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WEAK GALERKIN FINITE ELEMENT METHOD FOR SECOND

ORDER PARABOLIC EQUATIONS

HONGQIN ZHANG, YONGKUI ZOU, YINGXIANG XU, QILONG ZHAI, AND HUA YUE

Abstract. We apply in this paper the weak Galerkin method to the second order parabolic

differential equations based on a discrete weak gradient operator. We establish both the continuous
time and the discrete time weak Galerkin finite element schemes, which allow using the totally

discrete functions in approximation space and the finite element partitions of arbitrary polygons

with certain shape regularity. We show as well that the continuous time weak Galerkin finite
element method preserves the energy conservation law. The optimal convergence order estimates

in both H1 and L2 norms are obtained. Numerical experiments are performed to confirm the
theoretical results.
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1. Introduction

The weak Galerkin (WG for short) finite element method refers to the finite
element techniques for partial differential equations where the differential operators
(e.g., gradient, divergence, curl, Laplacian) are approximated by weak forms. In
[17], a WG method was introduced and analyzed for second order elliptic equations
based on a discrete weak gradient arising from RT element [13] or BDM element
[1]. When using the RT or the BDM element, the WG finite element method
requires the classical finite element partitions such as triangles for 2-dimensional
elements and tetrahedra for 3-dimensional elements, which limits the use of the
newly-developed method. This problem was first dealt with in [16] where for the
second order elliptic equation the authors using the stabilization for the flux variable
established a WG mixed finite element method that is applicable for general finite
element partitions consisting of shape regular polytopes (e.g., polygons in 2D and
polyhedra in 3D). The idea of stabilization has been applied to the Galerkin finite
element method for the second order elliptic equation, see [10]. At present, the
WG method has attracted many attentions and successfully found its way to many
applications, for example, see [12] for the Helmholtz equation and [11] for elliptic
interface problems.

As far as the parabolic problem is concerned, there are surely many classical
numerical methods applicable. For example, see [5, 3] for the classical finite element
methods, [6, 9] for the discontinuous Galerkin finite element methods, [19, 2, 4, 14, 8]
for the finite volume methods. We note here that the WG method is also applicable
for such kind of time dependent problems. In [7], the authors discussed the WG
finite element method for the parabolic equations, where again the definition of
the discrete weak gradient operator proposed in [17] was applied. Comparing to
the existing methods, the WG finite element method allows using discontinuous
function space as the approximation space and thus it is not necessarily to require
the underlying solutions to be smooth enough as in the usual sense. This property
makes the WG finite element method more flexible in applications.
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The goal of this paper is, different from the technique applied in [7], to apply the
WG finite element method to the parabolic partial differential equations, by using
the idea of stabilization. We consider the following initial-boundary value problem
for the second order parabolic equations

ut −∇ · (a∇u) = f, for x ∈ Ω, t ∈ J,(1)

u = 0, for x ∈ ∂Ω, t ∈ J,(2)

u(·, 0) = ψ, for x ∈ Ω,(3)

where Ω is a polygonal domain in R2 with Lipschitz-continuous boundary, J =
(0, T ] with T > 0, a = a(·)2×2 ∈ [L∞(Ω)]2×2 is a symmetric matrix-valued function.
Assume that the matrix function a(·) satisfies the following property: there exist
two constants 0 < ᾱ1 < ᾱ2 such that

(4) ᾱ1ξ
T ξ ≤ ξTaξ ≤ ᾱ2ξ

T ξ, ∀ξ ∈ R2.

The standard variational form for (1)-(3) seeks u(·, t) ∈ H1
0 (Ω) such that

(ut, v) + (a∇u,∇v) = (f, v), ∀v ∈ H1
0 (Ω), t ∈ J.

u(·, 0) = ψ,
(5)

where (·, ·) denotes the L2-inner product.
In this paper, we, based on the definition of a discrete weak gradient operator

proposed in [10], derive the continuous time and the discrete time WG finite ele-
ment methods for problems (1)-(3) by taking into account the idea of stabilization.
The new obtained methods allow the application of the more general finite element
partitions satisfying certain shape regular conditions, and allow as well using to-
tally discontinuous function space as the approximation space. In addition, the
continuous time WG finite element method preserves the energy conservation law.

The rest of this paper is organized as follows. In Section 2, we introduce the
notations and establish the continuous time and the discrete time WG finite element
schemes for problems (1)-(3). We then prove the energy conservation law of the
continuous time WG approximation in Section 3. In Section 4, the optimal error
estimates in both H1 norm and L2 norm are proved. Finally, we present the
numerical example to verify the theory.

2. The WG approximation

To introduce the WG finite element method for the parabolic equations (1)-(3),
we need to consider first the weak gradient and the discrete weak gradient. The
gradient∇ is a principle differential operator involved in the variational form. Thus,
it is critical to define and understand discrete weak gradients for the corresponding
numerical methods. Following the idea in [17, 10], the discrete weak gradient is
given by approximating the weak functions with piecewise polynomial functions, as
shown in what follows.

2.1. Weak gradient. Let K ⊂ Ω be any polygonal domain with boundary ∂K.
A weak function on the region K refers to a generelized function v = {v0, vb} such
that v0 ∈ L2(K) and vb ∈ H1/2(∂K). The first component v0 can be understood
as the value of v in K, and the second component vb represents the value of v on
the boundary ∂K. Note that vb may not necessarily be related to the trace of v0

on ∂K, if it is well-defined. Denote the space of weak functions on K by

(6) W (K) := {v = {v0, vb} : v0 ∈ L2(K), vb ∈ H1/2(∂K)}.
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Let (·, ·)K and 〈·, ·〉∂K represent the inner product in L2(K) and H
1
2 (∂K), respec-

tively,

(v, w)K =

∫
K

vwdx, ∀v, w ∈ L2(K),

〈v, w〉∂K =

∫
∂K

vwds, ∀v, w ∈ H 1
2 (∂K).

Define a space

(7) H(div,K) = {v : v ∈ [L2(K)]2,∇ · v ∈ L2(K)}.

The standard gradient operator can be equivalently formulated as following

∇ : H1(K)→ (H(div,K))∗,

u 7→ ∇u,
(8)

where the gradient ∇ is interpreted as a linear functional on the space H(div,K)
and satisfies

(9) (∇u,q) = −(u,∇ · q)K + 〈u,q · n〉∂K , ∀q ∈ H(div,K),

where n is the unit outward normal vector to ∂K.
The weak gradient operator ∇ω is defined by replacing the space H1(K) by

W (K) and applying the expression in (9), cf. [17, 10].

