 and C independent of h such that (kindly see [16])

Ah(φh, φh) ≥ β0 |||vh|||2h , ∀φh ∈ Vh,(27)

|Ah(φh, ψh)| ≤ C |||φh|||h |||ψh|||h , ∀φh, ψh ∈ Vh.(28)

Result 2. The operator γ is self-adjoint with respect to the L2-inner product,

(29) (φh, γψh) = (ψh, γφh), ∀φh, ψh ∈ Vh.

Also, if |||ψh|||0 := (ψh, γψh) then |||·|||0 and ‖·‖ are equivalent and

(30) ‖γψh‖ = ‖ψh‖ , ψh ∈ Vh.

For a proof we refer to [4].
Result 3. For each φh, ψh ∈ Vh, we have

|Ah(φh, ψh)−Ah(ψh, φh)| ≤ Ch |||φh|||h |||ψh|||h .(31)

For details we refer to [4] and also see [38].
Result 4. If εa(φh, ψh) := a(φh, ψh)−Ah(φh, ψh) then for all φh, ψh ∈ Vh, we have

|εa(φh, ψh)| ≤ Ch |||φh|||h |||ψh|||h ,(32)

where the bilinear form a(·, ·) is defined as for φh, ψh ∈ Vh:

a(φh, ψh) =
∑
K∈τh

A∇φh · ∇ψh dx+ θ
∑
e∈Eh

∫
e

[[φh]].〈A∇ψh〉ds

−
∑
e∈Eh

∫
e

[[ψh]].〈A∇φh〉ds+
∑
e∈Eh

∫
e

αd

hβe
[[φh]].[[ψh]]ds.

For a proof we refer to Lemma 3.2 of [5].
Result 5. For explicit discretization of control, the following holds true for vh ∈
Uh,ad (for details we refer to Lemma 2.1, [9]).

(33) (αu+B∗p, v − vh)L2(I;L2(Ω)) ≥ 0, ∀v ∈ Uad.
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3. A priori error estimates

In this section we derive error estimates for a fixed local (in the sense of (7)) ref-
erence solution of the problem (6) which also satisfy first and second order optimal-
ity conditions. Since the control and state variables u and y appears in the state and
costate equations, respectively, the error estimates for state and costate variables
depend on the control variable and state variables, respectively. For deriving these
estimates we proceed in the following way. For a given arbitrary ũ ∈ L2(I;L2(Ω))
and ỹ = y(ũ) ∈ L2(I;H1

0 (Ω)), let ymh (ũ) and pm−1
h (ỹ) be the solutions of the fol-

lowing equations ∀wh, qh ∈ Vh; for m = 1, ...,M ;

(∂ty
m
h (ũ), γwh) +Ah(ymh (ũ), wh) + (φ(ymh (ũ)), γwh) = (Bũm + fm, γwh)(34)

y0
h(ũ)(x) = y0,h, x ∈ Ω,

and for m = M, ..., 1;

−(∂tp
m
h (ỹ), γqh) +Ah(pm−1

h (ỹ), qh) + (φ′(ym)pm−1
h (ỹ), γqh) = (ỹm − ymd , γqh),(35)

pMh (ỹ)(x) = 0, x ∈ Ω,

respectively. In order to avoid confusion, in what follows we will use the following
notations: yh = yh(uh), ph = ph(yh) and ph(u) = ph(yh(u)). Now using similar
arguments as in the proof of Lemma 5.1 given in [25], we now prove the following
lemma for ũ = u and ỹ = y(u).

Lemma 3.1. For sufficiently small k, there exists a positive constant C independent
of h and k such that

|||ynh(u)− ynh |||h ≤ C ‖u− uh‖L2(I;L2(Ω)) , |||pnh(y)− pnh|||h ≤ C ‖y − yh‖L2(I;L2(Ω)) .

Proof. Subtracting equations (24) from (34), we obtain for all wh ∈ Vh and m =
1, 2, ...,M

(∂ty
m
h (u)− ∂tymh , γwh) +Ah(ymh (u)− ymh , wh) + (φ(ymh (u))− φ(ymh ), γwh)

=(B(um − umh ), γwh).

Now, by choosing wh = ∂tη
m and denoting ymh (u)− ymh = ηm, the above equation

can be rewritten as follows:

(∂tη
m, γ(∂tη

m)) +Ah(ηm, ∂tη
m)

=(B(um − umh ), γ(∂tη
m)) + (φ(ymh )− φ(ymh (u)), γ(∂tη

m)).

Using the definitions of the norm |||·|||0 and εa(·, ·), we arrive at

|||∂tηm|||20 + a(ηm, ∂tη
m) = (B(um − umh ), γ(∂tη

m)) + εa(ηm, ∂tη
m)

+(φ(ymh )− φ(ymh (u)), γ(∂tη
m)).(36)

A simple manipulation shows that

(37) a(ηm, ∂tη
m) ≥ 1

2ki
(a(ηm, ηm)− a(ηm−1, ηm−1)).

