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NEW DEVELOPMENTS ON THE COUPLING OF MIXED-FEM

AND BEM FOR THE THREE-DIMENSIONAL EXTERIOR

STOKES PROBLEM

GABRIEL N. GATICA, GEORGE C. HSIAO, SALIM MEDDAHI, AND FRANCISCO J.
SAYAS

Abstract. In this manuscript we consider the three dimensional exterior Stokes problem and
study the solvability of the corresponding continuous and discrete formulations that arise from

the coupling of a dual-mixed variational formulation (in which the velocity, the pressure and
the stress are the original main unknowns) with the boundary integral equation method. The
present work is an extended and completed version of the analysis and results provided in our
previous paper [ZAMM Z. Angew. Math. Mech. 93 (2013), no. 6-7, 437–445]. More precisely,

after employing the incompressibility condition to eliminate the pressure, we consider the result-
ing velocity-stress-vorticity approach with different kind of boundary conditions on an annular
bounded domain, and couple the underlying equations with either one or two boundary integral
equations arising from the application of the usual and normal traces to the Green representation

formula in the exterior unbounded region. As a result, we obtain saddle point operator equations,
which are then analyzed by the well-known Babuška-Brezzi theory. We prove the well-posedness
of the continuous formulations, identifying previously the space of solutions of the associated
homogeneous problem, and specify explicit hypotheses to be satisfied by the finite element and

boundary element subspaces in order to guarantee the stability of the respective Galerkin schemes.
In particular, following a similar analysis given recently for the Laplacian, we are able to extend
the classical Johnson & Nédélec procedure to the present case, without assuming any restrictive

smoothness requirement on the coupling boundary, but only Lipschitz-continuity. In addition,
and differently from known approaches for the elasticity problem, we are also able to extend the
Costabel & Han coupling procedure to the 3D Stokes problem by providing a direct proof of the
required coerciveness property, that is without argueing by contradiction, and by using the nat-

ural norm of each space instead of mesh-dependent norms. Finally, we briefly describe concrete
examples of discrete spaces satisfying the aforementioned hypotheses.

Key words. Mixed-FEM, BEM, 3D Stokes problem, Johnson & Nédélec’s coupling, Costabel &
Han’s coupling.

1. Introduction

The classical approach combining finite element (FEM) with boundary element
methods (BEM) for solving exterior boundary value problems in continuum me-
chanics, usually known as the coupling of FEM and BEM, has been extensively
employed since its creation during the second half of the seventies up to nowadays.
The usual procedure is as follows. The underlying domain is first divided into two
subregions by introducing an auxiliary boundary Γ, if necessary, so that the original
exterior problem can be reformulated as a transmission problem through Γ. Next,
the latter is reduced to an equivalent problem in the bounded inner region by im-
posing nonlocal boundary conditions on Γ that are derived by employing boundary
integral equation methods in the unbounded outer domain. The resulting nonlocal
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boundary value problem is then solved by a conventional Galerkin method, in which
the boundary integral operators involved are discretized using finite element spaces
on Γ.

While detailed surveys on most of the different ways of coupling BEM and FEM
can be seen in [43] and [27, Chapter I], we simply recall here that the most popular
ones correspond to the Johnson & Nédélec (J & N) and Costabel & Han (C &
H) procedures (cf. [12], [13], [20], [38], [45], and [58]), which employ the Green
representation of the solution in the unbounded region. The success of the J & N
method, being based on a single boundary integral equation on Γ and the Fredholm
theory, hinged on the fact that certain boundary integral operators are compact,
which usually requires Γ to be smooth enough. According to it, it was not possi-
ble, at least from a theoretical point of view, to employ this approach when the
coupling boundary was non–smooth, say for instance polygonal, which left out the
possibility of utilizing classical finite element discretizations. Moreover, the J & N
idea seemed to be applicable only to the Laplace operator since for other elliptic
systems, such as the elasticity one, and irrespective of the smoothness of the bound-
aries, the aforementioned compactness did not hold. One attempt to overcome this
was suggested in [9] where the underlying transmission problem was replaced by
one employing the pseudostress instead of the usual stress. As a consequence, the
foregoing mapping property was achieved, but the coupling boundary was still re-
quired to be smooth enough. One has to admit, however, that the above described
drawbacks were mainly theoretical since no failure of the corresponding discrete
schemes was ever reported by users of the method in problems where those hy-
potheses were not met. Any way, in order to circumvent these apparent difficulties,
suitable modifications of the original J & N method, in which neither the compact-
ness nor the smoothness play any role, were proposed by Costabel and Han in [20]
and [38], respectively. Both techniques are based on the addition of a boundary
integral equation for the normal derivative (resp. traction in the case of elasticity).
The former leads to a symmetric and non-positive definite scheme, while the latter,
on the contrary, yields a positive definite and non-symmetric scheme. Neverthe-
less, and since the only difference between these formulations lies on the sign of an
integral identity, from now on we simply refer to either one of them as the C & H
approach. Further and later contributions in this direction, including applications
to nonlinear problems and coupling with mixed-FEM, non–conforming FEM, local
discontinuous Galerkin, and hybridizable discontinuous Galerkin methods, can be
found in [8], [14], [15], [16], [17], [18], [19], [21], [24], [25], [26], [34], [35], [36], [49],
and the references therein.

The whole picture on the coupling of FEM and BEM, and particularly the widely
accepted fact since the eighties concerning the lack of further applicability and
usefulness of the J & N method, changed dramatically with [52]. More precisely,
it was proved in this paper, without any need of applying Fredholm theory nor
assuming smooth domains, that all Galerkin methods for this approach are actually
stable, thus allowing the coupling boundary Γ to be polygonal/polyhedral. As a
consequence, the classical J & N method was begun to be considered as a real
competitor of the C & H approach. In other words, the appearing of [52] gave rise
to several new contributions within this and related topics. Indeed, we first refer to
[48] where the corresponding extension to the combination of mixed-FEM and BEM
on any Lipschitz-continuous interface Γ was successfully developed. Furthermore,
the analysis of the quasi–symmetric procedure from [9] was improved in [30] by
showing that the interface Γ can also be taken polygonal/polyhedral, and that in
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the case of the elasticity problem, the coupling can be performed by employing
the usual stress instead of the pseudostress. In addition, a new and extremely
simplified proof of the main result in [52], by showing directly ellipticity of the
operator equation, was provided in [30]. An alternative proof of this ellipticity
result has been recently given in [56], using a particular expression of the Steklov–
Poincaré operator, which is based on a Schur complement of a perturbation of
the Calderón projector. Some comments on the consequences of the new theory
of non-symmetric coupling of BEM and FEM can be found in the republishing of
[52] as [53]. Nevertheless, the utilization of mixed-FEM instead of the usual FEM,
and the application of the J & N coupling procedure to the 3D Stokes and similar
elliptic systems such as Lamé, is still missing. Moreover, most of the related works
available in the literature involve either 2D problems or just the coupling of BEM
and the usual FEM (see, e.g. [37], [50], [51], and [55]). In addition, the analysis
of the C & H approach for the coupling of mixed-FEM and BEM has not yielded
too satisfactory results when it has been applied to the elasticity problem (see, e.g.
[14]). Other contributions dealing with the coupling of BEM and FEM for exterior
boundary value problems in fluid mechanics are available in [39], [40], [41], and [42].

According to the above bibliographic discussion, and specially motivated by the
recent results from [52], [48], and [30], we now aim to analyze the coupling of mixed-
FEM and BEM, as applied to the 3D exterior Stokes problem, by utilizing both the
J & N and the C & H approaches. More precisely, we extend the first method to the
present case, without assuming any smoothness requirement on the interface, but
only Lipschitz-continuity. Furthermore, and differently from the analysis in [14] for
the elasticity problem, we are also able to extend the second coupling procedure
to the 3D Stokes problem by providing a direct proof of the required coerciveness
property, that is without argueing by contradiction, and by using the natural norm
of each space instead of mesh-dependent norms. Our results here can be easily
extended to the 2D and 3D Lamé systems. We also remark that a preliminary
version of a small part of the contributions to be described in the present work were
already published in [29] as part of a special issue honoring Professor Wolfgang L.
Wendland. In fact, whereas just a homogeneous Neumann boundary condition and
the continuous analysis of the J & N approach were considered in [29], we now
address not only the continuous analysis of the C & H method as well, but also
several other kind of boundary conditions, and the discrete analysis of each one of
the resulting coupled formulations.

The rest of this paper is organized as follows. In Section 2 we introduce the exte-
rior boundary value problem of interest by describing it as the transmission problem
between the non-homogeneous Stokes equation (holding in a bounded annular do-
main Ω−) and the homogeneous Stokes equation (holding in an unbounded exterior
region Ω+). The incompressibility condition is employed here to eliminate the pres-
sure so that the stress tensor and the velocity vector become the main unknowns of
the resulting transformed problem. The dual-mixed formulations in Ω− for different
boundary conditions on the interior boundary of this region are derived in Section
3. Then, in Section 4 we recall the main aspects and properties of the boundary
integral equation approach as applied to the homogeneous Stokes equation in Ω+.
Next, in Section 5 we derive and analyze the coupled variational formulations that
arise from the combination of the dual-mixed approach in Ω− with the boundary
integral equation method in Ω+. We first identify the solutions of the associated
homogeneous problems and then establish the well-posedness of the continuous for-
mulations. In particular, the classical Johnson & Nedelec procedure, which employs
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a single boundary integral equation and yields a non-symmetric scheme, is extended
to the present case by requiring only a Lipschitz-continuous coupling boundary. In
addition, the Costabel & Han approach, which makes use of two bounday integral
equations and leads to a symmetric formulation, is also successfully analyzed with
the natural norms of the spaces involved and through direct proofs of the required
continuous and discrete coerciveness properties. Finally, in Section 6 we consider
the Galerkin schemes arising from the coupled formulations studied in Section 5,
and provide explicit hypotheses to be satisfied by the respective discrete spaces
in order to guarantee their corresponding solvability and stability. Moreover, con-
crete examples of finite element and boundary element subspaces verifying those
conditions are also identified here.

We end this section with some notations to be used below. Given any Hilbert
space U , we denote by U3 and U3×3, respectively, the space of vectors and square
matrices of order 3 with entries in U . In particular, the identity matrix of R3×3 is
I, and given τ := (τij), ζ := (ζij) ∈ R3×3, we write as usual

τ t := (τji) , tr τ :=

3∑
i=1

τii , τ d := τ − 1

3
tr (τ ) I , and τ : ζ :=

3∑
i,j=1

τij ζij .

