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PARTIALLY OBSERVABLE STOCHASTIC OPTIMAL CONTROL

GUANGCHEN WANG, JIE XIONG, AND SHUAIQI ZHANG

Abstract. This paper is a survey on some recent results in optimal control and stochastic
filtering. The goal is not to cover all recent developments in control and filtering, instead we
focus on maximum principle for optimality of partial information backward or forward-backward
stochastic differential equations and branching particle approximation of nonlinear filtering.
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1. Introduction

Stochastic control is the study of uncertain dynamical systems which can be
controlled by decision makers so as to reach the best expected goals. In the real-
world, the decision makers are usually only able to observe partially the state
by other noisy observations. For example, in financial models, risky asset prices
are observable but the appreciation rates of the assets are unavailable. See e.g.
Xiong and Zhou [42] and the references therein. See also Huang, Wang and Wu
[23] for optimal premium of insurance company with partial information. In these
situations, we are facing optimal control problems of partially observable systems.

Such a kind of partially observed optimal control problem is composed of filtering
and control. The filtering part is related to two stochastic processes: signal and ob-
servation. The signal process is what we want to estimate based on the observation
which provides the information we can use. Analytical solutions to the filtering
problems are rarely available in general. Thus, we have to resort to numerical
schemes. Particle system approximation is an effective class of numerical schemes.
The main idea is to represent the solution as a stochastic partial differential equa-
tion (SPDE) via a system of weighted particles whose locations and weights obey
stochastic differential equations (SDEs) which can be solved numerically. The par-
ticle system approximation was studied in heuristic schemes by Gordon, Salmond
and Ewing [20], Gordon, Salmond and Smith [21], Kitagawa [25], Carvalho et al.
[3], Del Moral, Noyer and Salut [18]. Del Moral [14] considered a particle ap-
proximation for a model with independent observation noise that discounted past
information. Florchinger and Gland [19] formulated a particle approximation for
optimal filter. A rigorous proof of the convergent result for the particle filter is pub-
lished by Del Moral [15], and independently, by Crisan and Lyons [11]. After that,
many improvements were made by various authors. See e.g. Crisan and Lyons [10],
Crisan [4], [5], [6], [7], Crisan, Gaines and Lyons [12], Crisan, Del Moral and Lyons
[9], Crisan and Doucet [8], Del Moral and Guionnet [16], Del Moral and Miclo [17].
Later, Crisan and Xiong [13] proved a central limit type theorem for a new class
of hybrid filters as well as for the original branching particle filters based on Kurtz
and Xiong [26].
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In tradition, the partially observable optimal control problem is turned into
a full information optimal control problem governed by Zakai equation, which is
an SPDE driven by the observation process. However, this leads to an infinite
dimensional optimal control problem, which is difficult to solve. See e.g. Bensoussan
[2] for a systematic account. Recently, Wang and Wu [32] proposed a backward
separation approach in order to study partially observed optimal control. The
main idea is to decouple optimal control and state estimate by formally deducing
optimal control first and then computing optimal filtering. An advantage of the
approach is as follows. We use the original state and observation equation–which
are finite dimensional–to calculate the variation, rather than the Zakai equation
of the state based on the observation, which is infinite dimensional in general.
Making use of this separating technique, lots of complicated stochastic calculus
in infinite dimensional spaces are avoided. The approach is applicable to a broad
class of control systems, say, backward or forward-backward stochastic differential
equation (BSDE or FBSDE) systems. See e.g. Wang and Wu [33], Huang, Wang
and Xiong [24], Wu [37], Shi and Wu [30], Xiao and Wang [39, 40], Xiao [38], Wang,
Wu and Xiong [34, 35] for more details. See also Tang [31], Hu and Øksendal [22],
Øksendal and Sulem [29], Meng [28], where optimal filtering was not studied.

The rest of this paper is organized as follows. The next section establishes
several maximum principles for optimality of BSDEs and FBSDEs with partial
information. To illustrate the maximum principles, a linear-quadratic (LQ) optimal
control problem by means of BSDE is presented. Section 3 gives a brief introduction
to the theory of nonlinear filter. A branching particle system is used to approximate
the nonlinear filter in Section 4. Some numerical results will be presented in Section
5 to compare the particle filter, the optimal filter and the underlying state process.
Finally, Section 6 lists some concluding remarks.

2. Maximum principle

Maximum principle is a set of necessary conditions satisfied by optimal solutions,
which offers an approach for solving optimal control problems. This section is
concerned with optimal control of BSDEs and FBSDEs with partial information.
Two maximum principles for optimality are established, and an LQ example is used
to shed light on the application of the maximum principles. These results are taken
from the articles of Huang, Wang and Xiong [24], Wang, Wu and Xiong [34, 35].

2.1. The case of controlled BSDEs with partial information. We begin

with a complete filtered probability space (Ω,FW,Y , (FW,Y
t )0≤t≤1,P) on which an

R
m+d-valued standard Brownian motion (W,Y ) is defined, and let (FW,Y

t )0≤t≤1 be

the natural filtration generated by (W,Y ), and FW,Y = FW,Y
1 . If x : [0, 1]×Ω → S

is an Ft-adapted and square-integrable process, we write x ∈ L2
FW,Y (0, 1;S); if

x : Ω → S is an FW,Y
1 -measurable and square-integrable random variable, we write

x ∈ L2
FW,Y

1

(Ω;S).

Let U be a non-empty convex subset of Rk. Consider now a BSDE

(1)

{

−dyt = f(t, yt, zt, z̄t, vt)dt− ztdYt − z̄tdWt,

y1 = ξ,

where ξ ∈ L2
FW,Y

1

(Ω;Rn), v : [0, 1] × Ω → U is a control process, and f : [0, 1] ×
R

n+n×m+n×d × U → R
n is a continuous mapping and satisfies
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(H2.1). The function f is continuously differentiable with respect to (y, z, z̄, v)
and the partial derivatives fy, fz, fz̄ and fv are uniformly bounded.