An application of (32) and inverse inequality together with Young’s inequality,
provide us

εa(ηm, ∂tη
m) ≤ Ch |||ηm|||h |||∂tη

m|||h
≤C |||ηm|||h ‖∂tη

m‖ ≤ C(ε) |||ηm|||2h + ε ‖∂tηm‖2 .(38)
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The following inequality follows by Cauchy-Schwarz inequality and (30)

(B(um − umh ), γ(∂tη
m)) ≤ C ‖um − umh ‖ ‖γ(∂tη

m)‖ ≤ C ‖um − umh ‖ ‖∂tηm‖
≤ C(ε) ‖um − umh ‖

2
+ ε ‖∂tηm‖2 .(39)

The Lipschitz continuity of φ(·) together with (17) implies that

(φ(ymh )− φ(ymh (u)), γ(∂tη
m)) ≤ ‖ηm‖ ‖γ(∂tη

m)‖ ≤ |||ηm|||h ‖∂tη
m‖

≤ C(ε) |||ηm|||2h + ε ‖∂tηm‖2 .(40)

Collecting the bounds obtained in (37), (38), (39), (40) and using equivalence of
|||·|||0 and ‖.‖ with appropriate value of ε in relation (36), enable us to write the
following

a(ηm, ηm)− a(ηm−1, ηm−1) ≤ C{2km |||ηm|||2h + 2km ‖um − umh ‖
2}.

Summing m from 1 to n, using coercivity of a(·, ·) and noting η0 = 0, we find that

|||ηn|||2h ≤ C{
n∑

m=1

km |||ηm|||2h +

n∑
m=1

km ‖um − umh ‖
2},

and an appeal to the discrete Gronwall’s Lemma implies that

|||ynh(u)− ynh |||h ≤ C ‖u− uh‖L2(I;L2) .

For estimating |||pnh(y)− pnh|||h, we proceed in the similar way as we have estimated
|||ynh(u)− ynh |||h. On subtracting (26) from (35), writing pmh (y) − pmh = µm and
choosing qh = ∂tµ

m, we infer that for m = 1, 2, ...,M

|||∂tµm|||20 − a(µm−1, ∂tµ
m)

= (ymh − ym, γ(∂tµ
m))− εa(µm−1, ∂tµ

m)

+(φ′(ym)pm−1
h (y)− φ′(ymh )pm−1

h , γ(∂tµ
m)).(41)

We note that

(42) − a(µm−1, ∂tµ
m) ≥ 1

2ki
(a(µm−1, µm−1)− a(µm, µm)).

It follows from the assumption φ′(·) ≥ 0 and Lipschitz continuity that

(φ′(ym)pm−1
h (y)− φ′(ymh )pm−1

h , γ(∂tµ
m))

≤ C(µm−1, γ(∂tµ
m)) ≤ C

∥∥µm−1
∥∥ ‖γ(∂tµ

m)‖

≤ C(ε)
∣∣∣∣∣∣µm−1

∣∣∣∣∣∣2
h

+ ε ‖∂tµm‖2 .(43)

Also, using the arguments used in derivation of inequalities (38) and (40), we have
the following bounds

εa(µm−1, ∂tµ
m) ≤ Ch

∣∣∣∣∣∣µm−1
∣∣∣∣∣∣
h
|||∂tµm|||h

≤ C(ε)
∣∣∣∣∣∣µm−1

∣∣∣∣∣∣2
h

+ ε ‖∂tµm‖2 ,(44)

(ymh − ym, γ(∂tµ
m)) ≤ C ‖ym − ymh ‖ ‖γ(∂tµ

m)‖
≤ C(ε) ‖ym − ymh ‖

2
+ ε ‖∂tµm‖2 .(45)

Using inequalities (42), (43), (44), (45) and equivalence of |||·|||0 and ‖.‖ with appro-
priate value of ε in relation (41), we can find that

a(µm−1, µm−1)− a(µm, µm) ≤ C{2km
∣∣∣∣∣∣µm−1

∣∣∣∣∣∣2
h

+ 2km ‖ym − ymh ‖
2}.
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Again summing m from n+ 1 to M , using coercivity of a(·, ·) and noticing µM = 0
we see that

|||µn|||2h ≤ C{
M∑

m=n+1

km |||µm|||2h +

n∑
m=n+1

km ‖ym − ymh ‖
2}

Now an application to discrete Gronwall’s Lemma for sufficiently small km implies
the required estimate, i.e.,

|||pnh(y)− pnh|||h ≤ C ‖y − yh‖L2(I;L2(Ω)) .

�

3.1. Error estimates for variational discretization approach. First we de-
fine the elliptic projection Rh : H2(Ω) ∩H1

0 (Ω) −→ Vh by

(46) Ah(Rhu, vh) := Ah(u, vh) ∀vh ∈ Vh,
and in what follows, we choose y0,h = Rhy0(x) for x ∈ Ω. Now, for a given u,
the following estimates can be derived by using the elliptic projection defined in
(46) and appealing to duality arguments used for the standard discontinuous finite
volume analysis for parabolic problems. Therefore, we refrain ourself for providing
this proof and we refer to [4], also see [17] and [6].

Lemma 3.2. For any ũ ∈ L2(I;L2(Ω)) and ỹ = y(ũ) ∈ L2(I;H1
0 (Ω)), there exists

a positive constant C independent of h and k such that

‖y(ũ)− yh(ũ)‖L2(I;L2(Ω)) = O(h2 + k), ‖p(ỹ)− ph(ỹ)‖L2(I;L2(Ω)) = O(h2 + k)

‖p(ũ)− ph(ũ)‖L2(I;L2(Ω)) = O(h2 + k),

and in particular, for ũ = uh, we have

(47) ‖p(uh)− ph(uh)‖L2(I;L2(Ω)) = O(h2 + k).