Also, in what follows we utilize the standard terminology for Sobolev spaces and
norms. However, given a domain O, a closed manifold Γ, and r ∈ R, we simplify
notations and define

Hr(O) := [Hr(O)]3 , Hr(O) := [Hr(O)]3×3 , and Hr(Γ) := [Hr(Γ)]3 .

In the special case r = 0 we usually write L2(O), L2(O), and L2(Γ) instead of
H0(O), H0(O), and H0(Γ), respectively. The corresponding norms are denoted by
∥ · ∥r,O (for Hr(O), Hr(O), and Hr(O)) and ∥ · ∥r,Γ (for Hr(Γ) and Hr(Γ)). In
addition, denoting by div the usual divergence operator div acting on the rows of
a tensor, we define the Hilbert space

H(div ;O) :=
{
τ ∈ L2(O) : div τ ∈ L2(O)

}
,

and the subspace

(1) H̃(div ;O) :=

{
τ ∈ H(div ;O) :

∫
O
tr τ = 0

}
which are both endowed with the norm

∥τ∥div ;O :=
{
∥τ∥20,O + ∥div τ∥20,O

}1/2

∀ τ ∈ H(div ;O) .

Note that there holds the decomposition:

(2) H(div ;O) = H̃(div ;O) ⊕ P0(O) I ,

where P0(O) is the space of constant polynomials on O.

Finally, throughout the paper we employ 0 to denote a generic null vector, and
use C and c, with or without subscripts, bars, tildes or hats, to denote generic
constants independent of the discretization parameters, which may take different
values at different places.
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2. The boundary value problem

We now describe the boundary value problem of interest by following basically
the same notations and grammar style from [29]. Let Ω0 be a bounded Lipschitz-
continuous domain in R3 with boundary Γ0, let Ω

− be the annular region bounded
by Γ0 and another Lipschitz-continuous surface Γ whose interior contains Ω̄0, and
let Ω+ := R3\

(
Ω̄0 ∪ Ω̄−) (see Figure 2.1 below). We consider a steady incom-

pressible flow in the region R3\Ω0, under the action of external forces on Ω̄−, and
are interested in determining the velocity, the pressure, and the stress of the corre-
sponding fluid. More precisely, given f ∈ L2(Ω−), we seek a vector field u, a scalar
field p, and a tensor field σ such that:

(3)

σ = Ξ[u, p] := 2µ e(u) − p I and divu = 0 in Ω− ∪ Ω+ ,

divσ = − f in Ω− , divσ = 0 in Ω+ , BC on Γ0 ,

[u] := u− − u+ = 0 and [σν] := (σν)− − (σν)+ = 0 on Γ ,

u(x) = O(∥x∥−1) and p(x) = O(∥x∥−2) as ∥x∥ → +∞ ,

where BC stands for a suitable boundary condition on Γ0, which will be specified
later on. Hereafter, Ξ is the stress operator acting on the velocity/pressure pair, µ
is the kinematic viscosity of the fluid, e(u) := 1

2

(
∇u+ (∇u)t

)
is the strain tensor

(or symmetric part of the velocity gradient), ν is the unit normal on Γ0 and Γ
pointing inside Ω− and Ω+, respectively,

u±(x) := lim
x̃→ x

x̃∈Ω±

u(x̃) ∀x ∈ Γ ,

and

(σν)±(x) := lim
x̃→ x

x̃∈Ω±

σ(x̃)ν(x) ∀x ∈ Γ .

!
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Figure 1. Geometry of the problem.

Note that, thanks to the incompressibility condition given by div u = 0 in Ω− ∪
Ω+, there holds div σ = µ∆u−∇ p in Ω− ∪ Ω+, which means that the second
row of (3) becomes the nonhomogeneous and homogeneous Stokes equations in Ω−

and Ω+, respectively. However, since we are going to apply a mixed variational
formulation in Ω− and the associated boundary integral equation approach in Ω+,
we need to keep σ as an independent unknown.
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Throughout the rest of the paper, and without loss of generality, we assume
that µ = 1/2. Otherwise, we just redefine p as p/2µ and let σ = Ξ[u, p] :=
e(u) − p I in Ω− ∪ Ω+, which yields the datum f to be replaced by f/2µ. In
addition, it is easy to see, using that tr e(u) = divu, that the pair of equations

σ = Ξ[u, p] := e(u) − p I and divu = 0 in Ω− ∪ Ω+ ,

is equivalent to

(4) σ = Ξ[u, p] := e(u) − p I and p +
1

3
trσ = 0 in Ω− ∪ Ω+ ,

which can be rewritten as

(5) σd = e(u) and p +
1

3
trσ = 0 in Ω− ∪ Ω+ .

Consequently, from now on we replace our transmission problem (3) by the
following:

(6)

σd = e(u) and p +
1

3
trσ = 0 in Ω− ∪ Ω+ ,

divσ = − f in Ω− , divσ = 0 in Ω+ , BC on Γ0 ,

[u] := u− − u+ = 0 and [σν] := (σν)− − (σν)+ = 0 on Γ ,

u(x) = O(∥x∥−1) and p(x) = O(∥x∥−2) as ∥x∥ → +∞ .

Our aim throughout the following sections is to introduce and analyze several
weak formulations of (6), employing either the Johnson & Nédélec (see [45]) or
the Costabel & Han (see [20], [38]) coupling procedures, and taking into account
the specific boundary condition on Γ0. Since the pressure can be computed in
terms of the stress, we focus mainly on the approaches that do not include p as an
explicit unknown but only as part of σ. In what follows we let γ− : H1(Ω−) →
H1/2(∂Ω−) and γ−

ν : H(div ; Ω−) → H−1/2(∂Ω−) be the usual trace and normal
trace operators, respectively, on ∂Ω− := Γ0 ∪ Γ. Similarly, given a fixed Lipschitz-
continuous surface Γ+ whose interior region contains Ω̄0 ∪ Ω̄−, we let Ω++ be the
annular domain bounded by Γ and Γ+, and let γ+ : H1(Ω++) → H1/2(Γ) and
γ+
ν : H(div ; Ω++) → H−1/2(Γ) be the usual trace and normal trace operators,

respectively, on Γ. In this way, the transmission conditions on Γ can be rewritten
in (6) as:

(7) γ−(u) = γ+(u) and γ−
ν (σ) = γ+

ν (σ) on Γ .

3. The dual-mixed formulations in Ω−

We first proceed similarly as for the linear elasticity problem (see, e.g. [2], [22],
[57]) and introduce in the bounded domain Ω− the vorticity

(8) χ :=
1

2
(∇u− (∇u)t) ∈ L2

skew(Ω
−)

as an auxiliary unknown, where

L2
skew(Ω

−) :=
{
η ∈ L2(Ω−) : ηt = −η

}
.

In this way, the constitutive equation relating u and σ in Ω− becomes

σd = ∇u − χ in Ω− ,



MIXED-FEM AND BEM FOR 3D STOKES 463

which, multiplying (tensor product :) by τ ∈ H(div ; Ω−) and integrating by parts,
yields
(9)∫
Ω−
σd : τ d − ⟨γ−

ν (τ ),φ⟩Γ +

∫
Ω−

u ·div τ +

∫
Ω−
χ : τ + ⟨γ−

ν (τ ), γ
−(u)⟩Γ0 = 0 ,

where

(10) φ := γ−(u) = γ+(u) ∈ H1/2(Γ)

is an additional unknown, and, given S ∈ {Γ,Γ0}, ⟨·, ·⟩S denotes the duality pairing
between H−1/2(S) and H1/2(S) with respect to the L2(S)-inner product. On the
other hand, incorporating the equilibrium equation in Ω− and the symmetry of the
stress tensor σ in a weak sense, we arrive at

(11)

∫
Ω−

v ·div σ +

∫
Ω−
η : σ = −

∫
Ω−

f ·v ∀ (v,η) ∈ L2(Ω−)×L2
skew(Ω

−) .

3.1. Dirichlet boundary condition on Γ0. We assume here that BC on Γ0 is
given by the natural boundary condition

(12) γ−(u) = g
D

∈ H1/2(Γ0) ,

whence (9) becomes

(13)

∫
Ω−
σd : τ d − ⟨γ−

ν (τ ),φ⟩Γ +

∫
Ω−

u ·div τ +

∫
Ω−
χ : τ = −⟨γ−

ν (τ ),gD ⟩Γ0

for each τ ∈ H(div ; Ω−).

Then, we introduce the spaces

(14) XD := H(div ; Ω−)×H1/2(Γ) , YD := L2(Ω−)× L2
skew(Ω

−) ,

endowed with the product norms, and let aD : XD × XD → R and bD : XD ×
YD → R be the bilinear forms given by
(15)

aD((σ,φ), (τ ,ψ)) :=

∫
Ω−
σd : τ d − ⟨γ−

ν (τ ),φ⟩Γ ∀ ((σ,φ), (τ ,ψ)) ∈ XD×XD ,

and
(16)

bD((τ ,ψ), (v,η)) :=

∫
Ω−

v ·div τ +

∫
Ω−
η : τ ∀ ((τ ,ψ), (v,η)) ∈ XD×YD .

Also, we let FD : XD → R and GD : Y′
D → R be the linear functionals given by

the right hand side of (13) and (11), respectively, that is

(17) FD(τ ,ψ) := −⟨γ−
ν (τ ),gD

⟩Γ0 and GD(v,η) := −
∫
Ω−

f · v.

Then, collecting (13) and (11), we find that the dual-mixed formulation in Ω− can
be stated as: Find ((σ,φ), (u,χ)) ∈ XD ×YD such that
(18)

aD((σ,φ), (τ ,ψ)) + bD((τ ,ψ), (u,χ)) = FD(τ ,ψ) ∀ (τ ,ψ) ∈ XD ,

bD((σ,φ), (v,η)) = GD(v,η) ∀ (v,η) ∈ YD .

Note, however, that the above is clearly an incomplete variational formulation since
it actually concerns four unknowns satisfying only three independent equations. In
other words, though the bilinear forms aD and bD are originally defined inXD×XD

(cf. (15)) and XD ×YD (cf. (16)), respectively, the first equation in (18) does not
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really involve the test function ψ. In Sections 4 and 5 below we complete this
formulation through the application of the boundary integral equation method in
the unbounded exterior domain Ω+.