Definition 2.1. Define a weak gradient operator ∇ω by

∇ω : W (K)→ (H(div,K))∗,

v 7→ ∇ωv,

where ∇ωv is a functional on the space H(div,K) which is determined by

(10) (∇ωv,q) := −(v0,∇ · q)K + 〈vb,q · n〉∂K , ∀q ∈ H(div,K).

The Sobolev space H1(K) can be embedded into the weak space W (K) by an
inclusion map iW : H1(K)→W (K) defined as follows

iW (φ) = {φ|K , φ|∂K}, ∀φ ∈ H1(K).

With the help of the inclusion map iW , the Sobolev space H1(K) can be viewed
as a subspace of W (K) by identifying each φ ∈ H1(K) with iW (φ). Analogously,
a weak function v = {v0, vb} ∈W (K) is said to be in H1(K) if it can be identified
with a function φ ∈ H1(K) through the above inclusion map. It is not hard to see
that weak gradient is identical with the strong gradient (i.e.∇ωφ = ∇φ) for each
smooth function φ ∈ H1(K).

Recall that the discrete weak gradient operator is defined by approximating ∇ω

in a polynomial subspace. More precisely, for any nonnegative integer r, denote by
Pr(K) the set of polynomials on K with degree no more than r. The discrete weak
gradient operator, denoted by ∇d, is defined as: ∇dv is the unique polynomial in
[Pr(K)]2 and satisfies the following equation

(11) (∇dv,q) = −(v0,∇ · q)K + 〈vb,q · n〉∂K , ∀q ∈ [Pr(K)]2.

In this paper, we shall allow a greater flexibility in the definition and compu-
tation of the discrete weak gradient operator ∇dv ∈ [Pr(K)]2 by using the usual
polynomial space [Pr(K)]2. This will result in a new class of WG finite element
schemes for parabolic equations with remarkable properties to be detailed in the
following sections.
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2.2. The WG method. In this section, we design a continuous time and a dis-
cretime WG finite element schemes for the initial-boundary value problems (1)-(3).

Let Th be a family of partitions of the domain Ω, where h is the partition diam-
eter. We assume throughout the paper that Th is shape regular, namely, satisfying
the shape regularity assumptions A1-A4 in [16]. Denote by T 0 its interior and by
∂T its boundary for any T ∈ Th, respectively. For each T ∈ Th, let Pr(T 0) and
Pr(∂T ) be the sets of polynomials on T 0 and on ∂T , respectively, with degree no
more than r. Denoted by V the weak function space on Th given by

V := {v = {v0, vb} : {v0, vb}|T ∈W (T ), T ∈ Th},

where {v0, vb}|T = {v0|T , vb|∂T } is the restriction of v on the element T . For
any given integer r ≥ 1, let Wr(T ) be the weak finite element space consisting of
polynomials of degree no more than r in T 0 and piecewise polynomials of degree
no more than r on ∂T , i.e.,

Wr(T ) := {v = {v0, vb} : v0|T ∈ Pr(T 0), vb|e ∈ Pr(e), e⊂∂T}.

We restrict the domain of the weak gradient operator ∇d on the finite dimensional
polynomial space Wr(T ) and obtain a linear operator from Wr(T ) to Gr−1(T ) :=
[Pr−1(T )]2, which is determined by

(12) (∇dv,q)T = −(v0,∇ · q)T + 〈vb,q · n〉∂T , ∀v ∈Wr(T ),q ∈ Gr−1(T ).

Now, we are ready to introduce the WG finite element method for approximating
equations (1)-(3). Define WG finite element spaces

Vh := {v = {v0, vb} : {v0, vb}|T ∈Wr(T ), T ∈ Th},

and

(13) V 0
h := {v : v ∈ Vh, vb = 0 on ∂Ω}.

Define two bilinear forms on Vh: for any v, w ∈ Vh

ā(v, w) =
∑
T∈Th

∫
T

(a∇dv) · ∇dwdT,(14)

s(v, w) =
∑
T∈Th

h−1
T 〈v0 − vb, w0 − wb〉∂T .(15)

Denote by as(·, ·) a stabilization of ā(·, ·) given by

(16) as(v, w) = ā(v, w) + s(v, w).

In [10, Lemma7.2], it is proved that there exist two constants α, β > 0 such that
for u, v ∈ Vh

|as(u, v)| ≤ β 9 u 9 · 9 v 9 .

α 9 u92 ≤ as(u, u),

where

9v92 =
∑
T∈Th

(∇dv,∇dv)T +
∑
T∈Th

h−1
T (v0 − vb, v0 − vb)∂T , v ∈ Vh.

We define two projections on each triangle: one is Qhu = {Q0u,Qbu}, the L2

projection of H1(T ) onto Pr(T 0)× Pr(∂T ) and the other is Rh, the L2 projection
of [L2(T )]2 onto Gr−1(T ).



WEAK GALERKIN FINITE ELEMENT METHOD 529

The following identity will be frequently used in our analysis, cf. [10, Lemma
5.1]:

(17) ∇d(Qhu) = Rh(∇u), ∀u ∈ H1(T ).

Now we are ready to describe the WG finite element methods for problems (1).
The main idea of the weak Galerkin method is to use the space Vh as testing and
trial space and replace the classical gradient operator by its weak version.

We propose the continuous time WG finite element method, based on variational
form (5) and the weak Galerkin operator (11). The semi-discrete WG finite element
method for equations (1)-(3) is to find uh(t) = {u0(·, t), ub(·, t)} ∈ V 0

h for t ≥ 0 such
that uh(0) = Qhψ and the following equation holds

(18) ((uh)t, v0) + as(uh, v) = (f, v0), ∀v = {v0, vb} ∈ V 0
h , t > 0.

Let k > 0 be a time step-size. At the time level t = tn = nk, with integer
0 ≤ n ≤ N,Nk = T , denote by Un = Un

h ∈ Vh the approximation of u(tn). We
further discretize equation (18) with respect to t by the backward Euler method to
obtain a full discrete WG finite element method: seek Un ∈ Vh(n = 0, 1, 2, · · ·, N)
such that U0 = Qhψ and

(19) (∂̄Un, v0) + as(U
n, v) = (f(tn), v0), ∀v = {v0, vb} ∈ V 0

h ,

where ∂̄Un = (Un − Un−1)/k. This is equivalent to

(20) (Un, v0) + kas(U
n, v) = (Un−1 + kf(tn), v0), ∀v = {v0, vb} ∈ V 0

h .

3. Energy conservation of WG

In this section, we investigate the energy conservation property of the semi-
discrete WG finite element approximation uh. The solution u of the problem (1)-(3)
has the following energy preserving property on each T ∈ Th [7]:

(21)

∫ t+4t

t−4t

∫
T

utdxdt+

∫ t+4t

t−4t

∫
∂T

q · ndsdt =

∫ t+4t

t−4t

∫
T

fdxdt,

where q = −a∇u is the flow rate of heat energy. We claim that the semi-discrete
WG finite element method for (1)-(3) preserves the energy conservation property
(21).