Definition 2.1. Let Gt be a sub-σ-algebra of FW,Y
t , which represents the in-

formation available at time t. A control process v is called admissible, if it is a
Gt-adapted and square integrable process, i.e., v ∈ L2

G(0, 1;U). The collection of all
admissible controls is denoted by Uad.

Under (H2.1) and Definition 2.1, (1) admits a unique solution which is denoted
by the triple (yv, zv, z̄v). The associated cost functional is in the form of

(2) J [v] = E

[∫ 1

0

l(t, yvt , z
v
t , z̄

v
t , vt)dt+ φ(yv0 )

]

,

where l : [0, 1]×R
n+n×m+n×d ×U → R is a continuous mapping, and φ : Rn → R.

(H2.2). For any 0 ≤ t ≤ 1, there exists a constant K > 0 such that

(1 + |y|2 + |z|2 + |z̄|2 + |v|2)−1|l(t, y, z, z̄, v)|+
(1 + |y|+ |z|+ |z̄|+ |v|)−1(|ly(t, y, z, z̄, v)|+
|lz(t, y, z, z̄, v)|+ |lz̄(t, y, z, z̄, v)|+ |lv(t, y, z, z̄, v)|) ≤ K,

(1 + |y|2)−1|φ|+ (1 + |y|)−1|φy | ≤ K.

We state an optimal control problem of BSDEs with partial information.

Problem 1. Find u ∈ Uad such that

J [u] = min
v∈Uad

J [v]

subject to (1). If such a u exists, we call it an optimal control, and (yu, zu, z̄u)
an optimal trajectory. When there is no confusion from the context, we take the
shorthand notation (y, z, z̄) = (yu, zu, z̄u).

Let (yu+εv, zu+εv, z̄u+εv) be the solution of (1) corresponding to the perturbation
u+ εv of u, where 0 ≤ ε ≤ 1 and v ∈ Uad. We first introduce a variational equation











−dy1t = (fy(t, yt, zt, z̄t, ut)y
1
t + fz(t, yt, zt, z̄t, ut)z

1
t + fz̄(t, yt, zt, z̄t, ut)z̄

1
t )dt

− z1t dYt − z̄1t dWt,

y11 = 0.

Once (y, z, z̄) is determined, the variational equation admits a unique solution un-
der (H2.1). By Itô’s formula and Gronwall inequality, we get a continuity result.

Lemma 2.1. If (H2.1) holds, it yields

lim
ε→0

sup
0≤t≤1

E

∣

∣

∣

∣

yu+εv
t − yt

ε
− y1t

∣

∣

∣

∣

2

= 0,

lim
ε→0

E

∫ 1

0

∣

∣

∣

∣

zu+εv
t − zt

ε
− z1t

∣

∣

∣

∣

2

dt = 0,

lim
ε→0

E

∫ 1

0

∣

∣

∣

∣

z̄u+εv
t − z̄t

ε
− z̄1t

∣

∣

∣

∣

2

dt = 0.
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Next, we introduce an adjoint system

(3)



















dpt = (f∗
y (t, yt, zt, z̄t, ut)pt − ly(t, yt, zt, z̄t, ut))dt

+ (f∗
z (t, yt, zt, z̄t, ut)pt − lz(t, yt, zt, z̄t, ut))dYt

+ (f∗
z̄ (t, yt, zt, z̄t, ut)pt − lz̄(t, yt, zt, z̄t, ut))dWt,

p0 = φ∗y(y0),

which has a unique solution under (H2.1) and (H2.2). Hereinafter, ∗ appearing
in superscript denotes the transpose of a matrix and a vector. Then, we define a
Hamiltonian function H : [0, 1]× R

n+n×m+n×d × U × R
n → R by

H(t, y, z, z̄, v, p) = l(t, y, z, z̄, v)− f∗(t, y, z, z̄, v)p.

(H2.3). (i) For any t, τ such that 0 ≤ t + τ ≤ 1, and bounded Gt-measurable
random variable ν, we formulate a control process vs ∈ U , with

vs = νI[t,t+τ ](s), 0 ≤ s ≤ 1,

where I[t,t+τ ](s) is the indicator function on the set [t, t+ τ ].
(ii) For any vs ∈ Gs with vs bounded, s ∈ [0, 1], there is an ε > 0 such that
u+ εv ∈ Uad for ε ∈ (−ε, ε).

Finally, applying the first variation of J [v] with Taylor’s expansion and Lemma
2.1, we derive a maximum principle for optimality of Problem 1.

Theorem 2.1. Under (H2.1), (H2.2) and (H2.3), if u is a local minimum for
J [v], we have

E[Hv(t, yt, zt, z̄t, ut, pt)|Gt] = 0,

where p is the unique solution of (3).
To show the application of Theorem 2.1, let us now solve an LQ optimal con-

trol problem with partial information. For notational simplicity, we assume that
m = n = k = d = 1.

Example 2.1. Find a u ∈ Uad to minimize

J [v] =
1

2
E

{∫ 1

0

[

Ot(y
v
t )

2 +Rtv
2
t

]

dt+N(yv0)
2

}

subject to the state equation

(4)

{

−dyvt =
(

Bty
v
t + Ctz

v
t + C̄tz̄

v
t +Dtvt

)

dt− zvt dYt − z̄vt dWt,

yvT = ξ

and the observable filtration

Gt = FY
t = σ{Ys; 0 ≤ s ≤ t}.

Here Ot ≥ 0, Rt ≥ 0, Bt, Ct, C̄t and Dt are uniformly bounded and deterministic
functions; 1/Rt is also bounded; N ≥ 0 is constant, and ξ ∈ L2

F1
(Ω;R).