3.2. Non-homogeneous Neumann boundary condition on Γ0. We assume
now that BC on Γ0 is given by the essential boundary condition

(19) γ−
ν (σ) = gN ∈ H−1/2(Γ0) ,

which is imposed weakly as

(20) ⟨γ−
ν (σ), ξ⟩Γ0 = ⟨g

N
, ξ⟩Γ0 ∀ ξ ∈ H1/2(Γ0) .

Then, introducing the further unknown

(21) λ := γ−(u) ∈ H1/2(Γ0) ,

we find that (9) becomes

(22)

∫
Ω−
σd : τ d − ⟨γ−

ν (τ ),φ⟩Γ +

∫
Ω−

u ·div τ +

∫
Ω−
χ : τ + ⟨γ−

ν (τ ),λ⟩Γ0
= 0

for each τ ∈ H(div ; Ω−), whence λ constitutes the Lagrange multiplier associated
with (20).

Next, we let XN = XD (cf. (14)), aN = aD (cf. (15)), define the space

(23) YN := L2(Ω−)× L2
skew(Ω

−)×H1/2(Γ0) ,

endowed with the product norm, and introduce the bilinear form bN : XN×YN →
R given by

(24) bN ((τ ,ψ), (v,η, ξ)) :=

∫
Ω−

v · div τ +

∫
Ω−
η : τ + ⟨γ−

ν (τ ), ξ⟩Γ0

for each ((τ ,ψ), (v,η, ξ)) ∈ XN × YN . Also, we let FN : XN → R and GN :
YN → R be the linear functionals given by

(25) FN (τ ,ψ) := 0 and GN (v,η, ξ) := −
∫
Ω−

f · v + ⟨gN , ξ⟩Γ0 .

Then, collecting (22), (20), and (11), we find that the dual-mixed formulation in
Ω− can be stated as: Find ((σ,φ), (u,χ,λ)) ∈ XN ×YN such that
(26)
aN ((σ,φ), (τ ,ψ)) + bN ((τ ,ψ), (u,χ,λ)) = FN (τ ,ψ) ∀ (τ ,ψ) ∈ XN ,

bN ((σ,φ), (v,η, ξ)) = GN (v,η, ξ) ∀ (v,η, ξ) ∈ YN .

3.3. Homogeneous Neumann boundary condition on Γ0. When the Neu-
mann boundary condition (19) is homogeneous, that is if g

N
= 0, then there is no

need of including the additional unknown λ (cf. (21)). In fact, we just introduce
the space

(27) H0(div ; Ω−) :=
{
τ ∈ H(div ; Ω−) : γ−

ν (τ ) = 0 on Γ0

}
,

and redefine XN , YN , and bN , respectively, as

(28) XN := H0(div ; Ω−)×H1/2(Γ) , YN := L2(Ω−)× L2
skew(Ω

−) ,

and
(29)

bN ((τ ,ψ), (v,η)) :=

∫
Ω−

v ·div τ +

∫
Ω−
η : τ ∀ ((τ ,ψ), (v,η)) ∈ XN ×YN .



MIXED-FEM AND BEM FOR 3D STOKES 465

Then, letting FN : XN → R and GN : YN → R be the linear functionals given by

(30) FN (τ ,ψ) := 0 and GN (v,η) := −
∫
Ω−

f · v,

we find that the dual-mixed formulation in Ω− becomes: Find ((σ,φ), (u,χ)) ∈
XN ×YN such that
(31)

aN ((σ,φ), (τ ,ψ)) + bN ((τ ,ψ), (u,χ)) = FN (τ ,ψ) ∀ (τ ,ψ) ∈ XN ,

bN ((σ,φ), (v,η)) = GN (v,η) ∀ (v,η) ∈ YN .

An analogue remark to the one given at the end of Section 3.1 is valid here. In fact,
it is clear that (26) and (31) constitute incomplete variational formulations since
they concern five and four unknowns satisfying only four and three independent
equations, respectively. Hence, similarly as we did for (18), we now announce that
(26) and (31) will also be completed in Sections 4 and 5 by applying the boundary
integral equation method in the unbounded exterior domain Ω+.

4. The boundary integral equation approach in Ω+

The contents of this section, being mainly a compilation of classical known re-
sults, are presented following the same notations and grammar style from [29]. We
begin by recalling from (6) that in Ω+ there hold the homogeneous Stokes equations
with decay conditions at infinity given by

u(x) = O(∥x∥−1) and p(x) = O(∥x∥−2) as ∥x∥ → +∞ .

Hence, following [44, Chapter 2], our aim in this section is to apply the Green’s
representation formulae to express the velocity u and pressure p of the fluid in Ω+

in terms of the Cauchy data on Γ. For this purpose, we first let E and Q be the
fundamental velocity tensor and its associated pressure vector, respectively, which,
using that µ = 1/2, become (see [44, eq. (2.3.10)]):

(32) E(x,y) :=
1

4π

{
1

∥x− y∥
I +

(x− y) (x− y)t

∥x− y∥3

}
∀x ̸= y ,

and

(33) Q(x,y) :=
1

4π
∇y

(
1

∥x− y∥

)
∀x ̸= y .

In addition, we let (S,D) and (Φ,Π) be the pairs of simple and double layer hy-
drodynamic potentials for the velocity and the pressure, respectively, that is

(34) Sρ(x) :=

∫
Γ

E(x,y)ρ(y) dsy ∀x ̸∈ Γ , ∀ρ ∈ H−1/2(Γ) ,

(35)

Dψ :=

 D1ψ

D2ψ

D3ψ

 , Diψ(x) :=

∫
Γ

{
Ξ[Ei(x, ·),−Qi(x, ·)](y)ν(y)

}t

ψ(y) dsy

∀x ̸∈ Γ , ∀ψ ∈ H1/2(Γ) ,

where Ei(x,y) is the i-th column of E(x,y) and Qi(x,y) is the i-th component of
Q(x,y),

(36) Φρ(x) :=

∫
Γ

Q(x,y) · ρ(y) dsy ∀x ̸∈ Γ , ∀ρ ∈ H−1/2(Γ) ,
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and

(37) Πψ(x) :=

∫
Γ

∇y Q(x,y)ν(y) ·ψ(y) dsy ∀x ̸∈ Γ , ∀ψ ∈ H1/2(Γ) .

It is important to recall here that, for each ρ ∈ H−1/2(Γ) and for each ψ ∈
H1/2(Γ), the velocity/pressure pairs (Sρ,Φρ) and (Dψ,Πψ) satisfy the homoge-
neous Stokes equations in R3\Γ. In addition, the main continuity properties of S,
D, Φ, and Π are summarized in the following lemma.

Lemma 4.1. The hydrodynamic potentials define the following bounded linear op-
erators:

S : H−1/2(Γ) → H1
div(Ω

−;∆)×H1
div,loc(Ω

+,∆) ,

D : H1/2(Γ) → H1
div(Ω

−;∆)×H1
div,loc(Ω

+,∆) ,

Φ : H−1/2(Γ) → L2(Ω−)× L2(Ω+) ,

Π : H1/2(Γ) → L2(Ω−)× L2(Ω+) ,

where

H1
div(Ω

−;∆) :=
{
v ∈ H1(Ω−) : div v = 0 in Ω− and ∆v ∈ H̃−1

0 (Ω−)
}
,

H1
div,loc(Ω

+,∆) :=
{
v ∈ H1

loc(Ω
+) : div v = 0 in Ω+ and ∆v ∈

(
H1

loc(Ω
+)

)′}
,

and H̃−1
0 (Ω−) is the orthogonal complement in

(
H1(Ω−)

)′
of the space defined as{

v ∈
(
H1(Ω−)

)′
: suppv ⊆ Γ

}
.

Proof. It follows by combining analogue continuity properties for the Lamé system
and the Laplacian. We refer to [44, Lemmas 5.6.4 and 5.6.6] and [46, Theorem
3.3] for details. Alternatively, [54] contains similar boundedness statements using
weighted Sobolev spaces. �

We now let V, K, Kt, and W be the boundary integral operators of the simple,
double, adjoint of the double, and hypersingular layer hydrodynamic potentials,
respectively. These operators can be defined using lateral traces of the single and
double layer hydrodynamic potentials (see [44, Lemma 5.6.5] and [54, Sections 5
and 6]:

(38) γ+(Sρ) = γ−(Sρ) = Vρ ∀ρ ∈ H−1/2(Γ) ,

(39) γ±(Dψ) =

(
± 1

2
I + K

)
ψ ∀ψ ∈ H1/2(Γ) ,

(40) γ±
ν

(
Ξ[Sρ,Φρ]

)
=

(
∓ 1

2
I + Kt

)
ρ ∀ρ ∈ H−1/2(Γ) ,

(41) γ+
ν

(
Ξ[Dψ,Πψ]

)
= γ−

ν

(
Ξ[Dψ,Πψ]

)
= −Wψ ∀ψ ∈ H1/2(Γ) .

As a consequence of (38) - (41) the following jump conditions hold:

(42) [γ(Sρ)] := γ−(Sρ) − γ+(Sρ) = 0 ∀ρ ∈ H−1/2(Γ) ,

(43) [γ(Dψ)] := γ−(Dψ) − γ+(Dψ) = −ψ ∀ψ ∈ H1/2(Γ) ,
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(44)

[γν
(
Ξ[Sρ,Φρ]

)
:= γ−

ν

(
Ξ[Sρ,Φρ]

)
− γ+

ν

(
Ξ[Sρ,Φρ]

)
= ρ ∀ρ ∈ H−1/2(Γ) ,

(45)

[γν
(
Ξ[Dψ,Πψ]

)
:= γ−

ν

(
Ξ[Dψ,Πψ]

)
− γ+

ν

(
Ξ[Dψ,Πψ]

)
= 0 ∀ψ ∈ H1/2(Γ) .

Integral expressions for the above boundary integral operators can be found in the
literature. For smooth enough densities ρ and almost everywhere on Γ we can write
[44, (2.3.15)]

(46) Vρ(x) = Sρ(x) :=

∫
Γ

E(x,y)ρ(y) dsy.

An integral expression for K can be found in [44, (2.3.30)]

(47) Kψ(x) :=
3

4π
p.v.

∫
Γ

(
(x− y) · ν(y)

) (
(x− y) ·ψ(y)

)
∥x− y∥5

(x− y) dsy.