Choosing in (18) the test function v = {v0, vb = 0} so that v0 = 1 on T and
v0 = 0 elsewhere. We then obtain by integrating over the time period [t−4t, t+4t]

(22)

∫ t+4t

t−4t

∫
T

utdxdt+

∫ t+4t

t−4t

as(uh, v)dt =

∫ t+4t

t−4t

∫
T

fdxdt,

where

(23) as(uh, v) =

∫
T

a∇duh · ∇dvdx+ h−1
T

∫
∂T

(u0 − ub)ds.

Using the definitions of operators Rh and ∇d in (11), we obtain∫
T

a∇duh · ∇dvdx =

∫
T

Rh(a∇duh) · ∇dvdx

= −
∫
T

∇ ·Rh(a∇duh)dx

= −
∫
∂T

Rh(a∇duh) · nds.

(24)
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Substituting (24) to (23), together with (22), we have∫ t+4t

t−4t

∫
T

utdxdt+

∫ t+4t

t−4t

∫
∂T

{−Rh(a∇duh) + h−1
T (u0 − ub)n} · ndsdt

=

∫ t+4t

t−4t

∫
T

fdxdt,

(25)

which provides a numerical flux

qh · n = {−Rh(a∇duh) + h−1
T (u0 − ub)n} · n.

We then aim to verify that the numerical flux qh · n crosses continuously the edge
of each T . Denote by e the common edge between two elements T1 and T2. Choose
the test function v = {v0, vb} so that v0 ≡ 0, vb arbitrary on e and zero elsewhere.
Using v0 ≡ 0 and (18), we have∫

T1∪T2

a∇duh · ∇dvdx− h−1
T1

∫
∂T1∩e

(u0 − ub) |T1 vbds

− h−1
T2

∫
∂T2∩e

(u0 − ub) |T2
vbds = 0.

(26)

Using (11), we obtain∫
T1∪T2

a∇duh · ∇dvdx

=

∫
T1∪T2

Rh(a∇duh) · ∇dvdx

=

∫
e

(Rh(a∇duh) |T1 ·n1 +Rh(a∇duh) |T2 ·n2)vbds,

where n1 and n2 are the outward normal vectors to T1 and T2 on the edge e,
respectively. Noting the fact n1 +n2 = 0, substituting the above equation into (26)
yields ∫

e

{−Rh(a∇duh) |T1 +h−1
T1

(u0 − ub) |T1 n1} · n1vbds

+

∫
e

{−Rh(a∇duh) |T2
+h−1

T2
(u0 − ub) |T2

n2} · n2vbds = 0,

(27)

which shows the numerical flux qh · n is continuous along the normal direction.

4. Error analysis

In this section, we estimate the errors for both continuous and discrete time WG
finite element methods. The difference between WG finite element approximation
uh and the L2 projection Qhu of the exact solution u is measured in different norms.

To this end, we need the following estimates concerning the projection operators
Qh and Rh, see [16]. Note here the underlying mesh Th is general enough and
allows polygons.

Lemma 4.1. [16, Lemma5.1] There hold for any φ ∈ Hr+1(Ω)∑
T∈Th

‖φ−Q0φ‖2T +
∑
T∈Th

h2
T ‖∇(φ−Q0φ)‖2T ≤ Ch2(r+1)‖φ‖2r+1,(28)

∑
T∈Th

‖a(∇φ−Rh(∇φ))‖2T ≤ Ch2r‖φ‖2r+1,(29)

where C is a generic constant independent of the mesh size h.
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In addition, the following trace inequality holds [16, Lemma A.1]

(30) ‖φ‖2∂T ≤ C(h−1
T ‖φ‖

2
T + hT ‖∇φ‖2T ), ∀T ∈ Th,∀φ ∈ H1(T ).

4.1. Continuous time WG finite element method. We then in this subsection
aim to investigate the approximation properties for the semi-discrete solution.

For φ ∈ H1(T ) and v ∈ Vh, based on (11), (17), we have by integration by parts

(a∇dQhφ,∇dv)T = (aRh(∇φ),∇dv)T

= −(v0,∇ · (aRh∇φ))T + 〈vb, (aRh∇φ) · n〉∂T
= (∇v0, aRh∇φ)T − 〈v0 − vb, (aRh∇φ) · n〉∂T
= (a∇φ,∇v0)T − 〈(aRh∇φ) · n, v0 − vb〉∂T .

(31)

Let u and uh be the solutions of (1)-(3) and (18), respectively. Denote by
e := uh −Qhu ∈ V 0

h the difference between the weak Galerkin approximation and
the L2 projection of the exact solution u.

Theorem 4.2. Assume u ∈ Hr+1(Ω). Then there exists a constant C > 0 inde-
pendent of the mesh size h such that the following estimates hold

‖e(·, t)‖2 +

∫ t

0

α 9 e 92 ds ≤ ‖e(·, 0)‖2 + Ch2r

∫ t

0

‖u‖2r+1ds,

and ∫ t

0

‖et‖2ds+
α

4
9 e 92 +‖e‖ ≤ β 9 e(·, 0) 92 +‖e(·, 0)‖2

+ Ch2r(‖ψ‖2r+1 + ‖u‖2r+1 +

∫ t

0

‖u‖2r+1ds+

∫ t

0

‖ut‖2r+1ds).

Proof. Let v = {v0, vb} ∈ V 0
h be a test function. By testing (1.1) against v0,

together with Rh(∇u) = ∇d(Qhu) for u ∈ H1, (Qhut, v0) = (ut, v0), and (31), we
obtain

(f, v0)

=(ut, v0) +
∑
T∈Th

(−∇ · a∇u, v0)T

=(Q0ut, v0) +
∑
T∈Th

(a∇u,∇v0)T −
∑
T∈Th

〈v0, a(∇u) · n〉∂T

=(Q0ut, v0) +
∑
T∈Th

(a∇dQhu,∇dv)T +
∑
T∈Th

〈a(Rh∇u−∇u) · n, v0 − vb〉∂T ,

where the fact that
∑

T∈Th〈a(∇u) · n, vb〉∂T = 0 is applied. Adding s(Qhu, v) to
both sides of the above equation gives

(f, v0) + s(Qhu, v)

=(Q0ut, v0) + as(Qhu, v) +
∑
T∈Th

〈a(Rh∇u−∇u) · n, v0 − vb〉∂T .(32)

Using (18), we then obtain an error equation

((u0 −Q0u)t, v0) + as(uh −Qhu, v)