Now, we are in the position to prove the following result of this section.

Theorem 3.3. Let u be a fixed local optimal control of problem (6) and uh be
the solution of the fully discrete optimal control problem (24)-(26) with variational
discretization approach, then the following error estimate holds.

‖u− uh‖L2(I;L2(Ω)) = O(h2 + k), ‖y − yh‖L2(I;L2(Ω)) = O(h2 + k),

‖p− ph‖L2(I;L2(Ω)) = O(h2 + k).

Proof. For each time interval Im the continuous variational inequality will be of the
form

(48) (αum +B∗pm−1, w − um) ≥ 0, ∀w ∈ Uad
and the discrete variational inequality is

(49) (αumh +B∗pm−1
h , v − umh ) ≥ 0, ∀v ∈ Uad.

Choosing w = umh in (48) and v = um in (49), we have

(αum +B∗pm−1, umh − um) ≥ 0 ≤ −(αumh +B∗pm−1
h , um − umh ).(50)

The condition (13) for u− uh ∈ Uad ⊂ L2(I;L2(Ω)), implies that

C ‖u− uh‖2L2(I;L2(Ω))

≤ j′(u)(u− uh)− j′(uh)(u− uh)
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=

M∑
m=1

km
(
(αum +B∗pm−1, um − umh )− (αumh +B∗pm−1(uh), um − umh )

)
≤

M∑
m=1

km
(
(αumh +B∗pm−1

h , um − umh )− (αumh +B∗pm−1(uh), um − umh )
)

≤ ‖p(uh)− ph‖L2(I;L2(Ω)) ‖u− uh‖L2(I;L2(Ω)) .

Using (47) in the above relation yields the required result, i.e.

‖u− uh‖L2(I;L2(Ω)) = O(h2 + k).(51)

Now, decomposing the state and costate error as y − yh = y − yh(u) + yh(u) − yh
and p− ph = p− ph(y) + ph(y)− ph, respectively, using triangle inequality together
with the results of Lemmas 3.1, 3.2 and the estimate for u given in (51), we can
easily obtain the following

‖y − yh‖L2(I;L2(Ω)) = O(h2 + k), ‖p− ph‖L2(I;L2(Ω)) = O(h2 + k).

�

3.2. Error estimates for control with piecewise linear discretization: Un-
der the assumption (18), it is not hard to prove the following Lemma which play
a vital role for the subsequent analysis of this subsection. An analogous version of
this Lemma has been demonstrated in [27] and therefore, we skip the proof.

Lemma 3.4. There exists a positive constant C independent of h and k such that

|(αu+B∗p, vh − u)L2(I,L2(Ω))| ≤
C

α
h3 ‖∇p‖2L2(I;L∞(Ω)) for vh ∈ Uh,ad.(52)

Following the same idea used in establishment of the Lemma 5.7 given in [27],
we prove our main result.

Theorem 3.5. Let u be a fixed local optimal control of problem (6) and uh be the
solution of the fully discrete optimal control problem (24)-(26) with piecewise linear
discretization of controls then the following estimate holds true

‖u− uh‖L2(I;L2(Ω)) = O(h3/2 + k).

Proof. We proceed in the similar way as we have proved Theorem 3.3. First by
testing the continuous and discrete variational inequalities on each subinterval Im
with umh ∈ Uh,ad ⊂ Uad and vmh ∈ Uh,ad, we find that

(αumh +B∗pmh , v
m
h − umh ) ≥ 0 ≥ (αum +B∗pm, um − umh ).

Using the condition (13) for u− uh ∈ Uh,ad and the discrete and continuous varia-
tional inequalities, we have

C ‖u− uh‖2L2(I;L2(Ω))

≤ j′(u)(u− uh)− j′(uh)(u− uh)

=

M∑
m=1

km
(
(αum +B∗pm−1, um − umh )− (αumh +B∗pm−1(uh), um − umh )

)
≤

M∑
m=1

km((αum +B∗pm−1, um − umh )− (αumh +B∗pm−1(uh), um − umh )



558 R. SANDILYA AND S. KUMAR

+(αumh +B∗pm−1
h , vmh − umh ))

≤
M∑
m=1

km((αum +B∗pm−1, um − vmh ) + (αum +B∗pm−1, vmh − um)

−(αumh +B∗pm−1(uh), um − umh ) + (αumh +B∗pm−1
h , um − umh )

+(αumh +B∗pm−1
h , vmh − um))

≤
M∑
m=1

km(α(um − umh , um − vmh ) + (pm−1 − pm−1
h , B(um − vmh ))

+(pm−1
h − pm−1(uh), B(um − umh )) + (αum +B∗pm−1, vmh − um))

≤
(
‖u− uh‖L2(I;L2(Ω)) + ‖p− ph‖L2(I;L2(Ω))

)
‖u− vh‖L2(I;L2(Ω))

+C(h2 + k) ‖u− uh‖L2(I;L2(Ω)) + |(αu+B∗p, vh − u)L2(I;L2(Ω))|.(53)