This integral formula involves a Cauchy principal value. For the explicit integral
form of W we refer to [44, eqs. (2.3.30) and (2.3.31)].

Furthermore, some of the main properties of V, K, Kt, and W are collected
next. To this end, given O ⊆ R3 and ℓ ∈ N ∪ {0}, we now let Pℓ(O) be the space
of polynomials of degree ≤ ℓ on O, and let RM(O) be the space of rigid motions
in O, that is

RM(O) :=
{
z : z(x) = c + d× x ∀x ∈ O ; c, d ∈ R3

}
.

We also introduce the vector field m : Γ → R3 given by

m(x) := x− 1

|Γ|

∫
Γ

x dsx,

and the spaces

H
−1/2
0 (Γ) :=

{
ρ ∈ H−1/2(Γ) : ⟨m,ρ⟩Γ = 0

}
and

H
1/2
0 (Γ) :=

{
ψ ∈ H1/2(Γ) : ⟨r,ψ⟩Γ = 0 ∀ r ∈ RM(Γ)

}
.

Lemma 4.2. The following boundary integral operators are linear and bounded:

(48)

V : H−1/2(Γ) → H1/2(Γ) ,

K : H1/2(Γ) → H1/2(Γ) ,

Kt : H−1/2(Γ) → H−1/2(Γ) ,

W : H1/2(Γ) → H−1/2(Γ) .

In addition, V and W are selfadjoint,
(49)

ker (V) = ker

(
1

2
I−Kt

)
= P0(Γ)ν , ker (W) = ker

(
1

2
I+K

)
= RM(Γ) ,

and there exist α1 , α2 > 0 such that

(50) ⟨ρ,Vρ⟩Γ ≥ α1 ∥ρ∥2−1/2,Γ ∀ρ ∈ H
−1/2
0 (Γ)

and

(51) ⟨Wψ,ψ⟩Γ ≥ α2 ∥ψ∥21/2,Γ ∀ψ ∈ H
1/2
0 (Γ) .



468 G.N. GATICA, G.C. HSIAO, S. MEDDAHI, AND F.J. SAYAS

Proof. The proofs of these results appear in [54, Sections 5 and 6]. �

Note that the decompositions

(52) H−1/2(Γ) = H
−1/2
0 (Γ) ⊕ P0(Γ)ν and H1/2(Γ) = H

1/2
0 (Γ) ⊕ RM(Γ) ,

are stable and have associated oblique projectors πν : H
−1/2
0 (Γ) → P0(Γ)ν and

πRM : H1/2(Γ) → RM(Γ). Therefore, the inequalities (50) and (51) are equivalent
to

(53) ⟨ρ,Vρ⟩Γ ≥ α̃1 ∥ρ− πνρ∥2−1/2,Γ ∀ρ ∈ H−1/2(Γ)

and

(54) ⟨Wψ,ψ⟩Γ ≥ α̃2 ∥ψ − π
RM
ψ∥21/2,Γ ∀ψ ∈ H1/2(Γ).

As a simple consequence of (49) we can prove that

(55) ⟨ν, r⟩Γ =

⟨(
1

2
I+Kt

)
ν, r

⟩
=

⟨
ν,

(
1

2
I+K

)
r

⟩
= 0 ∀r ∈ RM(Γ).

On the other hand, we have the following technical result.

Lemma 4.3. There holds

(56) ⟨Wψ,ψ⟩Γ = ∥e(Dψ)∥20,R3\Γ ∀ψ ∈ H1/2(Γ) .

Proof. Given ψ ∈ H1/2(Γ), it follows from (41) and (43) that

⟨Wψ,ψ⟩Γ = ⟨− γ±
ν

(
Ξ[Dψ,Πψ]

)
, γ+(Dψ) − γ−(Dψ)⟩Γ

= ⟨γ−
ν

(
Ξ[Dψ,Πψ]

)
, γ−(Dψ)⟩Γ − ⟨γ+

ν

(
Ξ[Dψ,Πψ]

)
, γ+(Dψ)⟩Γ .

Next, integrating by parts in Ω := Ω0∪Ω− and recalling that the velocity/pressure
pair (Dψ,Πψ) satisfies the homogeneous Stokes equations, we find that

⟨γ−
ν

(
Ξ[Dψ,Πψ]

)
, γ−(Dψ)⟩Γ

=

∫
Ω

∇Dψ : Ξ[Dψ,Πψ] +

∫
Ω

Dψ · div Ξ[Dψ,Πψ]

=

∫
Ω

∇Dψ :
{
e(Dψ) − Πψ I

}
=

∫
Ω

∇Dψ : e(Dψ) = ∥e(Dψ)∥20,Ω .

Similarly, integrating by parts in Ω+, noting that ν points inward Ω+, and using
additionally the conditions at infinity, we deduce that

−⟨γ+
ν

(
Ξ[Dψ,Πψ]

)
, γ+(Dψ)⟩Γ = ∥e(Dψ)∥20,Ω+ ,

which, together with the previous identity, yields (56) and ends the proof. Alter-
natively, this proof can also be found in [54, Proposition 6.4].

�

We now go back to the homogeneous Stokes equations in Ω+. In fact, according
to the Green’s formulae provided in [44, Section 2.3.1], we have the representations

(57) u = −S γ+
ν (σ) + D γ+(u) in Ω+ ,

and

(58) p = −Φ γ+
ν (σ) + Π γ+(u) in Ω+ .
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Therefore, evaluating the operators γ+ and γ+
ν in u and σ = Ξ[u, p], respectively,

with u and p given by (57) and (58), and applying the trace properties, we arrive
at the following boundary integral equations:

(59) γ+(u) = −V γ+
ν (σ) +

(
1

2
I + K

)
γ+(u) on Γ ,

and

(60) γ+
ν (σ) =

(
1

2
I − Kt

)
γ+
ν (σ) − W γ+(u) on Γ .

Moreover, thanks to the transmission conditions (7) and the introduction of the
additional unknown φ (cf. (10)), the above equations become:

(61) φ = −V γ−
ν (σ) +

(
1

2
I + K

)
φ on Γ ,

and

(62) Wφ +

(
1

2
I + Kt

)
γ−
ν (σ) = 0 on Γ .

5. The coupled variational formulations

In this section we combine the dual-mixed approach in Ω− (cf. Section 3) with
the boundary integral equation method in Ω+ (cf. Section 4) to derive and analyze
coupled variational formulations for the transmission problem (6). We remark in
advance that just the contents of Section 5.1 below constitute the contributions
described in [29]. However, while we could have simply referred to the results in
[29], for sake of completeness we prefer to provide here most of the corresponding
details. The remaining approaches and cases analyzed in the present Section 5 were
not considered in [29].

5.1. J & N coupling with homogeneous Neumann boundary conditions
on Γ0. Here we follow the Johnson-Nédélec coupling method (see [12], [45]) and
incorporate the single boundary integral equation (62) into the dual-mixed vari-
ational formulation in Ω− given by (31), which considers the homogeneous Neu-
mann boundary condition γ−

ν (σ) = 0 on Γ0. More precisely, we test (62) against
ψ ∈ H1/2(Γ) and add the resulting equation to the first equation of (31) thus
yielding a redefinition of the bilinear form aN = aD (cf. (15)). In this way, our
coupled variational formulation reads as follows: Find ((σ,φ), (u,χ)) ∈ XN ×YN

such that
(63)

aN ((σ,φ), (τ ,ψ)) + bN ((τ ,ψ), (u,χ)) = FN (τ ,ψ) ∀ (τ ,ψ) ∈ XN ,

bN ((σ,φ), (v,η)) = GN (v,η) ∀ (v,η) ∈ YN ,

where

(64) XN := H0(div ; Ω−)×H1/2(Γ) , YN := L2(Ω−)× L2
skew(Ω

−) ,

aN : XN × XN → R and bN : XN × YN → R are the bounded bilinear forms
defined by
(65)

aN ((σ,φ), (τ ,ψ)) :=

∫
Ω−
σd : τ d + ⟨Wφ,ψ⟩Γ +

⟨(
1

2
I + Kt

)
γ−
ν (σ),ψ

⟩
Γ

− ⟨γ−
ν (τ ),φ⟩Γ
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and

(66) bN ((τ ,ψ), (v,η)) :=

∫
Ω−

v · div τ +

∫
Ω−
η : τ ,

and FN : XN → R and GN : YN → R are the bounded linear functionals given by

(67) FN (τ ,ψ) := 0 and GN (v,η) := −
∫
Ω−

f · v.

We now observe from (66) that the bounded linear operator induced by bN ,
say BN : XN → YN , is given by BN ((τ ,ψ)) :=

(
div τ , 1

2 (τ − τ t)
)
for any

(τ ,ψ) ∈ XN . If follows easily that VN , the kernel of BN , reduces to

VN :=
{
(τ ,ψ) ∈ XN : τ = τ t and div τ = 0 in Ω−

}
.

The following lemmas, which establish a positiveness property of aN on VN and
an inf-sup condition for bN , are crucial for the forthcoming analysis (see, also [29,
Lemmas 1, 2, and 3]).

Lemma 5.1. There holds

(68) aN ((τ ,ψ), (τ ,ψ)) ≥ 1

2

{
∥τ d∥20,Ω− + ⟨Wψ,ψ⟩Γ

}
∀ (τ ,ψ) ∈ VN .

Proof. Given (τ ,ψ) ∈ VN we have from (65) and (39)
(69)

aN ((τ ,ψ), (τ ,ψ)) = ∥τ d∥20,Ω− + ⟨Wψ,ψ⟩Γ +

⟨
γ−
ν (τ ),

(
− 1

2
I + K

)
ψ

⟩
Γ

,

= ∥τ d∥20,Ω− + ⟨Wψ,ψ⟩Γ +
⟨
γ−
ν (τ ), γ

−(Dψ)
⟩
Γ
.