=
∑
T∈Th

〈a(∇u−Rh∇u) · n, v0 − vb〉∂T + s(Qhu, v).(33)
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Now, we bound the terms in the right-hand side of (33) one by one. Using
the Cauchy-Schwarz inequality, the trace inequality, and the Young’ s inequality
consecutively we have

|
∑
T∈Th

〈a(∇u−Rh∇u) · n, v0 − vb〉∂T |

≤(
∑
T∈Th

hT ‖a(∇u−Rh∇u‖2∂T )1/2(
∑
T∈Th

h−1
T ‖v0 − vb‖2∂T )1/2

≤ 1

α

∑
T∈Th

hT ‖a(∇u−Rh∇u)‖2∂T +
α

4

∑
T∈Th

h−1
T ‖v0 − vb‖2∂T

≤C
α

(
∑
T∈Th

(‖a(∇u−Rh∇u)‖2T + h2
T ‖∇[a(∇u−Rh∇u)]‖2T ) +

α

4
9 v92

≤Ch2r‖u‖2r+1 +
α

4
9 v 92 .

(34)

Similarly,

|s(Qhu, v)|

=|
∑
T∈Th

h−1
T 〈Q0u−Qbu, v0 − vb〉∂T |

=|
∑
T∈Th

h−1
T 〈Q0u− u, v0 − vb〉∂T |

≤(
∑
T∈Th

h−1
T ‖Q0u− u‖2∂T )1/2(

∑
T∈Th

h−1
T ‖v0 − vb‖2∂T )1/2

≤ 1

α

∑
T∈Th

h−1
T ‖Q0u− u‖2∂T +

α

4

∑
T∈Th

h−1
T ‖v0 − vb‖2∂T

≤C
α

∑
T∈Th

(h−2
T ‖Q0u− u‖2T + ‖∇(Q0u− u)‖2T ) +

α

4
9 v92

≤Ch2r‖u‖2r+1 +
α

4
9 v 92 .

(35)

Choosing v = e in the error equation (33), we obtain

(et, e) + as(e, e) =
∑
T∈Th

〈a(∇u−Rh∇u) · n, e0 − eb〉∂T + s(Qhu, e).

Using again the Cauchy-Schwarz inequality and the coercivity of the bilinear form,
we have

1

2

d

dt
‖e‖2 +α9e92 ≤ 1

α

∑
T∈Th

(hT ‖a(∇u−Rh∇u)‖2∂T +h−1
T ‖Q0u−u‖2∂T )+

α

2
9e92 .

By integrating over the time period [0, t], we get

‖e‖2 +

∫ t

0

α 9 e 92 ds ≤ ‖e(·, 0)‖2

+
2

α

∫ t

0

∑
T∈Th

(hT ‖a(∇u−Rh∇u)‖2∂T + h−1
T ‖Q0u− u‖2∂T )ds.

(36)

Hence, we have

‖e‖2 +

∫ t

0

α 9 e 92 ds ≤ ‖e(·, 0)‖2 + Ch2r

∫ t

0

‖u‖2r+1ds.
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In order to estimate 9e9, we apply the error equation with v = (uh−Qhu)t = et,

(et, et) + as(e, et)

=
∑
T∈Th

〈a(∇u−Rh∇u) · n, (et)0 − (et)b〉∂T + s(Qhu, et)

=
d

dt

∑
T∈Th

〈a(∇u−Rh∇u) · n, e0 − eb〉∂T +
d

dt
s(Qhu, e)

−
∑
T∈Th

〈a(∇ut −Rh∇ut) · n, e0 − eb〉∂T − s(Qhut, e).

This in turn gives by Cauchy-Schwarz inequality

‖et‖2 +
1

2

d

dt
as(e, e)

≤ d

dt

∑
T∈Th

〈a(∇u−Rh∇u), ·n, e0 − eb〉∂T +
d

dt
s(Qhu, e)

+
1

2α

∑
T∈Th

hT ‖a(∇ut −Rh∇ut)‖2∂T +
α

2
9 e92

+
1

2α

∑
T∈Th

h−1
T ‖Q0ut − ut‖2∂T +

α

2
9 e 92 .

Thus, integrating with respect to t and together with the coercivity and bounded-
ness yields∫ t

0

‖et‖2ds+
α

2
9 e92

≤‖e(·, 0)‖2 +
β

2
9 e(·, 0) 92 +s(Qhu, e)− s(Qhu(·, 0), e(·, 0))

+
∑
T∈Th

〈a(∇u−Rh∇u) · n, e0 − eb〉∂T

−
∑
T∈Th

〈a(∇u(·, 0)−Rh∇u(·, 0)) · n, e(·, 0)0 − e(·, 0)b〉∂T

+

∫ t

0

1

2α
(
∑
T∈Th

hT ‖a(∇ut −Rh∇ut)‖2∂T ds

+

∫ t

0

1

2α

∑
T∈Th

h−1
T ‖Q0ut − ut‖2∂T ds+

∫ t

0

α 9 e 92 ds

≤‖e(·, 0)‖2 +
β

2
9 e(·, 0)92

+
2

α

∑
T∈Th

(hT ‖a(∇u−Rh∇u)‖2∂T + h−1
T ‖Q0u− u‖2∂T ) +

α

4
9 e92

+
1

β

∑
T∈Th

(hT ‖a(∇u(·, 0)−Rh∇u(·, 0))‖2∂T

+ h−1
T ‖Q0u(·, 0)− u(·, 0)‖2∂T ) +

β

2
9 e(·, 0)92
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+

∫ t

0

1

2α
(
∑
T∈Th

hT ‖a(∇ut −Rh∇ut)‖2∂T ds

+

∫ t

0

1

2α

∑
T∈Th

h−1
T ‖Q0ut − ut‖2∂T ds+

∫ t

0

α 9 e 92 ds.

Combining (34), (35), (36) and the above equation, using the Young’ s inequality,
we have

‖e‖2 +

∫ t

0

‖et‖2ds+
α

4
9 e92

≤‖e(·, 0)‖2 + β 9 e(·, 0)92

+ Ch2r(‖u(·, 0)‖2r+1 + ‖u‖2r+1 +

∫ t

0

‖u‖2r+1ds+

∫ t

0

‖ut‖2r+1ds).

This completes the proof. �

4.2. Discrete time WG finite element method. We then in this subsection
investigate the error analysis for full discrete weak Galerkin finite element method.
To this end, we need the following Poincare inequality related to the weak gradient
operator.

Lemma 4.3. [10, Lemma7.1] There exists a constant C independent of the mesh
size h such that

‖v‖2 ≤ C 9 v92, ∀v = {v0, vb} ∈ V 0
h .