It seems that [24] formulated originally the example. However, [24] were only
able to solve the case that the drift term of the state equation does not depend
on C̄z̄ due to the limit of techniques used there. Very recently, Example 2.1 was
solved by Wang, Wu and Xiong [35], where some complicated techniques were
used, for example, maximum principle, optimal filtering for FBSDEs, existence and
uniqueness of FBSDEs.
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With the above data, the adjoint equation is

(5)

{

dpt = (Btpt −Otyt)dt+ CtptdYt + C̄tptdWt,

p0 = −Ny0.

Introduce a Riccati differential equation

(6)







α̇t −
(

2Bt + C2
t + C̄2

t

)

αt −
1

Rt
D2

tα
2
t +Ot = 0,

α0 = −N,

and give an additional assumption.
(H2.4). The solution α of (6) satisfies

1

αt
C̄2

t +
1

Rt
D2

t ≥ 0.

With these preparations, we now obtain

Proposition 2.1.Under (H2.4),

ut =
1

Rt
Dtαtŷt

is the unique optimal control of Example 2.1, where α satisfies (6), and the optimal
filtering (ŷ, ẑ, p̂) of the solution (y, z, p) to (4) and (5) with respect to Gt solves

(7)



















dp̂t = (Btp̂t −Otŷt)dt+ Ctp̂tdYt,

−dŷt =
[(

1

αt
C̄2

t +
1

Rt
D2

t

)

p̂t +Btŷt + Ctẑt

]

dt− ẑtdYt,

p̂0 = −Nŷ0, ŷ1 = E[ξ|G1].

Note that (7) is referred to as a kind of forward-backward stochastic differential
filtering equation.

2.2. The case of controlled FBSDEs with partial observation. Let C(0, 1;R)
be a space of continuous functions from [0, 1] to R, let (W,Y ) a standard Brownian
motion with values in R

2, let (FW
t )0≤t≤1 and (FY

t )0≤t≤1 the natural filtrations gen-
erated byW and Y , and let PW and PY the probabilities on C(0, 1;R), respectively.
Set Ω = C(0, 1;R)× C(0, 1;R), Ft = FW

t ⊗FY
t , F = F1 and P = PW × PY .

Let U be a non-empty convex subset of R. Consider an FBSDE

(8)











dxt = b(t, xt, vt)dt+ σ(t, xt, vt)dWt + σ̃(t, xt, vt)dW̃
v
t ,

−dyt = g(t, xt, yt, zt, z̃t, vt)dt− ztdWt − z̃tdYt,

x0 = x0, y1 = f(x1).

Here v : [0, 1] × C([0, 1];R) → U is a control process, and (x, y, z, z̃) is the state
process of (8), taking values in R

4, with initial state x0 ∈ R. b, σ, σ̃ : [0, 1]×R×U →
R, g : [0, 1] × R

4 × U → R and f : R → R are continuous mappings. W̃ v is a
stochastic process depending on v and takes values in R.

Suppose that (x, y, z, z̃) is observed partially by a noisy process

(9) Yt =

∫ t

0

h(s, xs)ds+ W̃ v
t ,
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where h : [0, 1]× R → R is a continuous mapping.

Definition 2.2. A control process v is called admissible, if vt is FY
t -adapted with

sup
0≤t≤1

Ev8t < +∞.

The set of all admissible controls is denoted by Vad.
(H2.5). The functions b, σ, σ̃, f , g and h are continuously differentiable in

(x, v), (x, y, z, z̃, v) and x, respectively. h and the partial derivatives bx, bv, σx, σv,
σ̃x, σ̃v, hx, gx, gy, gz, gv and fx are uniformly bounded.

For any v ∈ Vad, (8) admits a unique solution (xv, yv, zv, z̃v) under (H2.5).
Introduce a martingale process

Zv
t = exp

{∫ t

0

h(s, xvs)dYs −
1

2

∫ t

0

h2(s, xvs)ds

}

,

whose differential form reads

(10)

{

dZv
t = Zv

t h(t, x
v
t )dYt,

Zv
0 = 1.

We are able to define a new probability P
v by

dPv

dP
= Zv

1 .

Thanks to Girsanov’s theorem and (9), (W, W̃ v) is a 2-dimensional standard Brow-
nian motion defined on (Ω,F , (Ft)0≤t≤1,P

v).
The cost functional is of the form

(11) J [v] = E
v

[∫ 1

0

l(t, xvt , y
v
t , z

v
t , z̃

v
t , vt)dt+ φ(xv1) + γ(yv0)

]

.

Here E
v is the expectation with respect to P

v. l : [0, 1]× R
4 × U → R, φ : R → R

and γ : R → R are continuous mappings.
(H2.6). l, φ and γ are continuously differentiable with respect to (x, y, z, z̃, v),

x and y, respectively, and there is a constant K > 0 such that

|l(t, x, y, z, z̃, v)| ≤ K(1 + |x|2 + |y|2 + |z|2 + |z̃|2 + |v|2),
|lx(t, x, y, z, z̃, v)|+ |ly(t, x, y, z, z̃, v)|+ |lz(t, x, y, z, z̃, v)|+ |lz̃(t, x, y, z, z̃, v)|
+ |lv(t, x, y, z, z̃, v)| ≤ K(1 + |x|+ |y|+ |z|+ |v|),
(1 + |x|2)−1|φ(x)| + (1 + |y|2)−1|γ(y)| ≤ K,

(1 + |x|)−1|φx(x)|+ (1 + |y|)−1|γy(y)| ≤ K.