Hence, integrating by parts in Ω− and using that γ−
ν (τ ) = 0 on Γ0, we find that

(70)

⟨γ−
ν (τ ), γ

−(Dψ)⟩Γ =

∫
Ω−

{
∇Dψ : τ + Dψ · div τ

}
=

∫
Ω−

e
(
Dψ

)
: τ =

∫
Ω−

e
(
Dψ

)
: τ d ,

where the free-divergence and symmetry properties of τ , together with the incom-
pressibility condition satisfied by Dψ, have been utilized in the last two equalities.
In this way, replacing (70) into (69), and then applying Cauchy-Schwarz’s inequality
and the identity (56), we deduce that

aN ((τ ,ψ), (τ ,ψ)) = ∥τ d∥20,Ω− + ⟨Wψ,ψ⟩Γ +

∫
Ω−

e
(
Dψ

)
: τ d

≥ 1

2
∥τ d∥20,Ω− + ⟨Wψ,ψ⟩Γ − 1

2
∥e(Dψ)∥20,Ω−

≥ 1

2
∥τ d∥20,Ω− + ⟨Wψ,ψ⟩Γ − 1

2
∥e(Dψ)∥20,R3\Γ

=
1

2
∥τ d∥20,Ω− +

1

2
⟨Wψ,ψ⟩Γ ,

which finishes the proof.
�

Lemma 5.2. There exists β > 0 such that for any (v,η) ∈ YN there holds

(71) sup
(τ ,ψ)∈XN\{0}

bN ((τ ,ψ), (v,η))

∥(τ ,ψ)∥XN

≥ β ∥(v,η)∥YN
.
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Proof. It reduces to show that the operator BN is surjective. In fact, given (v,η) ∈
YN , we let z be the unique element in H1

Γ(Ω
−) :=

{
w ∈ H1(Ω−) : w =

0 on Γ
}
, whose existence is guaranteed by the second Korn inequality, such

that ∫
Ω−

e(z) : e(w) = −
∫
Ω−

v ·w −
∫
Ω−
η : ∇w ∀w ∈ H1

Γ(Ω
−) .

Hence, defining τ̂ := e(z) + η ∈ L2(Ω−), we deduce from the above formula-
tion that div τ̂ = v in Ω−, which shows that τ̂ ∈ H(div ; Ω−), and then that
γ−
ν (τ̂ ) = 0 on Γ0. In this way, τ̂ ∈ H0(div ; Ω−) and it is easy to see that

BN ((τ̂ ,0)) = (v,η), which ends the proof.
�

Note that the fact that bN ((τ ,ψ), (v,η)) does not depend on ψ guarantees that
the inf-sup condition (71) can also be rewritten as

(72) sup
τ∈H0(div ;Ω−)\{0}

bN ((τ ,0), (v,η))

∥(τ ,0)∥XN

≥ β ∥(v,η)∥YN
∀ (v,η) ∈ YN .

We now begin the solvability analysis of (63) by identifying previously the solu-
tions of the associated homogeneous problem.

Lemma 5.3. The set of solutions of the homogeneous version of (63) is given by{(
(σ,φ), (u,χ)

)
:=

(
(0, z|Γ), (z,∇z)

)
: z ∈ RM(Ω−)

}
.

Proof. Let
(
(σ,φ), (u,χ)

)
∈ XN × YN be a solution of (63) with f = 0. It is

clear from the second equation that (σ,φ) ∈ VN , that is σ = σt and divσ = 0
in Ω−. Then, taking in particular (τ ,ψ) = (σ,φ) in the first equation, and then
applying the inequalities (68) (cf. Lemma 5.1) and (54), we find that

0 = aN
(
(σ,φ), (σ,φ)

)
≥ 1

2

{
∥σd∥20,Ω− + ⟨Wφ,φ⟩Γ

}
≥ 1

2
∥σd∥20,Ω− +

α̃2

2
∥φ− π

RM
φ∥21/2,Γ ,

which gives σd = 0 in Ω− and φ = z|Γ, with z ∈ RM(Ω−). In turn, the
conditions satisfied by σ, namely divσ = 0 and σd = 0 in Ω−, together with the
fact that γ−

ν (σ) = 0 on Γ0 imply that σ = 0. Next, taking ψ = 0 in the first
equation of our homogeneous problem, and then integrating by parts in Ω−, we
obtain that for any τ ∈ H0(div ; Ω−) there holds

0 = bN ((τ ,0), (u,χ)) − ⟨γ−
ν (τ ),φ⟩Γ = bN ((τ ,0), (u,χ)) − ⟨γ−

ν (τ ), z⟩Γ

= bN ((τ ,0), (u,χ)) −
∫
Ω−

z · div τ −
∫
Ω−

∇z : τ

= bN ((τ ,0), (u− z,χ−∇z)) ,

which, thanks to the inf-sup condition (72), gives (u,χ) = (z,∇z). Conversely,
it is easy to see, in particular using that ker (W) = RM(Γ) (cf. (49)), that for
any z ∈ RM(Ω−) the element

(
(σ,φ), (u,χ)

)
:=

(
(0, z|Γ), (z,∇z)

)
solves the

homogeneous version of (63).
�



472 G.N. GATICA, G.C. HSIAO, S. MEDDAHI, AND F.J. SAYAS

According to the above lemma and the decomposition H1/2(Γ) = H
1/2
0 (Γ) ⊕

RM(Γ) (cf. (52)), and in order to guarantee the unique solvability of the coupled

problem (63), we now look for the solution ((σ,φ), (u,χ)) in the space X̃N ×YN ,
where

(73) X̃N := H0(div ; Ω−)×H
1/2
0 (Γ) .

In turn, it is easy to see, using that ⟨Wφ,ψ⟩Γ = ⟨Wψ,φ⟩Γ and that ker(W) =

ker

(
1

2
I+ K

)
= RM(Γ) (cf. (49)), that the ocurrence of the first equation of

(63) can be equivalently established for any (τ ,ψ) ∈ X̃N . As a consequence, and

instead of (63), we now seek ((σ,φ), (u,χ)) ∈ X̃N ×YN such that
(74)

aN ((σ,φ), (τ ,ψ)) + bN ((τ ,ψ), (u,χ)) = FN (τ ,ψ) ∀ (τ ,ψ) ∈ X̃N ,

bN ((σ,φ), (v,η)) = GN (v,η) ∀ (v,η) ∈ YN ,

The following two lemmas are needed to show the well-posedness of (74). They
make use of the decomposition defined by (1) and (2), which says in this case
that each τ ∈ H(div ; Ω−) can be written in a unique way as τ = τ 0 + d I, with

τ 0 ∈ H̃(div ; Ω−) and d ∈ R. The associated projector will be denoted π
I

:
H(div ; Ω−) → P0(Ω

−) I.

Lemma 5.4. There exists c1 > 0, depending only on Ω−, such that

(75) ∥τ d∥20,Ω− + ∥div τ∥20,Ω− ≥ c1 ∥τ − πIτ∥20,Ω− ∀ τ ∈ H(div ; Ω−) .

Proof. See [3, Lemma 3.1] or [11, Proposition 3.1, Chapter IV].
�

Lemma 5.5. There exists c2 > 0, depending only on Ω−, such that

(76) ∥τ − π
I
τ∥2div ;Ω− ≥ c2 ∥τ∥2div ;Ω− ∀ τ ∈ H0(div ; Ω−) .

Proof. See [31, Lemma 4.5].
�

We are now in a position to establish the main result of this section.

Theorem 5.1. Given f ∈ L2(Ω−), there exists a unique ((σ,φ), (u,χ)) ∈ X̃N ×
YN solution to (74). In addition, there exists C > 0 such that

∥((σ,φ), (u,χ))∥XN×YN
≤ C ∥f∥0,Ω− .

Proof. It reduces to verify the hypotheses of the classical Babuška-Brezzi theory.
The boundedness of aN and bN was already noticed at the beginning of this section.
Also, we observe that Lemma 5.2 establishes the required inf-sup condition for bN .

Next, because of the replacement of the space XN by X̃N (cf. (73)), the kernel of

the operator induced by bN : X̃N ×YN → R becomes now

ṼN :=
{
(τ ,ψ) ∈ H0(div ; Ω−)×H

1/2
0 (Γ) : τ = τ t and div τ = 0 in Ω−

}
.
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Hence, applying (68) (cf. Lemmas 5.1), (75) (cf. Lemma 5.4), (76) (cf. Lemma

5.5), and (51) (cf. Lemma 4.2), we deduce that for any (τ ,ψ) ∈ ṼN there holds

aN ((τ ,ψ), (τ ,ψ)) ≥ 1

2
∥τ d∥20,Ω− +

1

2
⟨Wψ,ψ⟩Γ

≥ c1
2
∥τ − πIτ∥20,Ω− +

1

2
⟨Wψ,ψ⟩Γ

=
c1
2
∥τ − π

I
τ∥2div ;Ω− +

1

2
⟨Wψ,ψ⟩Γ

≥ c1 c2
2

∥τ∥2div ;Ω− +
α2

2
∥ψ∥21/2,Γ ,

which proves that aN is ṼN -elliptic. In this way, the proof is completed by applying
the corresponding result from the above mentioned theory (see, e.g. [11, Theorem
1.1, Chapter II]).

�

Notice that the result provided by the previous theorem constitutes the natural
extension of the continuous analysis developed in [48], which in turn adapts and
modifies the main ideas from [52], to the present mixed formulation of the three-
dimensional exterior Stokes problem. Furthermore, it is important to remark at this

point, as shown in the proof of Lemma 5.1, that the ṼN -ellipticity of aN , which is
certainly needed for the well-posedness of (74), does require that the component τ

of each pair (τ ,ψ) in ṼN be free-divergence and symmetric. In particular, recall

that the symmetry of τ is employed to replace

∫
Ω−

∇Dψ : τ by

∫
Ω−

e(Dψ) : τ

in equation (70), which constitutes a crucial identity for the remaining part of the
proof. Analogously, for the analysis of an associated Galerkin scheme, one would
need to show that aN is elliptic at the discrete kernel of bN , which is given by

ṼN,h :=

{
(τh,ψh) ∈ X̃N,h := Hσh,0 ×Hφ

h,0 :

∫
Ω−

vh · div τh = 0 ∀vh ∈ Lu
h

and

∫
Ω−
τh : ηh = 0 ∀ηh ∈ Lχh

}
,

where Hσh,0, H
φ
h,0, L

u
h , and Lχh are finite dimensional subspaces of H0(div ; Ω−),

H
1/2
0 (Γ), L2(Ω−), and L2

skew(Ω
−), respectively. Nevertheless, while it is possible to

choose these subspaces so that the discrete inf-sup condition for bN is satisfied and

the first equation defining ṼN,h yields the components τh of the pairs (τh,ψh) ∈
ṼN,h to be free-divergence, no subspaces implying additionally the symmetry of

these components from the second equation defining ṼN,h are known (at least, up
to the authors’ knowledge). In order to overcome this difficulty, one could consider
Galerkin schemes for the simplified continuous formulation that arises from (74)
after eliminating the vorticity unknown χ, which means that one looks, from the
beginning, for a symmetric stress tensor σ. The recent availability of new stable
mixed finite element methods for linear elasticity with strong symmetry allows for
the choice of concrete finite element subspaces towards this purpose (see, e.g. [5],
[1]). However, due to the high number of local degrees of freedom involved, this

procedure is still a bit prohibitive. Alternatively, instead of proving the ṼN,h-
ellipticity of aN , one could try to show that this bilinear form satisfies the discrete

inf-sup condition on ṼN,h, hoping that the symmetry property in question is not
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needed along the way. However, this idea is rather an open question that needs
to be further investigated. In the present paper we suggest a different approach
which makes no use of any strong symmetry property of the discrete tensors. More
precisely, we show below in Section 6.1 that, under a suitable assumption on the
mesh sizes involved, aN does become uniformly strongly coercive on the discrete
kernels of bN .