We estimate the error of the full discrete WG element method. Let u and Un be
the solutions of (1)-(3) and (19), respectively. Denote by en := Un −Qhu(tn) the
difference between the backward Euler WG approximation and the L2 projection
of the exact solution u.

Theorem 4.4. Assume u ∈ C2
(
[0, T ];Hr+1(Ω)

)
. Then there exists a constant

C > 0 independent of the mesh size h such that for 0 < n ≤ N

‖en‖2 +

n∑
j=1

αk 9 ej92 ≤ ‖e0‖2 + C(h2r‖u‖2r+1,∞ + k2

∫ tn

0

‖utt‖2ds),

and

9 en92 ≤ C
{
‖e0‖2 + 9e092

+ h2r
(
‖u(·, 0)‖2r+1 + ‖u‖2r+1,∞ + ‖ut‖2r+1,∞ + k2

∫ tn

0

‖utt‖2r+1ds
)

+ k2

∫ tn

0

‖utt‖2ds
}
,

where
‖u‖r+1,∞ = max

0≤t≤T
{‖u(t)‖r+1}.

Proof. It is easy to see that

(∂̄Un −Qhut(tn), v0)

=(∂̄(Un −Qhu(tn)), v0) + (∂̄Qhu(tn)−Qhut(tn), v0)

=(∂̄(Un −Qhu(tn)), v0) + (∂̄u(tn)− ut(tn), v0).
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Then, we obtain the following error equation for the backward Euler WG method

(∂̄(Un −Qhu(tn)), v0) + as(U
n −Qhu(tn)), v)

=(ut − ∂̄u(tn), v0) +
∑
T∈Th

〈a(∇u(tn)−Rh∇u(tn)) · n, v0 − vb〉∂T + s(Qhu(tn), v),

i.e.

(∂̄en, v0) + as(e
n, v)

=(ut − ∂̄u(tn), v0) +
∑
T∈Th

〈a(∇u−Rh∇u) · n, v0 − vb〉∂T + s(Qhu(tn), v).(37)

Let

ωn
1 = ut(tn)− ∂̄u(tn),

ωn
2T = (a(∇u(tn)−Rh∇u(tn)) · n) |∂T ,

ωn
3,T = (Q0u(tn)−Qbu(tn)) |∂T ,
enT = (e0(tn)− eb(tn)) |∂T .

Choosing v = en in (37) gives

(38) (∂̄en, en) + as(e
n, en) = (ωn

1 , e
n
0 ) +

∑
T∈Th

(〈ωn
2,T , e

n
T 〉+ h−1

T 〈ω
n
3,T , e

n
T 〉).

By the coercivity of the bilinear form (16) and the Cauchy-Schwarz inequality, we
obtain

‖en‖2 + αk 9 en92

≤(en−1, en) + k‖ωn
1 ‖ · ‖en‖+ k|

∑
T∈Th

(〈ωn
2,T , e

n
T 〉+ h−1

T 〈ω
n
3,T , e

n
T 〉)|

≤1

2
‖en−1‖2 +

1

2
‖en‖2 + k‖ωn

1 ‖ · ‖en‖+ k|
∑
T∈Th

(〈ωn
2,T , e

n
T 〉+ h−1

T 〈ω
n
3,T , e

n
T 〉)|.

By the Poincare inequality in Lemma 4.3, we have

1

2
‖en‖2 + αk 9 en92

≤1

2
‖en−1‖2 +

kα

4
9 en 92 +

ck

α
‖ωn

1 ‖2

+
2k

α

∑
T∈Th

hT ‖a(∇u(tn)−Rh∇u(tn)‖2∂T +
kα

8
9 en92

+
2k

α

∑
T∈Th

h−1
T ‖Q0u(tn)− u(tn)‖2∂T +

kα

8
9 en 92 .

Therefore,

1

2
‖en‖2 +

1

2
αk 9 en92 ≤1

2
‖en−1‖2 +

ck

α
‖ωn

1 ‖2

+
2k

α

∑
T∈Th

hT ‖a(∇u(tn)−Rh∇u(tn)‖2∂T

+
2k

α

∑
T∈Th

h−1
T ‖Q0u(tn)− u(tn)‖2∂T ,
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which gives by induction

‖en‖2 +

n∑
j=1

αk 9 ej92 ≤‖e0‖2 +
ck

α

n∑
j=1

‖ωj
1‖2

+
4k

α

n∑
j=1

∑
T∈Th

hT ‖a(∇u(tj)−Rh∇u(tj)‖2∂T

+
4k

α

n∑
j=1

∑
T∈Th

h−1
T ‖Q0u(tj)− u(tj)‖2∂T .

(39)

Noting that

ωj
1 = ut(tj)−

u(tj)− u(tj−1)

k
=

1

k

∫ tj

tj−1

(s− tj−1)uttds,

we then obtain

‖ωj
1‖2 =

∫
Ω

(
1

k

∫ tj

tj−1

(s− tj−1)uttds)
2dx

≤ 1

k2

∫
Ω

∫ tj

tj−1

(s− tj−1)2ds

∫ tj

tj−1

u2
ttdsdx

≤ Ck
∫ tj

tj−1

‖utt‖2ds.

(40)

Similar to the analysis in (34) and (35), we get
(41)∑
T∈Th

hT ‖a(∇u(tj)−Rh∇u(tj)‖2∂T +
∑
T∈Th

h−1
T ‖Q0u(tj)−u(tj)‖2∂T ≤ Ch2r‖u(tj)‖2r+1.

Thus we have proved the error estimate for ‖en‖. In order to estimate 9en9, we
choose v = ∂̄en in error equation (37) and obtain

(∂̄en, ∂̄en) + as(e
n, ∂̄en) = (ωn

1 , ∂̄e
n
0 ) +

∑
T∈Th

(〈ωn
2,T , ∂̄e

n
T 〉+ h−1

T 〈ω
n
3,T , ∂̄e

n
T 〉),

where ∂̄enT = 1
k ((en0 − en−1

0 ) − (enb − e
n−1
b )) |∂T . Noting that 〈ωn

2,T , ∂̄e
n
T 〉 on the

right-hand side can be written as

〈ωn
2,T , ∂̄e

n
T 〉 = ∂̄〈ωn

2,T , e
n
T 〉+ 〈(ωn

2 )t − ∂̄ωn
2,T , e

n−1
T 〉 − 〈(ωn

2 )t, e
n−1
T 〉,

where (ωn
2 )t = a(∇ut(tn)−Rh∇ut(tn))·n |T . Analogously, Let (ωn

3 )t = (Q0ut(tn)−
Qbut(tn)) |T , the following form holds

〈ωn
3,T , ∂̄e

n
T 〉 = ∂̄〈ωn

3,T , e
n
T 〉+ 〈(ωn

3 )t − ∂̄ωn
3,T , e

n−1
T 〉 − 〈(ωn

3 )t, e
n−1
T 〉.