Now, we can write ‖u− vh‖L2(I;L2(Ω)) =
M∑
m=1

km ‖um − vmh ‖. Since vmh = um on

τ1
h,m we have,∑
K∈τ1

h,m

‖um − vmh ‖
2
L2(K)=0. Therefore, for each m = 1, 2, ..M , we can split

‖um − vmh ‖
2

=
∑
K∈τh

‖um − vmh ‖
2
L2(K)

=
∑

K∈τ2
h,m

‖um − vmh ‖
2
L2(K) +

∑
K∈τ3

h,m

‖um − vmh ‖
2
L2(K) := T1 + T2.(54)

To bound T1, we use the relation um = −B∗
α pm on all triangles K ∈ τ2

h,m to obtain∑
K∈τ2

h,m

‖um − Ihum‖2L2(K) ≤ Ch
4
∑

K∈τ2
h,m

∥∥∇2um
∥∥2

L2(K)
≤ C

α2
h4
∥∥∇2pm

∥∥2
.

For T2, a use of projection property (14) and assumption 18 gives us∑
K∈τ3

h,m

‖um − Ihum‖2L2(K) ≤ C
∑

K∈τ3
h,m

|K| ‖um − Ihum‖2L∞(K)

≤ Ch3 ‖∇um‖2L∞(Ω) ≤
C

α2
h3 ‖∇pm‖2L∞(Ω) .

Substituting the bounds of T1 and T2 in (54) and summing m from 1 to M on each
intervals Im, we get the following estimate

‖u− vh‖L2(I;L2(Ω)) ≤ C

α

(
h2
∥∥∇2p

∥∥
L2(I;L2(Ω))

+ h3/2 ‖∇p‖L2(I;L∞(Ω))

)
.(55)

Using triangle inequality along with property (17) and results of Lemma 3.1 and
Lemma 3.2, we find that

‖p− ph‖L2(I;L2(Ω)) ≤ ‖p− ph(y)‖L2(I;L2(Ω)) + ‖ph(y)− ph‖L∞(I;L2(Ω))

≤ ‖p− ph(y)‖L2(I;L2(Ω)) + ‖ph(y)− ph‖L∞(I;V (h))

≤ ‖p− ph(y)‖L2(I;L2(Ω)) + C ‖y − yh‖L2(I;L2(Ω))

≤ ‖p− ph(y)‖L2(I;L2(Ω)) + C(‖y − yh(u)‖L2(I;L2(Ω))

+ ‖yh(u)− yh‖L∞(I;V (h)))

≤ C(h2 + k) + C ‖u− uh‖L2(I;L2(Ω)) .
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Inserting the above relation and (55) in (53) and using the results of Lemma 3.4,
we can obtain the desired estimate

‖u− uh‖L2(I;L2(Ω)) = O(h
3
2 + k).

�

3.3. Error estimates for control with piecewise constant discretization:
In this section we will derive the error estimates for ‖u− uh‖L2(I;L2(Ω)) when the

control variable is discretized by piecewise constants. For the accomplishment of
the main result, by following the idea of [9], we introduce an L2-projection operator
Γh : L2(I, L2(Ω)) −→ Uh which satisfy the following property.

ΓhUad ⊂ Uh,ad.

Now, below we prove the main result of this section.

Theorem 3.6. Let u be a fixed local optimal control of problem (6) and uh be
the solution of the fully discrete optimal control problem (24)-(26) with piecewise
constant discretization of controls, then we have the following discretization error
estimate

‖u− uh‖L2(I;L2(Ω)) = O(h+ k).

Proof. Since ΓhUad ⊂ Uh,ad and proceeding in a similar manner as in the proof of
Theorem 3.3, we easily see that the following holds with the help of continuous and
discrete optimality conditions

(αumh +B∗pm−1
h ,Γhu

m − umh ) ≥ 0 ≥ (αum +B∗pm−1, um − umh ).

Applying condition (13) for u − uh ∈ Uad ⊂ L2(I;L2(Ω)) and using discrete and
continuous variational inequalities, we have

C ‖u− uh‖2L2(I;L2(Ω))

≤ j′(u)(u− uh)− j′(uh)(u− uh)

=

M∑
m=1

km
(
(αum +B∗pm−1, um − umh )− (αumh +B∗pm−1(uh), um − umh )

)
≤

M∑
m=1

km
(
(αumh +B∗pm−1

h ,Γhu
m − umh )− (αumh +B∗pm−1(uh), um − umh )

)
≤

M∑
m=1

km(B∗pm−1
h −B∗pm−1(uh), um − umh )︸ ︷︷ ︸

J1

+

M∑
m=1

km(αumh +B∗pm−1
h ,Γhu

m − um)︸ ︷︷ ︸
J2

.(56)

Using (47) and continuity property of operator B, yields

J1 ≤ ‖p(uh)− ph‖L2(I;L2(Ω)) ‖u− uh‖L2(I;L2(Ω))

≤ C(h2 + k) ‖u− uh‖L2(I;L2(Ω)) .
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To achieve the desried bound for J2 we use the property of the projection Γh to
rewrite it as:

J2 =

M∑
m=1

km(B∗pm−1
h − Γh(B∗pm−1

h ),Γhu
m − um)

≤
M∑
m=1

km

(∑
K∈τh

∥∥B∗pm−1
h − Γh(B∗pm−1

h )
∥∥2

L2(K)

) 1
2

︸ ︷︷ ︸
≤ Ch

∣∣∣∣∣∣∣∣∣pm−1
h

∣∣∣∣∣∣∣∣∣
h

‖Γhum − um‖ .