On the other hand, another procedure that certainly avoids the need of any
symmetry condition, neither for the continuous nor for the discrete kernels of bN ,
is based on the incorporation of both integral equations (61) and (62) into the
respective variational formulation. This coupling method, known as the Costabel
& Han procedure, which has been denoted C & H in Section 1, is analyzed with
Dirichlet and Neumann boundary conditions on Γ0 in the forthcoming sections.

5.2. C & H coupling with Dirichlet boundary conditions on Γ0. We now
follow the Costabel & Han coupling method (see [20], [38]) and incorporate the
boundary integral equations (61) and (62) into the dual-mixed variational for-
mulation in Ω− given by (18), which assumes the Dirichlet boundary condition
γ−(u) = g

D
∈ H1/2(Γ0) on Γ0. More precisely, we replace φ in the first equation

of (18) by the right hand side of (61), and simultaneously add (62) tested against
ψ ∈ H1/2(Γ) to the same equation, thus yielding a redefinition of the bilinear form
aD (cf. (15)). In this way, our coupled variational formulation reads as follows:
Find ((σ,φ), (u,χ)) ∈ XD ×YD such that
(77)

aD((σ,φ), (τ ,ψ)) + bD((τ ,ψ), (u,χ)) = FD(τ ,ψ) ∀ (τ ,ψ) ∈ XD ,

bD((σ,φ), (v,η)) = GD(v,η) ∀ (v,η) ∈ YD ,

where

XD := H(div ; Ω−)×H1/2(Γ) , YD := L2(Ω−)× L2
skew(Ω

−) ,

aD : XD × XD → R and bD : XD × YD → R are the bounded bilinear forms
defined by
(78)

aD((σ,φ), (τ ,ψ)) :=

∫
Ω−
σd : τ d + ⟨Wφ,ψ⟩Γ +

⟨(
1

2
I + Kt

)
γ−
ν (σ),ψ

⟩
Γ

+ ⟨γ−
ν (τ ),Vγ−

ν (σ)⟩Γ −
⟨
γ−
ν (τ ),

(
1

2
I + K

)
φ

⟩
Γ

and

(79) bD((τ ,ψ), (v,η)) :=

∫
Ω−

v · div τ +

∫
Ω−
η : τ ,

and FD : XD → R and GD : YD → R are the bounded linear functionals given by

(80) FD(τ ,ψ) := −⟨γ−
ν (τ ),gD ⟩Γ0 and GD(v,η) := −

∫
Ω−

f · v .

We first let VD be the kernel of the bounded linear operator induced by bD (cf.
(79)), that is

VD :=
{
(τ ,ψ) ∈ XD : τ = τ t and div τ = 0 in Ω−

}
,

and identify the solutions of the homogeneous problem associated with (77).
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Lemma 5.6. The set of solutions of the homogeneous version of (77) is given by{(
(σ,φ), (u,χ)

)
:=

(
(0, z), (0,0)

)
: z ∈ RM(Γ)

}
.

Proof. Let
(
(σ,φ), (u,χ)

)
∈ XD ×YD be a solution of (77) with g

D
= 0 on Γ0

and f = 0 in Ω−. It is clear from the second equation that (σ,φ) ∈ VD, that
is σ = σt and divσ = 0 in Ω−. Then, taking in particular (τ ,ψ) = (σ,φ)
in the first equation, recalling that Kt is the adjoint of K, and then applying the
inequalities (75) (cf. Lemma 5.4), (54), and (53), we find that
(81)
0 = aD

(
(σ,φ), (σ,φ)

)
= ∥σd∥20,Ω− + ⟨Wφ,φ⟩Γ + ⟨γ−

ν (σ),Vγ−
ν (σ)⟩Γ

≥ c1∥σ − πIσ∥20,Ω− + α̃2 ∥φ− πRMφ∥21/2,Γ + α̃1 ∥γ−
ν (σ)− πνγ

−
ν (σ)∥2−1/2,Γ .

Therefore σ = c I and φ = z ∈ RM(Γ). As a consequence, and using the
characterization of the kernels of V and W given by (49), we find that the first
equation of the homogeneous (77) becomes

c ⟨ν,ψ⟩Γ + bD((τ ,ψ), (u,χ)) = 0 ∀ (τ ,ψ) ∈ XD .

Then, taking ψ = 0 in the above equation, and using the inf-sup condition (72),
which is possible in this case thanks to the inclusion H0(div ; Ω−) ⊆ H(div ; Ω−)
and the fact that the expressions defining bN and bD coincide, we deduce that
(u,χ) = (0,0). In this way, we obtain that for any ψ ∈ H1/2(Γ) there holds
c ⟨ν,ψ⟩Γ = 0, which necessarily implies that c = 0, and thus σ = 0. Conversely,
it is not difficult to see, using again the characterization of ker (W) (cf. (49)), that
for any z ∈ RM(Γ),

(
(σ,φ), (u,χ)

)
:=

(
(0, z), (0,0)

)
solves the homogeneous

version of (77).
�

Similarly to the analysis in Section 5.1, and in order to guarantee the unique
solvability of the coupled problem (77), we now look for the solution ((σ,φ), (u,χ))

in the space X̃D ×YD, where

(82) X̃D := H(div ; Ω−)×H
1/2
0 (Γ) ,

which yields the kernel of the operator defined by bD : X̃D ×YD → R to become

ṼD :=
{
(τ ,ψ) ∈ X̃D : τ = τ t and div τ = 0 in Ω−

}
.

In turn, thanks again to the characterization of the kernels (cf. (49)) and the
symmetry-type property of W, we deduce that it suffices to require the first equa-

tion of (77) for any (τ ,ψ) ∈ X̃D. Therefore, instead of (77), we now look for

((σ,φ), (u,χ)) ∈ X̃D ×YD such that
(83)

aD((σ,φ), (τ ,ψ)) + bD((τ ,ψ), (u,χ)) = FD(τ ,ψ) ∀ (τ ,ψ) ∈ X̃D ,

bD((σ,φ), (v,η)) = GD(v,η) ∀ (v,η) ∈ YD ,

Note, according to the definition of aD (cf. (78)) and the identity V(ν) = 0 (cf.
(49)), that for any c ∈ R there holds aD((c I,0), (c I,0)) = 0, which proves that aD
is not ṼD-elliptic. However, the following lemma establishes the weak-coerciveness
of aD on this kernel.

Lemma 5.7. The bilinear form aD : ṼD × ṼD → R defines an invertible operator

AD : ṼD → ṼD.



476 G.N. GATICA, G.C. HSIAO, S. MEDDAHI, AND F.J. SAYAS

Proof. Using that Kt is the adjoint of K and the inequalities (75), (51), and (53),
it is easy to show that
(84)

aD
(
(σ,φ), (σ,φ)

)
+∥πIσ∥20,Ω− ≥ C

{
∥σ∥2div ;Ω− + ∥φ∥21/2,Γ

}
∀ (σ,φ) ∈ ṼD.

Therefore, the operator AD is Fredholm of index zero. If AD((σ,φ)) = 0, then (by
the same arguments)

(85) 0 = aD
(
(σ,φ), (σ,φ)

)
≥ C

{
∥σ − πIσ∥2div ;Ω− + ∥φ∥21/2,Γ

}
,

which implies that φ = 0 and σ = cI for some c ∈ R. Therefore σd = 0, γ−
ν (σ) = cν

and, using (49)

0 = aD
(
(σ,φ), (0,ψ)

)
= c

⟨(
1

2
I + Kt

)
ν,ψ

⟩
Γ

= ⟨ν,ψ⟩Γ ∀ψ ∈ H
1/2
0 (Γ).

This identity, (55), and (52) imply that c = 0. We have thus proved that AD is
injective, and therefore invertible. �

The well-posedness of (83) can now be established.

Theorem 5.2. Given gD ∈ H1/2(Γ0) and f ∈ L2(Ω−), there exists a unique

((σ,φ), (u,χ)) ∈ X̃D ×YD solution to (83). In addition, there exists C > 0 such
that

∥((σ,φ), (u,χ))∥XD×YD
≤ C

{
∥g

D
∥1/2,Γ0

+ ∥f∥0,Ω−

}
.

Proof. It is clear from the beginning of the section that aD and bD are bounded

bilinear forms. In addition, the continuous inf-sup condition for bD : X̃D×YD → R
follows straightforwardly from (72) by noting that the expressions defining bD (cf.
(79)) and bN (cf. (66)) coincide and that certainly H0(div ; Ω−) ⊆ H(div ; Ω−).
Consequently, the proof is completed by applying the corresponding result from the
Babuška-Brezzi theory (see, e.g. [11, Theorem 1.1, Chapter II]).

�

The proof of weak coerciveness of aD (cf. Lemma 5.7) uses a compactness
argument starting from a G̊arding inequality. At the discrete level this would
impose a certain restriction on the approximation properties of the space to be fine
enough. Note that an even more indirect argument (by contradiction) was used in
[14, Lemma 4.3] for the analysis of the coupling of mixed-FEM and BEM as applied
to the elasticity problem. However, a mesh-dependent norm had to be employed
there instead of the usual norm of H(div ; Ω−), and it is not clear from the proof
whether the constants involved depend or not on h. In the next Lemma we are
going to give a refined version of the weak-coercivity that can be inherited at the
discrete level.

Lemma 5.8. Let ψ̃ be an arbitrary but fixed element in H1/2(Γ) such that ⟨ν, ψ̃⟩Γ >
0. Consider the functional c : H(div ,Ω−) → R given by

c(σ) :=
1

|Ω−|

∫
Ω−

trσ.