Then we obtain

k‖∂̄en‖2 + as(e
n, en)

=as(e
n, en−1) + k(ωn

1 , ∂̄e
n)

+ k
∑
T∈Th

{∂̄〈ωn
2,T , e

n
T 〉+ 〈(ωn

2 )t − ∂̄ωn
2,T , e

n−1
T 〉 − 〈(ωn

2 )t, e
n−1
T 〉

+ h−1
T (∂̄〈ωn

3,T , e
n
T 〉+ 〈(ωn

3 )t − ∂̄ωn
3,T , e

n−1
T 〉 − 〈(ωn

3 )t, e
n−1
T 〉)}.
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As what we have done to (34) and (35), by the Cauchy-Schwarz inequality and the
triangle inequality, we have

k‖∂̄en‖2 + as(e
n, en)

≤1

2
as(e

n, en) +
1

2
as(e

n−1, en−1) + k
∑
T∈Th

(∂̄〈ωn
2,T , e

n
T 〉+ h−1

T ∂̄〈ωn
3,T , e

n
T 〉)

+
k

4
‖ωn

1 ‖2 + k‖∂̄en)‖2

+
∑
T∈Th

k(hT ‖(ωn
2 )t − ∂̄ωn

2,T ‖2∂T + h−1
T ‖(ω

n
3 )t − ∂̄ωn

3,T ‖2∂T ) +
k

2
9 en−192

+
∑
T∈Th

k(hT ‖(ωn
2,T )t‖2∂T + h−1

T ‖(ω
n
3,T )t‖2∂T ) +

k

2
9 en−192,

where

‖ωj
2,T ‖

2
∂T = 〈a(∇u(tj)−Rh∇u(tj)), a(∇u(tj)−Rh∇u(tj))〉∂T ,

‖ωj
3,T ‖

2
∂T = 〈Q0u(tj)−Qbu(tj), Q0u(tj)−Qbu(tj)〉∂T .

Moreover, by the triangle inequality and (28), we have∑
T∈Th

hT ‖ωj
2,T ‖

2
∂T =

∑
T∈Th

hT ‖a(∇u(tj)−Rh∇u(tj)‖2∂T

≤
∑
T∈Th

C(‖a(∇u(tj)−Rh∇u(tj))‖2T

+ h2
T ‖∇(a(∇u(tj)−Rh∇u(tj)))‖2T

≤ Ch2r‖u(tj)‖2r+1.

Using the Cauchy-Schwarz inequality, the trace inequality (30) and (28) the follow-
ing form holds∑

T∈Th

h−1
T ‖ω

j
3,T ‖

2
∂T

=
∑
T∈Th

h−1
T 〈Q0u(tj)−Qbu(tj), Q0u(tj)−Qbu(tj)〉∂T

=
∑
T∈Th

h−1
T 〈Q0u(tj)− u(tj), Q0u(tj)−Qbu(tj)〉∂T

≤(
∑
T∈Th

h−1
T ‖Q0u(tj)− u(tj)‖2∂T )1/2(

∑
T∈Th

h−1
T ‖Q0u(tj)−Qbu(tj)‖2∂T )1/2

≤Chr‖u(tj)‖r+1(
∑
T∈Th

h−1
T ‖Q0u(tj)−Qbu(tj)‖2∂T )1/2.

Thus,

(42)
∑
T∈Th

hT ‖ωj
2,T ‖

2
∂T +

∑
T∈Th

h−1
T ‖ω

j
3,T ‖

2
∂T ≤ Ch2r‖u(tj)‖2r+1.
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After cancellation and by induction, we arrive at

1

2
as(e

n, en) ≤1

2
as(e

0, e0)

+
∑
T∈Th

{(〈ωn
2,T , e

n
T 〉 − 〈ω0

2,T , e
0
T 〉) + h−1

T (〈ωn
3,T , e

n
T 〉 − 〈ω0

3,T , e
0
T 〉)}

+
k

4

n∑
j=1

‖ωj
1‖2 + k

n∑
j=1

9ej−192

+ k
n∑

j=1

∑
T∈Th

(hT ‖(ωj
2)t − ∂̄ωj

2,T ‖
2
∂T + h−1

T ‖(ω
j
3)t − ∂̄ωj

3,T ‖
2
∂T )

+ k

n∑
j=1

∑
T∈Th

(hT ‖(ωj
2,T )t‖2∂T + h−1

T ‖(ω
j
3,T )t‖2∂T ).

By the coercivity of the bilinear form (16) and the Cauchy-Schwarz inequality again,
we obtain

α

2
9 en92 ≤β

2
9 e0 92 +

k

4

n∑
j=1

‖ωj
1‖2 + k

n∑
j=1

9ej−192

+
2

α

∑
T∈Th

(hT ‖ωn
2,T ‖2∂T + h−1

T ‖ω
n
3,T ‖2∂T ) +

α

4
9 en92

+
1

β

∑
T∈Th

(hT ‖ω0
2,T ‖2∂T + h−1

T ‖ω
0
3,T ‖2∂T ) +

β

2
9 e092

+ k

n∑
j=1

∑
T∈Th

(hT ‖(ωj
2)t − ∂̄ωj

2,T ‖
2
∂T + h−1

T ‖(ω
j
3)t − ∂̄ωj

3,T ‖
2
∂T )

+ k

n∑
j=1

∑
T∈Th

(hT ‖(ωj
2,T )t‖2∂T + h−1

T ‖(ω
j
3,T )t‖2∂T ).

(43)

Similar to (40), we obtain∑
T∈Th

hT ‖(ωj
2)t−∂̄ωj

2‖2∂T ≤ Ck
∑
T∈Th

hT

∫ tj

tj−1

‖(ω2)tt‖2∂T ds ≤ Ckh2r

∫ tj

tj−1

‖utt‖2r+1ds,

and∑
T∈Th

h−1
T ‖(ω

j
3)t−∂̄ωj

3‖2∂T ≤ Ck
∑
T∈Th

h−1
T

∫ tj

tj−1

‖(ω3)tt‖2∂T ds ≤ Ckh2r

∫ tj

tj−1

‖utt‖2r+1ds.