Problem 2. Find an admissible control u such that

J [u] = min
v∈Vad

J [v]

subject to (8) and (9).
Any u satisfying the above equality is called an optimal control process of Prob-

lem 2, the corresponding state processes, denoted by (x, y, z, z̃) = (xu, yu, zu, z̃u)
and Z = Zu, are called the optimal state processes. For simplicity, we also adopt
the shorthand notation W̃ = W̃u. According to Bayes’ formula, (11) is rewritten
as

(12) J [v] = E

[∫ 1

0

Zv
t l(t, x

v
t , y

v
t , z

v
t , z̃

v
t , vt)dt+ Zv

1φ(x
v
1) + γ(yv0)

]

.
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Thus, Problem 2 is equivalent to minimizing (12) over Vad subject to (8) and (10).
Let (xu+εv , yu+εv, zu+εv, z̃u+εv) and Y u+εv be the states of (8) and (10) corre-

sponding to the perturbation u+ εv of u, where 0 ≤ ε ≤ 1 and v ∈ Vad. Introduce
a variational equation

(13)

{

dZ1
t = (Z1

t h(t, xt) + Zthx(t, xt)x
1
t )dYt,

Z1
0 = 0

and

(14)



































































dx1t = [(bx(t, xt, ut)− σ̃x(t, xt, ut)h(t, xt)− σ̃(t, xt, ut)hx(t, xt))x
1
t

+ (bv(t, xt, ut)− σ̃v(t, xt, ut)h(t, xt))vt]dt

+ (σx(t, xt, ut)x
1
t + σv(t, xt, ut)vt)dWt

+ (σ̃x(t, xt, ut)x
1
t + σ̃v(t, xt, ut)vt)dYt,

−dy1t = (gx(t, xt, yt, zt, z̃t, ut)x
1
t + gy(t, xt, yt, zt, z̃t, ut)y

1
t

+ gz(t, xt, yt, zt, z̃t, ut)z
1
t + gz̃(t, xt, yt, zt, z̃t, ut)z̃

1
t

+ gv(t, xt, yt, zt, z̃t, ut)vt)dt− z1t dWt − z̃1t dYt,

x10 = 0, y11 = fx(x1)x
1
1.

For any v ∈ Vad, it is easy to see that (13) and (14) admit a unique solution under
(H2.5), respectively. Thanks to Itô’s formula and Gronwall inequality, we derive a
continuity result.

Lemma 2.2. If (H2.5) holds, it yields

lim
ε→0

sup
0≤t≤1

E

∣

∣

∣

∣

xu+εv
t − xt

ε
− x1t

∣

∣

∣

∣

4

= 0,

lim
ε→0

sup
0≤t≤1

E

∣

∣

∣

∣

Zu+εv
t − Zt

ε
− Z1

t

∣

∣

∣

∣

2

= 0,

lim
ε→0

sup
0≤t≤1

E

∣

∣

∣

∣

yu+εv
t − yt

ε
− y1t

∣

∣

∣

∣

2

= 0,

lim
ε→0

E

∫ 1

0

∣

∣

∣

∣

zu+εv
t − zt

ε
− z1t

∣

∣

∣

∣

2

dt = 0,

lim
ε→0

E

∫ 1

0

∣

∣

∣

∣

z̃u+εv
t − z̃t

ε
− z̃1t

∣

∣

∣

∣

2

dt = 0.

Next, we introduce a Hamiltonian function
(15)

H(t, x, y, z, z̃, v; p, q, k, k̃, Q̃) = b(t, x, v)q + σ(t, x, v)k + σ̃(t, x, v)k̃ + h(t, x)Q̃

− (g(t, x, y, z, z̃, v)− h(t, x)z̃)p+ l(t, x, y, z, z̃, v),

and an adjoint system

(16)

{

−dPt = l(t, xt, yt, zt, z̃t, ut)dt−QtdWt − Q̃tdW̃t,

P1 = φ(x1)



500 G. C. WANG, J. XIONG, AND S. Q. ZHANG

and
(17)






















































dpt = (gy(t, xt, yt, zt, z̃t, ut)pt − ly(t, xt, yt, zt, z̃t, ut)) dt

+ (gz(t, xt, yt, zt, z̃t, ut)pt − lz(t, xt, yt, zt, z̃t, ut)) dWt,

+ [(gz̃(t, xt, yt, zt, z̃t, ut)− h(t, xt))pt − lz̃(t, xt, yt, zt, z̃t, ut)]dW̃t,

−dqt = [(bx(t, xt, ut)− σ̃(t, xt, ut)hx(t, ut))qt + σx(t, xt, ut)kt + σ̃x(t, xt, ut)k̃t

+ hx(t, xt)Q̃t − gx(t, xt, yt, zt, z̃t, ut)pt + lx(t, xt, yt, zt, z̃t, ut)]dt

− ktdWt − k̃tdW̃t,

p0 = − γy(y0), q1 = −fx(x1)p1 + φx(x1).

It is easy to see that (16) and (17) admit unique solutions under (H2.5) and (H2.6).
Similar to Theorem 2.1, we obtain a maximum principle for optimality of Prob-

lem 2 by applying Taylor’s expansion and Lemma 2.2.

Theorem 2.2. Under (H2.3) with Gt being replaced by FY
t , (H2.5) and (H2.6), if

u is a local minimum of Problem 2, we have

E
u
[

Hv(t, xt, yt, zt, z̃t, ut; pt, qt, kt, k̃t, Q̃t)
∣

∣

∣
FY

t

]

= 0,

where H is defined by (15), and (x, y, z, z̃), Q̃ and (p, q, k, k̃) are the solutions of
(8), (16) and (17), respectively.

The maximum condition in Theorem 2.2 depends explicitly on the boundedness
of the drift term h of (9). It excludes some important applications in practice.
Recently, an approximation method and a decomposition method are used to extend
Problem 2 under the assumption that h grows linearly in x. We omit the extension
for saving space. The interested reader can refer to Wang, Wu and Xiong [34, 35]
for more details.

3. Optimal filtering

In this section, we give a brief introduction to the nonlinear filtering theory. We
refer the reader to the monographs of Bensoussan [2], Xiong [41], Bain and Crisan
[1] for a detailed account.