Then there exist positive C and δ, depending on ψ̃, such that

aD
(
(σ,φ), (σ,φ+ δc(σ)ψ̃)

)
≥ C∥(σ,φ)∥2XD

∀(σ,φ) ∈ ṼD.
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Proof. Because of (55) we can assume that ψ̃ ∈ H
1/2
0 (Γ) (just write ψ̃ − πRM ψ̃

instead of ψ̃). Let us next notice that π
I
σ = c(σ)I and therefore

aD
(
π

I
σ,0), (0, c(σ)ψ̃)

)
= c(σ)2⟨ν, ψ̃⟩Γ.

This inequality, combined with the bound

|aD
(
(σ − π

I
σ,φ), (0, c(σ)ψ̃)

)
| ≤ 1

2
c(σ)2⟨ν, ψ̃⟩Γ +

1

2

∥aD∥2∥ψ̃∥21/2,Γ
⟨ν, ψ̃⟩Γ

∥σ − π
I
σ∥2XD

prove

(86) aD
(
(σ,φ), (0, c(σ)ψ̃)

)
≥ 1

2
c(σ)2⟨ν, ψ̃⟩Γ − 1

2

∥aD∥2∥ψ̃∥21/2,Γ
⟨ν, ψ̃⟩Γ

∥σ − πIσ∥2XD
.

At the same time, we know (see the proof of Lemma 5.7) that there exists C̃ > 0
such that

(87) aD
(
(σ,φ), (σ,φ)

)
≥ C̃∥(σ − π

I
σ,φ)∥2XD

∀(σ,φ) ∈ ṼD.

Taking

δ :=
C̃⟨ν, ψ̃⟩Γ

∥aD∥2∥ψ̃∥21/2,Γ
and combining (86)-(87), we easily prove that

(88) aD
(
(σ,φ), (σ,φ+δc(σ)ψ̃)

)
≥ C̃⟨ν, ψ̃⟩2Γ

2∥aD∥2∥ψ̃∥21/2,Γ
c(σ)2+

C̃

2
∥(σ−πIσ,φ)∥2XD

.

This finishes the proof. �

We note that the result of Lemma 5.8 fits into what is called a T-coercivity result.

In this case, the bounded isomorphism T (σ,φ) := (σ,φ+ c(σ)δψ̃) applied to the
second component of the bilinear form makes it coercive. This gives an alternative
proof of Lemma 5.7 providing additionally an estimate of the norm of the inverse

of the operator AD, which depends exclusively on ⟨ν, ψ̃⟩Γ, ∥ψ̃ − π
RM
ψ̃∥1/2,Γ, the

norm of aD, and the coercivity constant of (87).

5.3. C & H coupling with non-homogeneous Neumann boundary con-
ditions on Γ0. Similarly as in the previous section, we now apply again the
Costabel & Han coupling method (see [20], [38]) and incorporate the boundary
integral equations (61) and (62) into the dual-mixed variational formulation in Ω−

given by (26), which considers the non-homogeneous Neumann boundary condition
γ−
ν (σ) = gN ∈ H−1/2(Γ0) on Γ0. In this way, our coupled variational formulation

reads as follows: Find ((σ,φ), (u,χ,λ)) ∈ XN ×YN such that
(89)
aN ((σ,φ), (τ ,ψ)) + bN ((τ ,ψ), (u,χ,λ)) = FN (τ ,ψ) ∀ (τ ,ψ) ∈ XN ,

bN ((σ,φ), (v,η, ξ)) = GN (v,η, ξ) ∀ (v,η, ξ) ∈ YN ,

where

XN := H(div ; Ω−)×H1/2(Γ) , YN := L2(Ω−)× L2
skew(Ω

−)×H1/2(Γ0) ,
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aN : XN × XN → R and bN : XN × YN → R are the bounded bilinear forms
defined by
(90)

aN ((σ,φ), (τ ,ψ)) :=

∫
Ω−
σd : τ d + ⟨Wφ,ψ⟩Γ +

⟨(
1

2
I + Kt

)
γ−
ν (σ),ψ

⟩
Γ

+ ⟨γ−
ν (τ ),Vγ−

ν (σ)⟩Γ −
⟨
γ−
ν (τ ),

(
1

2
I + K

)
φ

⟩
Γ

and

(91) bN ((τ ,ψ), (v,η, ξ)) :=

∫
Ω−

v · div τ +

∫
Ω−
η : τ + ⟨γ−

ν (τ ), ξ⟩Γ0
,

and FN : XN → R and GN : YN → R are the bounded linear functionals given by

(92) FN (τ ,ψ) := 0 , and GN (v,η, ξ) := −
∫
Ω−

f · v + ⟨g
N
, ξ⟩Γ0 .

We now observe from (91) that BN : XN → YN , the bounded linear operator
induced by bN , is given by

BN ((τ ,ψ)) :=
(
div τ ,

1

2
(τ − τ t),R0 γ

−
ν (τ )

)
∀ (τ ,ψ) ∈ XN ,

where R0 : H−1/2(Γ0) → H1/2(Γ0) is the respective Riesz operator. Then, we begin
the analysis of solvability of (89) by proving next that bN satisfies the continuous
inf-sup condition, which is equivalent to the surjectivity of BN .

Lemma 5.9. There exists β > 0 such that for any (v,η, ξ) ∈ YN there holds

(93) sup
(τ ,ψ)∈XN\{0}

bN ((τ ,ψ), (v,η, ξ))

∥(τ ,ψ)∥XN

≥ β ∥(v,η, ξ)∥YN .

Proof. We proceed as in the proof of Lemma 5.2. In fact, given (v,η, ξ) ∈ YN , we

let z be the unique element in H1
Γ(Ω

−) :=
{
w ∈ H1(Ω−) : w = 0 on Γ

}
,

whose existence is guaranteed by the second Korn inequality, such that∫
Ω−

e(z) : e(w) = −
∫
Ω−

v ·w−
∫
Ω−
η : ∇w+⟨R−1

0 (ξ), γ−(w)⟩Γ0 ∀w ∈ H1
Γ(Ω

−) .

Hence, defining τ̂ := e(z) + η ∈ L2(Ω−), we deduce from the above formula-
tion that div τ̂ = v in Ω−, which shows that τ̂ ∈ H(div ; Ω−), and then that
γ−
ν (τ̂ ) = R−1

0 (ξ) on Γ0. In this way, it is easy to see that BN ((τ̂ ,0)) = (v,η, ξ),
which ends the proof.

�

In what follows we let VN be the kernel of BN , that is

VN :=
{
(τ ,ψ) ∈ XN : τ = τ t and div τ = 0 in Ω− , and γ−

ν (τ ) = 0 on Γ0

}
,

and establish a positiveness property of aN on VN .

Lemma 5.10. There exists α̃ > 0 such that
(94)

aN ((τ ,ψ), (τ ,ψ)) ≥ α̃
{
∥τ∥2div ;Ω− + ∥ψ − πRMψ∥21/2,Γ

}
∀ (τ ,ψ) ∈ VN .,
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Proof. Let (τ ,ψ) ∈ VN . Then, recalling that Kt is the adjoint of K, noting that
τ ∈ H0(div ; Ω−), and then applying the inequalities (75) (cf. Lemma 5.4), (76)
(cf. Lemma 5.5), (54), and (53), we find that
(95)
aN

(
(τ ,ψ), (τ ,ψ)

)
= ∥τ d∥20,Ω− + ⟨Wψ,ψ⟩Γ + ⟨γ−

ν (τ ),Vγ−
ν (τ )⟩Γ

≥ c1∥τ − πIτ∥2div ;Ω− + α̃2 ∥ψ − πRMψ∥21/2,Γ + α̃1 ∥γ−
ν (τ )− πνγ

−
ν (τ )∥2−1/2,Γ

≥ c1 c2 ∥τ∥2div ;Ω− + α̃2 ∥ψ − π
RM

∥21/2,Γ ,

which yields the required inequality (94).
�

Lemma 5.11. The set of solutions of the homogeneous version of (89) is given by{(
(σ,φ), (u,χ,λ)

)
:=

(
(0, z), (0,0,0)

)
: z ∈ RM(Γ)

}
.

Proof. It follows similarly to the proof of Lemma 5.6. Indeed, let
(
(σ,φ), (u,χ,λ)

)
∈ XN × YN be a solution of (77) with g

N
= 0 on Γ0 and f = 0 in Ω−. It

is clear from the second equation that (σ,φ) ∈ VN . Then, taking in particular
(τ ,ψ) = (σ,φ) in the first equation, and using the inequality (94) (cf. Lemma
5.10), we find that

(96) 0 = aN
(
(σ,φ), (σ,φ)

)
≥ α̃

{
∥σ∥2div ;Ω− + ∥φ− π

RM
φ∥21/2,Γ

}
,

from where it follows that σ = 0 in Ω− and φ = z for z ∈ RM(Γ). As a
consequence, and using the characterization of the kernel W given by (49), we find
that the first equation of the homogeneous (89) becomes

bN ((τ ,ψ), (u,χ,λ)) = 0 ∀ (τ ,ψ) ∈ XN ,

which, thanks to the inf-sup condition (93) (cf. Lemma 5.9), yields (u,χ,λ) =
(0,0,0). Conversely, it is not difficult to see, using again the characterization of
ker (W) (cf. (49)), that for any z ∈ RM(Γ),

(
(σ,φ), (u,χ,λ)

)
:=

(
(0, z), (0,0,0)

)
solves the homogeneous version of (89).

�

Therefore, similarly as for the analysis in Sections 5.1 and 5.2, and in order to
guarantee the unique solvability of the coupled problem (89), we now look for the

solution ((σ,φ), (u,χ,λ)) in the space X̃N ×YN , where

(97) X̃N := H(div ; Ω−)×H
1/2
0 (Γ) ,

which yields the kernel of the operator defined by bN : X̃N ×YN → R to become

ṼN :=
{
(τ ,ψ) ∈ X̃N : τ = τ t and div τ = 0 in Ω− , and γ−

ν (τ ) = 0 on Γ0

}
.