Now let I0
hu

m be a peicewise constant interpolant of um with the following approx-
imation properties:

(57)
∥∥um − I0

hu
m
∥∥
L2(K)

≤ ChK ‖um‖H1(K) .

Then we first note that∥∥I0
hu

m − Γhu
m
∥∥
L2(K)

= (I0
hu

m − Γhu
m, I0

hu
m − Γhu

m)L2(K)

= (I0
hu

m − um, I0
hu

m − Γhu
m)L2(K)

+ (um − Γhu
m, I0

hu
m − Γhu

m)L2(K)︸ ︷︷ ︸
= 0

.

Thus, we have

(58)
∥∥I0
hu

m − Γhu
m
∥∥ ≤ ∥∥I0

hu
m − um

∥∥ .
Now using the relation (58) together with the property (57) we find that

‖Γhum − um‖ ≤
∥∥um − I0

hu
m
∥∥+

∥∥I0
hu

m − Γhu
m
∥∥ ≤ ∥∥um − I0

hu
m
∥∥ ≤ Ch.

For completing the proof, we need to show that the ph is uniformly bounded. This
can be easily achieved by making use of coercivity of the bilinear form Ah(·, ·)
with respect to the norm |||·|||h and uniform boundedness of Uh,ad. Therefore, on
substituting the bounds for J1 and J2 in (56), we complete the rest of the proof. �

3.4. Error estimates for state and costate with both piecewise linear
and constant discretization of control. We would like to mention that for
variational discretization we are enable to derive optimal error estimates ( for state
and co-state) with the help of Lemmas 3.1 and 3.2. But if we proceed in the similar
way we end up with the order of convergence (h3/2 + k) and (h+ k) for piecewise
linear and constant discretization approaches, respectively. In order to achieve the
desired optimal estimates for both piecewise linear and constant discretizations
for control, we appeal to duality arguments in the following main theorem of this
section. The similar idea also used in [29] and [26].

Theorem 3.7. Let u be an optimal control of problem (6) with the associated state
y and costate p, respectively, and let uh, yh and ph be the solution of the fully
discrete optimal control problem (24)-(26), then the following discretization error
estimates are satisfied

‖y − yh‖L2(I;L2(Ω)) = O(h2 + k); ‖p− ph‖L2(I;L2(Ω)) = O(h2 + k).

Proof. Splitting the error ‖y − yh‖L2(I;L2(Ω)) as:

‖y − yh‖L2(I;L2(Ω)) ≤ ‖y − yh(u)‖L2(I;L2(Ω)) + ‖yh(u)− yh(Πhu)‖L2(I;L2(Ω))
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+ ‖yh(Πhu)− yh‖L2(I;L2(Ω))(59)

where Πh is the L2 projection onto the discrete control space (piecewise constant
or piecewise linear polynomials). For a given time interval Im, let p̃mh ∈ Vh be the
solution of the auxiliary discrete dual equation

(60) − (γξ, ∂tp̃
m
h ) +Ah(p̃mh , ξ) = (γξ, ymh (u)− ymh (Πhu))− (γξ, φ̂p̃mh ), ∀ξ ∈ Vh

with

φ̂(tm, x) =

{
φ(ymh (u))−φ(ymh (Πhu))

ymh (u)−ymh (Πhu) , if ymh (u) 6= ymh (Πhu))

0, else.

Since Ω is a convex polygonal domain and under suitable assumptions on φ̂, we
assume that the following regularity result holds true for the above mentioned dual
problem (for details kindly see Proposition 2.2 of [29]

(61) ‖∇p̃mh ‖ ≤ C‖ξ‖.
By using integration by parts in time we can equivalently express (60) as:

(∂tξ, γp̃
m
h ) +Ah(p̃mh , ξ) = (γξ, ymh (u)− ymh (Πhu))− (γξ, φ̂p̃mh ), ∀ξ ∈ Vh.

Now testing the above expression with ξ = ymh (u)− ymh (Πhu), we can write

(∂t(y
m
h (u)− ymh (Πhu)), γp̃mh ) +Ah(p̃mh , y

m
h (u)− ymh (Πhu))

=(γ(ymh (u)− ymh (Πhu)), ymh (u)− ymh (Πhu))− (γ(ymh (u)− ymh (Πhu)), φ̂p̃mh ).(62)

Employing the discrete state equation for ymh (u) and ymh (Πhu), we obtain

(∂t(y
m
h (u)− ymh (Πhu)), γp̃mh ) +Ah(ymh (u)− ymh (Πhu), p̃mh )

= (um −Πhu
m, γp̃mh )− (φ(ymh (u))

−φ(ymh (Πhu)), γp̃mh ).(63)

Using (62) and (63), we arrive at

(γ(ymh (u)− ymh (Πhu)), ymh (u)− ymh (Πhu))− (γ(ymh (u)− ymh (Πhu)), φ̂p̃mh )

−Ah(p̃mh , y
m
h (u)− ymh (Πhu)) = (um −Πhu

m, γp̃mh )

−(φ(ymh (u))− φ(ymh (Πhu)), γp̃mh )−Ah(ymh (u)− ymh (Πhu), p̃mh ).