Let (Ω,F , (Ft)t≥0,P) be a complete filtered probability space. The signal is
modeled by a d-dimensional diffusion process xt governed by an SDE

dxt = b(xt)dt+ c(xt)dWt + σ(xt)dBt,

where (W,B) is an (Ft)t≥0-Brownian motion taking values in R
m+d. The mappings

b : Rd → R
d, c : Rd → R

d×m and σ : Rd → R
d×d are bounded and Lipschitz

continuous. The observation process is an m-dimensional process satisfying

Yt =

∫ t

0

h(xs)ds+Wt,

where h : Rd → R
m is a bounded and Lipschitz continuous mapping. Let

FY
t = σ(Ys : 0 ≤ s ≤ t)

be the observable information at time t. The optimal filter πt is the conditional
probability distribution of xt given FY

t , i.e.,

E(f(xt)|FY
t ) = 〈πt, f〉 .
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Denote by Ê the expectation with respect to a probability P̂ such that

dP̂

dP

∣

∣

∣

∣

Ft

= exp

(

−
∫ t

0

h∗ (xs) dWs −
1

2

∫ t

0

|h (xs)|2 ds
)

.

Set

Mt = exp

(∫ t

0

h∗ (xs) dYs −
1

2

∫ t

0

|h (xs)|2 ds
)

.

It yields from the observation equation that

dP

dP̂

∣

∣

∣

∣

Ft

=Mt.

By Girsanov’s theorem, Y becomes a Brownian motion under P̂ which is indepen-
dent of B. The signal is written as

dxt = b̃(xt)dt+ c(xt)dYt + σ(xt)dBt,

where

b̃ = b− ch.

Theorem 3.1 (Kallianpur-Striebel formula). The optimal filter πt is represented
by the unnormalized filter Vt, i.e.,

(18) 〈πt, f〉 =
〈Vt, f〉
〈Vt, 1〉

, ∀f ∈ Cb(R
d),

where

(19) 〈Vt, f〉 = Ê(Mtf(xt)|FY
t ),

and Cb(R
d) is the set of all bounded continuous real-valued functions.

Next, we give a particle system representation for 〈Vt, f〉 which will be used in the
rest of this paper. On the probability space, let Bi (i = 1, 2, · · · ) be independent
copies of B, and let them be independent of Y . For i = 1, 2, · · · , consider an
interacting particle system

{

dxit = b̃(xit)dt+ c(xit)dYt + σ(xit)dB
i
t ,

dM i
t = M i

th(x
i
t)dYt, M i

0 = 1.
(20)

By (19) and the conditional law of large numbers, we derive

Theorem 3.2. If {xi0, i = 1, 2, · · · } are i.i.d. random vectors with common distri-
bution π0 on R

d, then

(21) 〈Vt, f〉 = lim
k→∞

1

k

k
∑

i=1

M i
tf(x

i
t),

where {(M i, xi), i = 1, 2, · · · } is the unique strong solution to the particle system
above.

Applying Itô’s formula to (19), (20) and (21), we get

Theorem 3.3 (Zakai’s equation). The unnormalized filter Vt satisfies

(22) 〈Vt, f〉 = 〈V0, f〉+
∫ t

0

〈Vs, Lf〉ds+
∫ t

0

〈Vs,∇∗fc+ fh∗〉 dYs, ∀f ∈ C2
b (R

d),
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where

Lf = ∇∗fb+
1

2
tr[c∂2fc∗ + σ∂2fσ∗],

tr(A) denotes the trace of the square matrix A, and C2
b (R

d) is the set of all bounded
continuous real-valued functions with their derivatives up to order 2.

Applying Itô’s formula to (18) and (22), we obtain

Theorem 3.4 (Kushner-FKK equation). The optimal filter πt satisfies
(23)

〈πt, f〉 = 〈π0, f〉+
∫ t

0

〈πs, Lf〉 ds+
∫ t

0

(〈πs,∇∗fc+ fh∗〉 − 〈πs, f〉 〈πs, h∗〉) dνs,

where f ∈ C2
b (R

d), and the innovation process µt, given by

νt = Yt −
∫ t

0

〈πs, h〉 ds

is a Brownian motion with respect to the probability P.
We note that the boundedness condition about b, c, σ and h is not necessary for

the nonlinear filtering thoery.

4. Branching particle approximation of πt

This section is concerned with the branching particle approximation to the op-
timal filter πt given by (23). These results are based on the recent article of Liu
and Xiong [27] and the monograph of Xiong [41].

4.1. Branching particle system. We now introduce the branching particle sys-
tem in a random environment, which is used to define an approximate filter.

Let π0 be the initial distribution of the signal. We sample n particles from π⊗n
0 .

Denote by xi0 (i = 1, 2, · · · , n) their locations and assign weight 1
n to each of them.

Let δ = n−2α , 0 < α ≤ 1
2 . Define

δ(t) = jδ for jδ ≤ t < (j + 1)δ.

During the time interval [jδ, (j+1)δ), there aremn
j (j = 0, 1, 2, · · · ) number of parti-

cles alive and they move according to the following diffusions: for i = 1, 2, · · · ,mn
j ,

xit = xijδ + b̃(xijδ)(t− jδ) + c(xijδ)(Yt − Yjδ) + σ(xijδ)(B
i
t −Bi

jδ).