Substituting the above inequality into (43), together with (39), (40) and (42), we
complete the proof. �

4.3. Optimal order of error estimates in L2 and 9 · 9 norms. The optimal
order of error estimates for ∇de and ∇de

n was obtained in Section 4.2. In this sec-
tion,we derive an optimal order of estimate for e in L2-norm, the basic idea applied
is to use Wheeler’s projection as [18, 15]. Now, we define an elliptic projection Eh

onto the discrete weak apace Vh as follows

(44) as(Ehu, χ) = (−∇ · (a∇u), χ), ∀χ ∈ Vh, u ∈ H1
0 ,
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which can be viewed as that Ehu is the WG finite element approximation of the
solution of the corresponding elliptic problem with exact solution u

−∇ · (a∇u) = f in Ω,

u = 0 on Ω.
(45)

The error estimate for Ehu, as shown in the following lemma, should be applied.

Lemma 4.5. [10, Theorem8.1,Theorem8.2] Let Ehu ∈ Vh be the WG finite element
solution of problem (45). Assume that the exact solution of problem (45) is so
regular that u ∈ Hr+1(Ω). In addition, assume that the dual problem of problem
(45) has the usual H2-regularity. Then, there exists a constant C such that

9Ehu−Qhu9 ≤ Chr‖u‖r+1,(46)

‖Ehu−Qhu‖L2 ≤ Chr+1‖u‖r+1.(47)

We consider the error uh −Qhu, which can be separated as

(48) uh(t)−Qhu(t) = θ(t) + ρ(t),

where ρ = Ehu − Qhu is estimated using Lemma 4.5, θ = uh − Ehu is thus the
term we need to further bound. The error estimates for continuous time WG finite
element method in L2 and 9 · 9 norms are given in the following two theorems,
respectively.

Theorem 4.6. Let u ∈ Hr+1(Ω) and the corresponding elliptic problem (45) has
the H2-regularity. Then there exists a constant C > 0 independent of the mesh size
h such that

‖uh(t)−Qhu(t)‖ ≤ ‖uh(0)−Qhu(0)‖+ Chr+1(‖ψ‖r+1 +

∫ t

0

‖ut‖r+1ds).

Proof. According to Lemma 4.5, we obtain

(49) ‖ρ‖ ≤ Chr+1‖u‖r+1 ≤ Chr+1(‖ψ‖r+1 +

∫ t

0

‖ut‖r+1ds).

In order to estimate θ, notice that

(θt, χ) + as(θ, χ) = (uh,t, χ) + as(uh, χ)− (Ehut, χ)− as(Ehu, χ)

= (f, χ)− (Ehut, χ)− as(Ehu, χ)

= (f, χ) + (∇ · (a∇u), χ)− (Ehut, χ)

= (ut, χ)− (Ehut, χ)

= (Qhut, χ)− (Ehut, χ)

= −(ρt, χ),

(50)

where the property that the operator Eh commutes with time differentiation is
applied. Since θ belongs to Vh, we choose χ = θ in (50) and conclude

(51) (θt, θ) + as(θ, θ) = −(ρt, χ), t > 0.

Removing the nonnegative term as(θ, θ) to obtain

1

2

d

dt
‖θ‖2 = ‖θ‖ d

dt
‖θ‖ ≤ ‖ρt‖‖θ‖,

which leads to

(52) ‖θ(t)‖ ≤ ‖θ(0)‖+

∫ t

0

‖ρt‖ds.
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Using Lemma 4.5, we find

‖θ(0)‖ = ‖uh(0)− Ehu(0)‖ = ‖uh(0)−Qhu(0)‖+ ‖Ehu(0)−Qhu(0)‖
≤ ‖uh(0)−Qhu(0)‖+ Chr+1‖ψ‖r+1,

(53)

where the following inequality is applied

(54) ‖ρt‖ ≤ Chr+1‖ut‖r+1.

The desired bound for θ(t) now follows. �

Theorem 4.7. Let the assumptions in Theorem 4.6 hold. Then, there exists a
constant C > 0 independent of the mesh size h such that

9uh(t)−Qhu(t)92 ≤2β

α
9 uh(0)−Qhu(0) 92 +Ch2r(‖ψ‖2r+1 + ‖u‖2r+1)

+ Ch2(r+1)

∫ t

0

‖ut‖2r+1ds.

Proof. As in the proof of Theorem 4.6, we write the error in the form (48). Here
by Lemma 4.5, there holds

(55) 9ρ(t)9 ≤ Chr‖u‖r+1.

In order to estimate 9θ9, we choose χ = θt in (50) to obtain

(θt, θt) + as(θ, θt) = −(ρt, θt), t > 0,

which gives

‖θt‖2 +
1

2

d

dt
as(θ, θ) = −(ρt, θt) ≤

1

2
‖ρt‖2 +

1

2
‖θt‖2.

As a consequence, we have
d

dt
as(θ, θ) ≤ ‖ρt‖2.

And integrating with respect to time t to obtain

as(θ, θ) ≤ as(θ(0), θ(0)) +

∫ t

0

‖ρt‖2ds,

where

as(θ(0), θ(0)) =
∑
T∈Th

(a∇d(uh(0)− Ehu(0)),∇d(uh(0)− Ehu(0)))

+ s
(
(uh(0)− Ehu(0)), (uh(0)− Ehu(0))

)
.

Using the coercivity and the boundedness of the bilinear form (16), we obtain

α 9 θ92 ≤as(θ, θ) ≤ as(θ(0), θ(0)) +

∫ t

0

‖ρt‖2ds

≤2as(uh(0)−Qhu(0), uh(0)−Qhu(0))

+ 2as(Ehu(0)−Qhu(0), Ehu(0)−Qhu(0)) +

∫ t

0

‖ρt‖2ds

≤2β(9uh(0)−Qhu(0) 92 + 9 Ehu(0)−Qhu(0)92) +

∫ t

0

‖ρt‖2ds,

which gives together with (46) and (54)

9θ9 ≤ 2β

α
9 uh(0)−Qhu(0) 92 +C(h2r‖ψ‖2r+1 + h2(r+1)

∫ t

0

‖ut‖2r+1ds).

This ends the proof. �
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Theorem 4.8. Let u ∈ Hr+1(Ω). Then there exists a constant C > 0 independent
of the mesh size h such that

‖Un −Qhu(tn)‖

≤‖U0 −Qhu(0)‖+ Chr+1
(
‖ψ‖r+1 +

∫ tn

0

‖ut‖r+1ds
)

+ Ck

∫ tn

0

‖utt‖ds.

Proof. Similarly, we write

(56) Un −Qhu(tn) = (Un − Ehu(tn)) + (Ehu(tn)−Qhu(tn)) = θn + ρn,

where ρn = ρ(tn) is bounded as in the following way

‖ρn‖ = ‖Ehu(tn)−Qhu(tn)‖ ≤ Chr+1(‖ψ‖r+1 +

∫ tn

0

‖ut‖r+1ds).