Using the definition of the norm |||·|||0 and its equivalence with the norm ‖ · ‖ we
find that

‖ymh (u)− ymh (Πhu)‖2

≤ (um −Πhu
m, γp̃mh ) + ((ymh (u)− ymh (Πhu))φ̂, γp̃mh )

−(φ(ymh (u))− φ(ymh (Πhu)), γp̃mh ) +Ah(p̃mh , y
m
h (u)− ymh (Πhu))

−Ah(ymh (u)− ymh (Πhu), p̃mh ).

An application of the definition of φ̂ and property of L2-projection Πh in the above
inequality gives us

‖ymh (u)− ymh (Πhu)‖2

≤ (um −Πhu
m, γp̃mh ) +Ah(p̃mh , y

m
h (u)− ymh (Πhu))

−Ah(ymh (u)− ymh (Πhu), p̃mh )

= (um −Πhu
m, γp̃mh − p̃mh )︸ ︷︷ ︸
I1

+ (um −Πhu
m, p̃mh −Πhp̃

m
h )︸ ︷︷ ︸

I2

(64)

+ (Ah(p̃mh , y
m
h (u)− ymh (Πhu))−Ah(ymh (u)− ymh (Πhu), p̃mh ))︸ ︷︷ ︸

I3

.
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First we use the approximation properties of γ (given in Lemma 15) and L2−
projection to bound I1 and I2, respectively as

|I1| ≤ Ch ‖um −Πhu
m‖ |||p̃mh |||h ,

|I2| ≤ Ch ‖um −Πhu
m‖ |||p̃mh |||h .

Then an application of (61) yields

|I1|+ |I2| ≤ Ch ‖um −Πhu
m‖ ‖ymh (u)− ymh (Πhu)‖ .(65)

For I3, we will use the relation (31) and (61) to obtain

|I3| ≤ Ch |||ymh (u)− ymh (Πhu)|||h |||p̃
m
h |||h

≤ Ch |||ymh (u)− ymh (Πhu)|||h ‖y
m
h (u)− ymh (Πhu)‖ .

By following similar steps as in the proof of Lemma 3.1 we can obtain the relation

(66) |||ymh (u)− ymh (Πhu)|||h ≤ ‖u−Πhu‖L2(I;L2(Ω)) ,

which implies that |I3| ≤ Ch ‖u−Πhu‖L2(I;L2(Ω)) ‖ymh (u)− ymh (Πhu)‖. Finally

substituting the estimates for I1, I2 and I3 in (65) and using Young’s inequality, it
is easy to see

‖ymh (u)− ymh (Πhu)‖ ≤ Ch ‖um −Πhu
m‖+ Ch ‖u−Πhu‖L2(I;L2(Ω)) ,

which can be equivalently expressed by summing over each interval Im as

‖yh(u)− yh(Πhu)‖L2(I;L2(Ω)) ≤ Ch ‖u−Πhu‖L2(I;L2(Ω)) .(67)

For the third term in (65), using (17) and proceeding with similar steps in the proof
of Lemma 3.1 we can obtain

‖yh(Πhu)− yh‖L2(I;L2(Ω))

≤ ‖yh(Πhu)− yh‖L∞(I;L2(Ω)) ≤ ‖yh(Πhu)− yh‖L∞(I;V (h))

≤ C ‖Πhu− uh‖L2(I;L2(Ω)) .(68)

Now using the condition (13) for Πhu− uh ∈ Uh,ad ⊂ L2(I;L2(Ω)), we have

C ‖Πhu− uh‖2L2(I;L2(Ω))

≤ j′(Πhu)(Πhu− uh)− j′(uh)(Πhu− uh)

≤ (αΠhu+B∗p(Πhu),Πhu− uh)L2(I;L2(Ω)) − (αuh +B∗p(uh),

Πhu− uh)L2(I;L2(Ω))

≤ α ‖Πhu− uh‖2L2(I;L2(Ω)) − (B∗p(uh)−B∗p(Πhu),Πhu− uh)
L2(I;L2(Ω))

.(69)

On using the variational inequality (26), projection property of Πh and (33), we
have the following relation

α ‖Πhu− uh‖2L2(I;L2(Ω))

= α(u− uh,Πhu− uh)L2(I;L2(Ω))

≤ (B∗ph −B∗p,Πhu− uh)L2(I;L2(Ω))

≤ (B∗ph −B∗p(uh),Πhu− uh)L2(I;L2(Ω)) + (B∗p(uh)−B∗p(Πhu),Πhu

−uh)L2(I;L2(Ω)) + (B∗p(Πhu)−B∗p,Πhu− uh)L2(I;L2(Ω)).