At the end of the interval, the ith particle (i = 1, 2, · · · ,mn
j ) branches (independent

of others) into a random number ξij+1 of offsprings which is chosen such that the

conditional variance (with respect to P̂)

V ar
(

ξij+1|F(j+1)δ−

)

is minimized subject to

Ê(ξij+1|F(j+1)δ−) = M̃n
j+1(x

i),

where

M̃n
j+1(x

i) =
Mn

j+1(x
i)

1
mn

j

∑mn
j

l=1M
n
j+1(x

l)

and

Mn
j+1(x

i) = exp

(

h∗(xijδ)
(

Y(j+1)δ − Yjδ
)

− 1

2
|h(xijδ)|2δ

)

.
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It is clear that

ξij+1 =

{

[M̃n
j+1(x

i)] with probability 1− {M̃n
j+1(x

i)},
[M̃n

j+1(x
i)] + 1 with probability {M̃n

j+1(x
i)},

where [x] is the largest integer which is not greater than x and {x} = x− [x] is the
fraction of x. Denote the conditional variance of ξij+1 by γnj+1(x

i). We have

γnj+1(x
i) = {M̃n

j+1(x
i)}

(

1− {M̃n
j+1(x

i)}
)

.

The approximation to πt is defined by

πn
t =

1

mn
j

mn
j

∑

i=1

δxi
jδ
, jδ ≤ t < (j + 1)δ.

4.2. Duality representation and some estimates. Let X be a Hilbert space,
and let Cq

b (R
d,X ) be the set of all bounded continuous maps from R

d to X with

bounded partial derivatives up to order q. We endow Cq
b (R

d,X ) with the norm

‖ϕ‖q,∞ =
∑

|α|≤q

sup
x∈Rd

‖Dαϕ(x)‖X , ϕ ∈ Cq
b (R

d,X ),

where α = (α1, · · · , αd) is a multi-index and Dαϕ = ∂α
1

1 ∂α
2

2 · · · ∂αd

d ϕ. Denote by
W q

p (R
d,X ) the set of all functions with generalized partial derivatives up to order q

with both the function and all its partial derivatives being p-integrable. We endow
W q

p (R
d,X ) with the Sobolev norm

‖ϕ‖q,p =





∑

|α|≤q

∫

Rd

‖Dαϕ(x)‖p dx





1
p

.

(H4.1). The mappings a, b, c, σ, h, φ are in Cq
b (R

d,X ) with q =
[

d
2

]

+ 2 and X
being Sd,R

d,Rd×m,Rd×d,Rm and R respectively. Also, we assume φ ∈W q
2 (R

d).
Define the usual distance by

d(µ, ν) =

∞
∑

n=0

2−n (| 〈µ− ν, fn〉 | ∧ 1) ,

where f0 = 1 and for n ≥ 1, fn ∈ Cq+2
b (Rd) ∩W q+2

2 (Rd) with ‖fn‖q+2,∞ ≤ 1 and

‖fn‖q+2,2 ≤ 1, where q =
[

d
2

]

+ 2 is given in (H4.1).
Consider a backward SPDE

(24)

{

dψs = −Lψsds− (∇∗ψsc+ h∗ψs)d̂Ys, 0 ≤ s ≤ t

ψt = φ,

where d̂Ys stands for the backward Itô’s integral. The following lemma is taken
from Xiong [41].

Lemma 4.1. Under (H4.1), there is a constant K > 0 independent of φ and
s ∈ [0, t] such that

Ê[‖ψs‖2q,2] ≤ K‖φ‖2q,2.
As a consequence, ψs ∈ C2

b (R
d) a.s. and there is a constant K > 0 independent of

φ and s ∈ [0, t] such that

Ê[‖ψs‖22,∞] ≤ K‖φ‖2q,2.
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Applying Lemma 6.20 in Xiong [41], we get an identity which plays a key role
in proving the convergence of the approximating filter.

Lemma 4.2. For every t > 0, we have

ψt(xt)Mt − ψ0(x0) =

∫ t

0

Ms∇∗ψs(xs)σ(xs)dBs

−
∫ t

0

Ms∇∗ψs(xs)c(xs)(h(xs)− h(x0))
∗ds

−
∫ t

0

MsΘs(xs)(h(xs)− h(x0))
∗dYs.

Using elementary estimates about stochastic integral, we obtain

Proposition 4.1. Recall that δ(t) = jδ for jδ ≤ t < (j + 1)δ. Then the loca-
tions and weights of the branching particle system satisfy:

• For any 0 ≤ t ≤ T , there is a constant K > 0 satisfying

Ê|xit − xiδ(t)|2 ≤ Kδ and Ê|xit − xiδ(t)|4 ≤ Kδ2.

• For any 0 ≤ j ≤ [T/δ], i = 1, 2, · · · ,mn
j , we have

Ê
(

(Mn
j+1(x

i))2|Fjδ

)

≤ eK
2δ and Ê

(

(Mn
j+1(x

i))4|Fjδ

)

≤ e6K
2δ.

• For any 0 ≤ j ≤ [T/δ], i = 1, 2, · · · ,mn
j , there is a constant K > 0 such

that

Ê
(

|Mn
j+1(x

i)− 1|2|Fjδ

)

≤ Kδ.

Similar to Crisan and Xiong [13] or Xiong [41], the following proposition is de-
rived.

Proposition 4.2. Let

ηnk =

k
∏

j=1

1

mn
j−1

mn
j−1
∑

l=1

Mn
j (x

l).

• For each 0 ≤ j ≤ [T/δ], there is a constant K > 0 such that

Ê

(

mn
j

(

ηnj
)2
)

≤ Kn.

• For any 0 ≤ j ≤ [T/δ], i = 1, 2, · · · ,mn
j , there is a constant K > 0 such

that

Ê

(

γnj+1

(

X i
) (

ηnj+1/η
n
j

)2 ∣
∣Fjδ

)

≤ K
√
δ.

• For any 1 ≤ j ≤ [T/δ], there is a constant K > 0 such that

Ê

(

(

ηnj /η
n
j−1

)2∣
∣F(j−1)δ

)

≤ eK
2δ.

The next lemma is obtained by Proposition 4.2.