In order to bound θn, we use

(∂̄θn, χ) + as(θ
n, χ) = (∂̄Un, χ) + as(U

n, χ)− (∂̄Ehu(tn), χ)− as(Ehu(tn), χ)

= (f(tn), χ)− (∂̄Ehu(tn), χ)− as(Ehu(tn), χ)

= (f(tn), χ) + (∇ · (a∇u(tn))− (∂̄Ehu(tn), χ)

= (ut(tn), χ)− (∂̄Ehu(tn), χ)

= (ut(tn)− ∂̄u(tn), χ) + (∂̄u(tn)− ∂̄Ehu(tn), χ),

i.e.

(57) (∂̄θ, χ) + as(θ
n, χ) = (ωn, χ),

where
ωn = (ut(tn)− ∂̄u(tn)) + (∂̄u(tn)− ∂̄Ehu(tn)) = ωn

1 + ωn
4 ,

with ωn
4 = ∂̄u(tn)− ∂̄Ehu(tn). Choosing χ = θn in (57), we have

(∂̄θn, θn) ≤ ‖ωn‖‖θn‖.
Consequently, we obtain

‖θn‖2 − (θn−1, θn) ≤ k‖ωn‖‖θn‖,
or, equivalently

‖θn‖ ≤ ‖θn−1‖+ k‖ωn‖.
It follows by induction

‖θn‖ ≤ ‖θ0‖+ k

n∑
j=1

‖ωj‖ ≤ ‖θ0‖+ k

n∑
j=1

‖ωj
1‖+ k

n∑
j=1

‖ωj
4‖.

As in (53), θ0 = θ(0) is bounded . According to (40), we obtain

(58) k

n∑
j=1

‖ωj
1‖ ≤

n∑
j=1

‖
∫ tj

tj−1

(s− tj−1)utt(s)ds‖ ≤ k
∫ tn

0

‖utt‖ds.

Noting that

(59) ωj
4 = ∂̄u(tj)− ∂̄Ehu(tj) = (I − Eh)k−1

∫ tj

tj−1

utds = k−1

∫ tj

tj−1

(I − Eh)utds,

and by (54) we have

k

n∑
j=1

‖ωj
4‖ ≤ Chr+1

∫ tn

0

‖ut‖r+1ds.

The proof is complete. �
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Theorem 4.9. Let u ∈ Hr+1(Ω). Then there exists a constant C > 0 independent
of the mesh size h such that

9Un −Qhu(tn)92 ≤2 9 U0 −Qhu(0) 92 +C
{
h2r(‖ψ‖2r+1 + ‖u‖2r+1ds)

+ h2(r+1)

∫ tn

0

‖u‖2r+1ds+ k2

∫ tn

0

‖utt‖2ds
}
.

Proof. Let θn and ρn be defined as in (56). By (47), we have

9ρn92 ≤ Ch2r‖u‖2r+1.

In order to estimate 9θn92, we choose χ = ∂̄θn in (57), we then get

(∂̄θn, ∂̄θn) + as(θ
n, ∂̄θn) = ‖∂̄θn‖2 +

1

2
∂̄as(θ

n, θn) +
1

2
as(∂̄θ

n, ∂̄θn) = (ωn, ∂̄θn)

≤ 1

2
‖ωn‖2 +

1

2
‖∂̄θn‖2.

By the coercivity of the bilinear form, we have

α∂̄ 9 θn92 ≤ ‖ωn‖2.
Thus, we get

9θn92 ≤ 9θn−1 92 +
k

α
‖ωn‖2.

It gives by induction

(60) 9θn92 ≤ 9θ0 92 +
k

α

n∑
j=1

‖ωj‖2 ≤ 9θ0 92 +
2k

α

n∑
j=1

‖ωj
1‖2 +

2k

α

n∑
j=1

‖ωj
4‖.

Similar to (58) and (59), we have

(61) k

n∑
j=1

‖ωj
1‖2 ≤

n∑
j=1

‖
∫ tj

tj−1

((s− tj−1)utt(s))
2ds‖ ≤ k2

∫ tn

0

‖utt‖2ds,

and

k

n∑
j=1

‖ωj
4‖2 = k

n∑
j=1

∫
Ω

(k−1

∫ tj

tj−1

ρtds)
2dx

≤
n∑

j=1

∫
Ω

∫ tj

tj−1

ρ2
tds)dx ≤

n∑
j=1

∫ tj

tj−1

‖ρt‖2ds)

≤
∫ tn

0

‖ρt‖2ds) ≤ Ch2(r+1)

∫ tn

0

‖u‖2r+1ds.

(62)

It is easy to verify that

(63) 9θ092 ≤ 2(9U0 −Qhu(0) 92 +Ch2r‖ψ‖2r+1),

which together with our estimates (60), (61) and (62) completes the proof. �

5. Numerical Experiment

In this section, we shall present some numerical results for problems (1)-(3). The
domain Ω is chosen to be the unit square [0, 1]× [0, 1], and the time interval is [0, 1].

In the example, the uniform triangle partition is employed, where h denotes the
spatial mesh size. We also use the uniform partition for the time discretization with
τ denoting the time step. The degree of polynomial r is set to be 2, i.e. the finite
element space is

Vh = {{v0, vb} : v0 ∈ P2(T ), vb ∈ P2(e)}.
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The analytic solution is chosen to be

u = e−t sin(πx) sin(πy),

the boundary condition and the source term can be calculated accordingly.
First, we fix a sufficient small mesh size h = 1/256 and we obtain the error

order with respect to the time step in Table 1 which conforms well the theoretical
analysis.

Table 1. Numerical results for h = 1/256.

τ |||eh||| order ‖e0‖ order
1/4 5.7524e-03 1.2541e-03
1/8 2.7501e-03 1.0647 5.9954e-04 1.0647
1/16 1.3443e-03 1.0326 2.9303e-04 1.0328
1/32 6.6492e-04 1.0156 1.4487e-04 1.0163
1/64 3.3123e-04 1.0053 7.2028e-05 1.0081
1/128 1.6642e-04 0.9930 3.5913e-05 1.0040

Then, we fix a sufficient small time step τ = 1/8192 and we get the error order
with respect to the mesh size in Table 2 which also conforms well the theoretical
analysis.

Table 2. Numerical results for τ = 1/8192.

h |||eh||| order ‖e0‖ order
1/4 9.6144e-02 8.2838e-03
1/8 2.4149e-02 1.9932 1.0306e-03 3.0068
1/16 6.0448e-03 1.9982 1.2862e-04 3.0022
1/32 1.5118e-03 1.9995 1.6091e-05 2.9988
1/64 3.7800e-04 1.9998 2.0924e-06 2.9431
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