Therefore, we have

α ‖Πhu− uh‖2L2(I;L2(Ω)) − (B∗p(uh)−B∗p(Πhu),Πhu− uh)L2(I;L2(Ω))

≤ (B∗ph −B∗p(uh),Πhu− uh)L2(I;L2(Ω))
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+(B∗p(Πhu)−B∗p,Πhu− uh)L2(I;L2(Ω)).(70)

For the first term of (70), using (47) and continuity of operator B, gives the estimate

(B∗ph −B∗p(uh),Πhu− uh)L2(I;L2(Ω))

≤ C ‖ph − p(uh)‖L2(I;L2(Ω)) ‖Πhu− uh‖L2(I;L2(Ω))

≤ C(h2 + k) ‖Πhu− uh‖L2(I;L2(Ω)) .(71)

An application of Lemma 3.2 in the second term of (70) gives

(B∗p(Πhu)−B∗p,Πhu− uh)L2(I;L2(Ω))

= (B∗p(Πhu)−B∗ph(Πhu),Πhu− uh)L2(I;L2(Ω))

+(B∗ph(Πhu)−B∗ph(u),Πhu− uh)L2(I;L2(Ω))

+(B∗ph(u)−B∗p,Πhu− uh)L2(I;L2(Ω))

≤ C(h2 + k) ‖Πhu− uh‖L2(I;L2(Ω))

+ ‖ph(yh(Πhu))− ph(yh(u)‖L2(I;L2(Ω)) ‖Πhu− uh‖L2(I;L2(Ω))

≤ C(h2 + k) ‖Πhu− uh‖L2(I;L2(Ω))

+ ‖yh(Πhu)− yh(u)‖L2(I;L2(Ω)) ‖Πhu− uh‖L2(I;L2(Ω))

≤ (C(h2 + k) + Ch ‖Πhu− u‖L2(I;L2(Ω))) ‖Πhu− uh‖L2(I;L2(Ω)) ,(72)

where, the last inequality follows from the proof of Lemma 3.1 and estimate (67).
Using the estimates of (70), (71) and (72) in (69) and inserting it in (68), we can
obtain

(73) ‖yh(Πhu)− yh‖L2(I;L2(Ω)) ≤ C(h2 + k).

Plugging (67) and (73) in (59), using the estimates of Lemma 3.2 and approximation
of Πhu, we can obtain the optimal order for piecewise constant or piecewise linear
discretization of control

(74) ‖y − yh‖L2(I;L2(Ω)) = O(h2 + k).

Now, using the results of Lemma 3.1, Lemma 3.2 and (74), we have

‖p− ph‖L2(I;L2(Ω)) ≤ ‖p− ph(y)‖L2(I;L2(Ω)) + ‖ph(y)− ph‖L2(I;L2(Ω))

≤ ‖p− ph(y)‖L2(I;L2(Ω)) + ‖ph(y)− ph‖L∞(I;V (h))

≤ ‖p− ph(y)‖+ ‖y − yh‖L2(I;L2(Ω)) = O(h2 + k).

�

4. Numerical Experiments

In this section, we present our numerical result to validate the theoretical error
estimates derived for control, state and costate variables. For this purpose, we
consider the following optimal control problem.

min
u∈Uad

J(y, u) :=
1

2

1∫
0

‖(y(t, x)− yd(t, x))‖2 dt+
α

2

1∫
0

‖u(t, x)‖2 dt,

subject to

∂ty −∇ · (A∇y) + y3 = u+ f, in (0, 1]× Ω,

y(t, x) = 0, on (0, 1]× ∂Ω,
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y(0, x) = x1x2(x1 − 1)(x2 − 1), in Ω.

Here, the coefficient matrix

A =

(
1 + x2

1 0
0 1 + x2

2

)
,

the regularization parameter α = 0.5 and the space domain Ω = {x = (x1, x2) :
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}. The source term f and the desired state yd will be of the
form

f(t, x) = et(x1x2(x1 − 1)(x2 − 1)− (2 + 6x2
1 − 2x1)(x2

2 − x2)

−(x2
1 − x1)(2 + 6x2

2 − 2x2
2))

+e3tx3
1x

3
2(x1 − 1)3(x2 − 1)3 − u(t, x),

yd(t, x) = 2et(x2
1 − x1)(x2

2 − x2) + (et − e)((2 + 6x2
1 − 2x1)(x2

2 − x2)

+(x2
1 − x1)(2 + 6x2

2 − 2x2
2))

−3e2t(et − e)(x2
1 − x1)

3
(x2

2 − x2)
3
.

For computing the order of convergence, we would require the exact solution of the
above mentioned problem. Therefore, with the choice of the source term f and
the desired state yd, the exact state y and the adjoint state p will be given in the
following manner

y(t, x) = etx1x2(x1 − 1)(x2 − 1), p(t, x) = (et − e)x1x2(x1 − 1)(x2 − 1).

Moreover, the control variable is defined as: u(t, x) = max(0,min(1,− 1
αp(t, x)).

(a) Convergence of state and costate. (b) Convergence of control.

Figure 2. The convergence rates of the DFV approximations of
the state, adjoint state and control variables with variational dis-
cretization approach computed with θ = −1, β = 1 and k = 0.01.

The convergence of the approximate solutions measured by errors in discrete
L2(I;L2(Ω)) norm for state, costate and control variables and corresponding ob-
served rates are defined as

eh(y) := ‖y − yh‖L2(I;L2(Ω)) , eh(p) := ‖p− ph‖L2(I;L2(Ω)) ,

eh(u) := ‖u− uh‖L2(I;L2(Ω)) , rh(y) :=
log(eh(y)/êh(y))

log(h/ĥ)
,

rh(p) :=
log(eh(p)/êh(p))

log(h/ĥ)
, rh(u) :=

log(eh(u)/êh(u))

log(h/ĥ)
.
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Table 1. Numerical results for error with k = 0.01 for state,
adjoint state and control variables using variational discretization
method for θ = −1 and β = 1.

h eh(y) rh(y) eh(p) rh(p) eh(u) rh(u)

0.5000000 0.0306030 - 0.0190899 - 0.0381798 -
0.3333333 0.0143815 1.8624412 0.0090646 1.8368500 0.0181292 1.8368500
0.2500000 0.0081559 1.9716095 0.0052642 1.8890259 0.0105285 1.8890259
0.2000000 0.0052157 2.0034798 0.0034871 1.8457554 0.0069742 1.8457554
0.1666667 0.0036108 2.0169715 0.0025275 1.7651376 0.0050551 1.7651376

Here e and ê denote errors computed on two consecutive meshes of sizes h and ĥ,
respectively.