Lemma 4.3. For any 0 ≤ j ≤ [T/δ], i = 1, 2, · · · ,mn
j , there exists a constant

K > 0 such that

Ê

(

(

ηnj
)2 (

mn
j

)2
)

≤ Kn2.
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4.3. Branching particle approximation of Vt. In order to study the conver-
gence of πn

t , we first define the unnormalized filter approximation and prove its
convergence. In detail, define the unnormalized filter approximation by

V n
t =

1

n
ηnk

mn
k

∑

i=1

Mn
k (x

i, t)δxi
t
, kδ ≤ t < (k + 1)δ.

We first prove the convergence of the approximating unnormalized filter at any
fixed time kδ (k = 0, 1, · · · , [T/δ]). Next, we study the convergence of the approxi-
mating unnormalized filter at any fixed t. Finally, we derive the uniform convergent
rate for t in any finite time interval.

Let ψs, 0 ≤ s ≤ kδ be the solution to (24) with t replaced by kδ. Note that
〈V n

kδ, ψkδ〉 − 〈V n
0 , ψ0〉 can be denoted as a telescopic sum

k
∑

j=1

(

〈

V n
jδ , ψjδ

〉

−
〈

V n
(j−1)δ , ψ(j−1)δ

〉)

.

As ψkδ = φ, we have

〈V n
kδ , φ〉 − 〈V n

0 , ψ0〉 =
k

∑

j=1

(

〈

V n
jδ , ψjδ

〉

− Ê
(〈

V n
jδ , ψjδ

〉 ∣

∣Fjδ− ∨ FY
jδ,kδ

)

)

+

k
∑

j=1

(

Ê
(〈

V n
jδ , ψjδ

〉 ∣

∣Fjδ− ∨ FY
jδ,kδ

)

−
〈

V n
(j−1)δ, ψ(j−1)δ

〉)

≡In1 + In2 ,

where FY
s,t = σ(Yu − Ys : s ≤ u ≤ t),

In1 =

k
∑

j=1

ηnj
1

n

mn
j−1
∑

i=1

ψjδ(x
i
jδ)(ξ

i
j − M̃n

j (x
i))

and

In2 =

k
∑

j=1

ηnj−1

1

n

mn
j−1
∑

i=1

(

ψjδ(x
i
jδ)M

n
j (x

i)− ψ(j−1)δ(x
i
(j−1)δ)

)

.

Furthermore, it follows from Lemma 4.2 that In2 is rewritten as

In2 ≡ In21 − In22 − In23.

In21 =

k
∑

j=1

ηnj−1

1

n

mn
j−1
∑

i=1

∫ jδ

(j−1)δ

Mn
j−1(x

i, s)∇∗ψs(x
i
s)σ(x

i
s)dB

i
s,

In22 =

k
∑

j=1

ηnj−1

1

n

mn
j−1
∑

i=1

∫ jδ

(j−1)δ

Mn
j−1(x

i, s)∇∗ψs(x
i
s)c(x

i
s)
(

h(xis)− h(xi(j−1)δ)
)∗

ds,

In23 =

k
∑

j=1

ηnj−1

1

n

mn
j−1
∑

i=1

∫ jδ

(j−1)δ

Mn
j−1(x

i, s)Θs(x
i
s)
(

h(xis)− h(xi(j−1)δ)
)∗

dYs.

Propositions 4.1, 4.2 and Lemma 4.3 imply that
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Lemma 4.4. Suppose that (H4.1) holds, then there exists a constant K > 0
such that

Ê(In1 )
2 ≤ Kn−(1−α)‖φ‖2q,2, Ê(In21)

2 ≤ Kn−1‖φ‖2q,2,
Ê (In22)

2 ≤ Kn−2α‖φ‖2q,2, Ê(In23)
2 ≤ Kn−2α‖φ‖2q,2.

Combining (24) with Lemma 4.4, we get

Theorem 4.1.Under (H4.1), there is a constant K > 0 such that

Ê |〈V n
kδ , φ〉 − 〈Vkδ , φ〉|2 ≤ K

(

n−(1−α) ∨ n−2α
)

‖φ‖2q,2.

Now we extend Theorem 4.1 to a general time point t. To do so, we need to
estimate the distance between Vt and Vkδ, and the distance between V n

t and V n
kδ.

In terms of the definitions of Vt, V
n
t and martingale properties of stochastic cal-

culus, we have

Lemma 4.5. For fixed t, there is a constant K such that

Ê
∣

∣〈Vt, φ〉 −
〈

Vδ(t), φ
〉∣

∣

2 ≤ Kn−2α‖φ‖2q,2,

Ê

∣

∣

∣〈V n
t , φ〉 −

〈

V n
δ(t), φ

〉∣

∣

∣

2

≤ Kn−2α‖φ‖2q,2.

According to Theorem 4.1 and Lemma 4.5, the next theorem is available.

Theorem 4.2. For fixed t, we have

Ê |〈V n
t , φ〉 − 〈Vt, φ〉| ≤ K

(

n−(1−α) ∨ n−2α
)

‖φ‖2q,2.

Finally, we discuss the uniform convergence of V n
t to Vt on any finite time interval

[0, T ]. We first consider the equation satisfied by V n
t . For any δ(t) ≤ t < δ(t) + δ,

it follows from Itô’s formula that

df(xit) = ∇∗f(xit)
(

σ(xiδ(t))dB
i
t + b̃(xiδ(t))dt+ c(xiδ(t))dYt

)

+
1

2

d
∑

p,q=1

apq(x
i
δ(t))∂

2
pqfdt,

where

a = (aij) = cc∗ + σσ∗.