For variational discretization approach, the difference between the computed
solution and the exact solution with respect to the discrete L2(I;L2(Ω)) norm
for state, co-state and control variables with a fixed time step k = 0.01 have been
reported in Table 1. Further from Figure 2, we observe that the rate of convergence
for state, co-state and control variables is of order h2 which matches with the
theoretical rate of convergence derived in Theorem 3.3.

(a) Convergence of state and costate. (b) Convergence of control.

Figure 3. The convergence rates of the DFV approximations of
the state, adjoint state and control variables with piecewise linear
discretization of control for θ = −1, β = 1 and k = 0.01.

Table 2. Numerical results for error with k = 0.01 for state, ad-
joint state and control variables using piecewise linear discretiza-
tion of control for θ = −1 and β = 1.

h eh(y) rh(y) eh(p) rh(p) eh(u) rh(u)

0.5000000 0.0305763 - 0.0190907 - 0.0287159 -
0.3333333 0.0143466 1.8662814 0.0090657 1.8366436 0.0149358 1.6121916
0.2500000 0.0080601 2.0042228 0.0052682 1.8868466 0.0091847 1.6901356
0.2000000 0.0051291 2.0255513 0.0034908 1.8442640 0.0062928 1.6945581
0.1666667 0.0035176 2.0685532 0.0025319 1.7615460 0.0046740 1.6310945

When piecewise linear discretization is used for control, for a fixed time step
k = 0.01, the computed order of convergence for state, co-state and control vari-
ables has been shown in Figure 3 which is of O(h2) (for state and co-state) and
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O(h3/2) for control. We note that this also matches with the theoretical rate of
convergence derived in Theorem 3.5 and Theorem 3.7. Similarly, the computed
order of convergence and difference between errors are shown in Figure 4 and Table
3, respectively, when piecewise constant discretization approach is used for control.
In this case also our theoretical order of convergence matches with the computed
rate of convergence (for a fixed time step k = 0.01) derived in Theorem 3.6 and 3.7.

(a) Convergence of state and costate. (b) Convergence of control.

Figure 4. The convergence rates of the DFV approximations of
the state, co-state and control variables using piecewise discretiza-
tion of control which are computed for θ = −1, β = 1 and k = 0.01.

Table 3. Computational error with k = 0.01 for state, co-state
and control variables using piecewise constant discretization of con-
trol for θ = −1 and β = 1.

h eh(y) rh(y) eh(p) rh(p) eh(u) rh(u)

0.5000000 0.0308900 - 0.0190792 - 0.04275929 -
0.3333333 0.0146205 1.8448129 0.0090547 1.8381477 0.02807274 1.0377892
0.2500000 0.0083204 1.9594710 0.0052569 1.8901131 0.02074522 1.0514493
0.2000000 0.0053314 1.9946630 0.0034816 1.8465432 0.01644297 1.0415617
0.1666667 0.0036954 2.0102921 0.0025233 1.7656141 0.01362724 1.0301967

5. Concluding Remarks

In this article, a discontinuous finite volume method is used for the approxi-
mation of state and costate variables and three different techniques ( variational
discretization, piecewise linear and constant discretization) are employed for the
approximation of the control variable. We stress that deriving the optimal error
estimate for state and co-state variables in L2(I;L2(Ω))-norm for variational dis-
cretization of control, is not a tough task and one can achieve this by decomposing
the error. However, by following the same arguments for deriving the error estimates
in L2(I;L2(Ω))-norm for state and co-state variables would lead to a suboptimal
rate of convergence, when piecewise linear and piecewise constant discretizations
are used for the control. This is because in this case the rate of convergence is
of O(h3/2 + k) and O(h + k) for piecewise linear and constant discretizations, re-
spectively. To overcome this difficulty, duality arguments have been used for the
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establishment of optimal error estimates in L2(I;L2(Ω))-norm for state and co-
state variables. Further, numerical experiments have been reported to make sure
the performance of various proposed numerical schemes and to support the theo-
retical findings. In the light of our theoretical error estimates derived in Section 3
and discretization approaches used in Section 2, the computational and theoretical
advantages and disadvantages over each other for three approaches (variational,
piecewise linear and constant) used for discretization of control can be explained
as follows: For variational discretization, even though we have O(h2 + k) rate of
convergence for control in L2(I;L2(Ω))-norm but there would be computational dif-
ficulties, as in this approach the approximation of the control variable does not lie
in the finite dimensional space associated with triangulation and this would lead to
a nonstandard numerical algorithms and involvement of more sophisticated stoping
criteria. Whereas, for piecewise linear and constant approaches, the convergence is
of O(h3/2 + k) and O(h+ k), respectively.
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