By Itô’s formula, we have

d(Mn
δ(t)/δ(x

i, t)f(xit))

=Mn
δ(t)/δ(x

i, t)h∗(xiδ(t))f(x
i
t)dYt

+Mn
δ(t)/δ(x

i, t)∇∗f(xit)
(

σ(xiδ(t))dB
i
t + b̃(xiδ(t))dt+ c(xiδ(t))dYt

)

+Mn
δ(t)/δ(x

i, t)
1

2

d
∑

p,q=1

apq(x
i
δ(t))∂

2
pqfdt

+Mn
δ(t)/δ(x

i, t)h∗(xiδ(t))∇∗f(xit)c(x
i
δ(t))dt.
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The jump of V n
t at t = (j + 1)δ is

ηnj+1

1

n

mn
j

∑

i=1

ξij+1δxi
(j+1)δ

− ηnj
1

n

mn
j

∑

i=1

Mn
j+1(x

i)δxi
(j+1)δ

=ηnj+1

1

n

mn
j

∑

i=1

(

ξij+1 − M̃n
j+1(x

i)
)

δxi
(j+1)δ

.

Therefore,

〈V n
t , f〉 = 〈V n

0 , f〉+
∫ t

0

〈V n
s , Lf〉ds+

∫ t

0

〈V n
s ,∇∗fc+ fh∗〉 dYs

−
[t/δ]
∑

j=0

1

n
ηnj

mn
j

∑

i=1

∫ (j+1)δ∧t

jδ

Mn
j (x

i, s)
1

2

d
∑

p,q=1

(

apq(x
i
s)− apq(x

i
δ(s))

)

∂2pqfds

−
[t/δ]
∑

j=0

1

n
ηnj

mn
j

∑

i=1

∫ (j+1)δ∧t

jδ

Mn
j (x

i, s)

d
∑

p=1

∂pf(x
i
s)
(

bp(x
i
s)− bp(x

i
δ(s))

)

ds

−
[t/δ]
∑

j=0

1

n
ηnj

mn
j

∑

i=1

∫ (j+1)δ∧t

jδ

Mn
j (x

i, s)∇∗f(xis)
(

c(xis)− c(xiδ(s))
)

dYs

−
[t/δ]
∑

j=0

1

n
ηnj

mn
j

∑

i=1

∫ (j+1)δ∧t

jδ

Mn
j (x

i, s)f(xis)
(

h(xis)− h(xiδ(s))
)∗

dYs

+

[t/δ]
∑

j=0

1

n
ηnj

mn
j

∑

i=1

∫ (j+1)δ∧t

jδ

Mn
j (x

i, s)∇∗f(xis)σ(x
i
δ(s))dB

i
s

+

[t/δ]
∑

j=1

1

n
ηnj

mn
j−1
∑

i=1

(ξij − M̃n
j (x

i))f(xijδ).

By Burkholder-Davis-Gundy inequality, Propositions 3.1 and 3.2, Lemma 4.3
and Theorem 4.2, we derive

Theorem 4.3. Under (H4.1), there is a constant K > 0, such that

Ê sup
t≤T

d(V n
t , Vt)

2 ≤ K
(

n−(1−α) ∨ n−2α
)

.

4.4. Convergence of πn
t . We study the convergence of πn

t to πt. For this, define
a new filter π̃n

t by

π̃n
t =

V n
t

〈V n
t , 1〉

.

Note that π̃n
t coincides with πn

t at t = kδ(k = 0, 1 · · · , [T/δ]).
Applying Cauchy-Schwarz inequality and Theorem 4.3, we get

Theorem 4.4. Suppose that (H4.1) holds, then there is a constant K > 0, such
that

Ê sup
0≤t≤T

d(π̃n
t , πt) ≤ K

(

n− 1−α
2 ∨ n−α

)

.
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The next theorem is an immediate conclusion of Theorem 4.4.

Theorem 4.5. Under (H4.1), there is a constant K > 0, such that

sup
0≤k≤[T/δ]

d(πn
kδ , πkδ) ≤ K

(

n− 1−α
2 ∨ n−α

)

.

Applying (23), Jensen’s inequality, Burkholder-Davis-Gundy inequality and The-
orem 4.5, it follows that

Theorem 4.6. Suppose that (H4.1) holds. Then, for any γ < 1
3 , there is a

constant K > 0 and α such that

E sup
0≤t≤T

d(πn
t , πt) ≤ Kn−γ .

5. Numerical illustrations

To better demonstrate our results in Section 4 that the branching particle indeed
approximate the optimal filter, we present a numerical example in this section. Here
we consider the model with the state

dxt = bxtdt+ cdWt + σdBt,

and the observation

Yt =

∫ t

0

hxsds+Wt.

We take b = 1, c = 2, h = 1, σ = 1, α = 1/3, T=10.
The following figure represents the distance sup0≤t≤T d(π

n
t , πt) between the par-

ticle filter πn and the optimal filter π, where n is the number of the particles.

70 75 80 85 90
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

n

Figure 1. Optimal filter and particle approximation.

Clearly, πn
t approximate πt nicely when the number of the particles becomes

large.
The next two figures compare the state process xt with the optimal filter and

the particle filter when the testing function f is taken as f(x) = x and the time
variable is t ∈ [0, 2]. The Figure 2 is for the smoother case of σ = 1 and the Figure
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3 is for the rougher case of σ = 2. They show that the particle filter approximates
the state process quite nicely (comparable to the optimal filter).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1
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6

time

 

 
optimal filter
particle approximation
state

Figure 2. Let n = 88, T = 2, b = 1, c = 2, h = 1, σ = 1,
α = 1/3. Comparison among the optimal filter 〈x, πt〉, the particle
filter 〈x, πn

t 〉 and the state x(t).
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Figure 3. Let n = 88, T = 2, b = 1, c = 2, h = 1, σ = 2,
α = 1/3. Comparison among the optimal filter 〈x, πt〉, the particle
filter 〈x, πn

t 〉 and the state process x(t) .

6. Conclusion

Many economics, finance and insurance problems can be formulated as partially
observable stochastic optimal control models. These models are essentially optimal
control problems with infinite dimensional state spaces, which are always hard to
solve. Then it is highly desirable to study various numerical methods to approx-
imate these filtering-control problems by problems with finite dimensional states.
The branching particle system approximation is an efficient method.
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