In addition, applying again the characterization of the kernels (cf. (49)) and the
symmetry-type property of W, we find that it suffices to require the first equation

of (89) for any (τ ,ψ) ∈ X̃N . As a consequence, instead of (89), we now look for

((σ,φ), (u,χ,λ)) ∈ X̃N ×YN such that
(98)

aN ((σ,φ), (τ ,ψ)) + bN ((τ ,ψ), (u,χ,λ)) = FN (τ ,ψ) ∀ (τ ,ψ) ∈ X̃N ,

bN ((σ,φ), (v,η, ξ)) = GN (v,η, ξ) ∀ (v,η, ξ) ∈ YN ,
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Next, it follows from Lemma 5.10 and the above characterization of ṼN that

the bilinear form aN is strongly coercive on ṼN . In addition, since actually bN

does not depend on the component ψ ∈ H1/2(Γ), it is quite clear from Lemma 5.9

that bN satisfies the continuous inf-sup condition on X̃N ×YN as well. Hence, the
well-posedness of (98) is readily established as follows.

Theorem 5.3. Given gN ∈ H−1/2(Γ0) and f ∈ L2(Ω−), there exists a unique

((σ,φ), (u,χ,λ)) ∈ X̃N × YN solution to (98). In addition, there exists C > 0
such that

∥((σ,φ), (u,χ,λ))∥XN×YN
≤ C

{
∥g

N
∥−1/2,Γ0

+ ∥f∥0,Ω−

}
.

Proof. According to the previous discussion, the proof follows by applying once
again the usual result from the Babuška-Brezzi theory (see, e.g. [11, Theorem 1.1,
Chapter II]).

�

5.4. C & H coupling with homogeneous Neumann boundary conditions
on Γ0. In what follows we proceed similarly as in the previous section and apply the
Costabel & Han coupling method to the case of homogeneous Neumann boundary
conditions on Γ0. This means that we now incorporate the boundary integral
equations (61) and (62) into the dual-mixed variational formulation in Ω− given
by (31). In this way, as in Sections 3.3 and 5.1, there is no need of introducing the
additional unknown λ ∈ H1/2(Γ0), and hence our coupled variational formulation
simply reads as follows: Find ((σ,φ), (u,χ)) ∈ XN ×YN such that
(99)

aN ((σ,φ), (τ ,ψ)) + bN ((τ ,ψ), (u,χ)) = FN (τ ,ψ) ∀ (τ ,ψ) ∈ XN ,

bN ((σ,φ), (v,η)) = GN (v,η) ∀ (v,η) ∈ YN ,

where

XN := H0(div ; Ω−)×H1/2(Γ) , YN := L2(Ω−)× L2
skew(Ω

−) ,

aN : XN × XN → R and bN : XN × YN → R are the bounded bilinear forms
defined by
(100)

aN ((σ,φ), (τ ,ψ)) :=

∫
Ω−
σd : τ d + ⟨Wφ,ψ⟩Γ +

⟨(
1

2
I + Kt

)
γ−
ν (σ),ψ

⟩
Γ

+ ⟨γ−
ν (τ ),Vγ−

ν (σ)⟩Γ −
⟨
γ−
ν (τ ),

(
1

2
I + K

)
φ

⟩
Γ

and

(101) bN ((τ ,ψ), (v,η)) :=

∫
Ω−

v · div τ +

∫
Ω−
η : τ ,

and FN : XN → R and GN : YN → R are the bounded linear functionals given by

(102) FN (τ ,ψ) := 0 , and GN (v,η, ξ) := −
∫
Ω−

f · v .

Concerning the solvability analysis of (99), we first observe that the continuous
inf-sup condition for bN was already proved by Lemma 5.2. In addition, it is clear
that the kernel of bN is given by

VN :=
{
(τ ,ψ) ∈ XN : τ = τ t and div τ = 0 in Ω−

}
,
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and that aN satisfies the same positiveness property from Lemma 5.10, that is
(103)

aN ((τ ,ψ), (τ ,ψ)) ≥ α̃
{
∥τ∥2div ;Ω− + ∥ψ − π

RM
ψ∥21/2,Γ

}
∀ (τ ,ψ) ∈ VN .

Moreover, basically the same proof of Lemma 5.11 shows that the set of solutions
of the homogeneous version of (99) is given by{(

(σ,φ), (u,χ)
)
:=

(
(0, z), (0,0)

)
: z ∈ RM(Γ)

}
.

Consequently, following a similar analysis to the one from the previous section, and
in order to guarantee unique solvability of the resulting problem, (99) is reformu-

lated as: Find ((σ,φ), (u,χ)) ∈ X̃N ×YN such that
(104)

aN ((σ,φ), (τ ,ψ)) + bN ((τ ,ψ), (u,χ)) = FN (τ ,ψ) ∀ (τ ,ψ) ∈ X̃N ,

bN ((σ,φ), (v,η)) = GN (v,η) ∀ (v,η) ∈ YN ,

where

X̃N := H0(div ; Ω−)×H
1/2
0 (Γ) .

Then, the kernel of bN : X̃N ×YN → R becomes now

ṼN :=
{
(τ ,ψ) ∈ X̃N : τ = τ t and div τ = 0 in Ω−

}
,

whence (103) yields the strong coerciveness of aN on ṼN . In turn, since bN does

not depend on the component ψ ∈ H
1/2
0 (Γ), it is also clear from Lemma 5.2 that

bN satisfies the continuous inf-sup condition on X̃N ×YN as well. These remarks
and [11, Theorem 1.1, Chapter II] imply the well-posedness of (104).

Theorem 5.4. Given f ∈ L2(Ω−), there exists a unique ((σ,φ), (u,χ)) ∈ X̃N ×
YN solution to (104). In addition, there exists C > 0 such that

∥((σ,φ), (u,χ))∥XN×YN ≤ C ∥f∥0,Ω− .

6. Galerkin schemes of the coupled formulations

In this section we study the well-posedness of the Galerkin schemes associated
with each one of the coupled variational formulations analyzed in Section 5. Need-
less to say, no discrete analysis was reported in [29].

6.1. J & N coupling with homogeneous Neumann on Γ0. We first let Hσh,0,
Hφ

h̃
, Lu

h , and Lχh be finite dimensional subspaces of H0(div ; Ω−), H1/2(Γ), L2(Ω−),

and L2
skew(Ω

−), respectively, and define

(105) Hφ

h̃,0
:=

{
ψ ∈ Hφ

h̃
: ⟨r,ψ⟩1/2,Γ = 0 ∀ r ∈ RM(Γ)

}
,

which is clearly a subspace of H
1/2
0 (Γ). Note that, because of reasons that will

become clear below, we take a different meshsize for defining Hφ

h̃
(and hence Hφ

h̃,0
).

Then we introduce the product spaces

X̃N,h := Hσh,0 × Hφ

h̃,0
and YN,h := Lu

h × Lχh ,
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and define the Galerkin scheme associated with (74) as: Find ((σh,φh̃), (uh,χh))

∈ X̃N,h ×YN,h such that
(106)

aN ((σh,φh̃), (τ ,ψ)) + bN ((τ ,ψ), (uh,χh)) = FN (τ ,ψ) ∀ (τ ,ψ) ∈ X̃N,h ,

bN ((σh,φh̃), (v,η)) = GN (v,η) ∀ (v,η) ∈ YN,h ,

where aN , bN , FN , and GN are the bilinear forms and functionals defined in
Section 5.1.

In order to prove the unique solvability, stability, and convergence of (106), we
have in mind the discrete Babuška-Brezzi theory and consider in what follows the
following assumptions:

(H.1) the bilinear form bN satisfies the discrete inf-sup condition uniformly on

X̃N,h ×YN,h, that is there exists β̃ > 0, independent of h and h̃, such that
(107)

sup
(τh,ψh̃)∈X̃N,h\{0}

bN ((τh,ψh̃), (v,η))

∥(τh,ψh̃)∥XN

≥ β̃ ∥(v,η)∥YN
∀ (v,η) ∈ YN,h .

(H.2) div Hσh,0 ⊆ Lu
h .

(H.3) there exists ϵ ∈ (0, 1/2) such that Hφ

h̃,0
⊆ H1/2+ϵ(Γ) for each h̃ > 0.

(H.4) the finite element subspace Hφ

h̃,0
satisfies the inverse inequality, that is there

exists C > 0, independent of h̃, such that

(108) ∥φh̃∥1/2+δ,Γ ≤ C h̃−δ ∥φh̃∥1/2,Γ ∀φh̃ ∈ Hφ

h̃,0
, ∀ δ ∈ [0, ϵ] .

(H.5) the orthogonal projector Πχh : L2
skew(Ω

−) → Lχh satisfies the approximation
property
(109)
∥η −Πχh (η)∥0,Ω− ≤ C hδ ∥η∥δ,Ω− ∀η ∈ L2

skew(Ω
−) ∩ Hδ(Ω−) , ∀ δ ∈ [0, 1] .

We notice that, being the bilinear form bN independent of the ψ-component,
its discrete inf-sup condition (cf. (107) in (H.1)) involves only the subspaces Hσh,0,
Lu
h , and Lχh . In addition, since the discrete kernel of bN becomes

(110)

ṼN,h :=

{
(τh,ψh̃) ∈ X̃N,h := Hσh,0 ×Hφ

h̃,0
:

∫
Ω−

vh · div τh = 0 ∀vh ∈ Lu
h

and

∫
Ω−
τh : ηh = 0 ∀ηh ∈ Lχh

}
,

it is straightforward to see that hypothesis (H.2) yields

(111) div τh = 0 in Ω− ∀ (τh,ψh̃) ∈ ṼN,h .

The statement (111) and hypotheses (H.3) - (H.5) are utilized next to prove

that aN is uniformly strongly coercive on ṼN,h. The fact that D : H1/2+δ(Γ) →
H1+δ(Ω−) is a bounded linear operator for each δ ∈ [0, 1/2), which follows from
similar arguments to those mentioned in the proof of Lemma 4.1, and which cer-
tainly extends the corresponding result for D, will also be employed.
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Lemma 6.1. There exist α̃, c0 > 0, independent of h and h̃, such that whenever
h ≤ c0 h̃, there holds

(112) aN
(
(τh,ψh̃), (τh,ψh̃)

)
≥ α̃ ∥(τh,ψh̃)∥

2
XN

∀ (τh,ψh̃) ∈ ṼN,h .

Proof. Given (τh,ψh̃) ∈ ṼN,h, we first proceed as in the proof of Lemma 5.1 and
obtain

aN
(
(τh,ψh̃), (τh,ψh̃)

)
= ∥τ d

h∥20,Ω− + ⟨Wψh̃,ψh̃⟩Γ +

∫
Ω−

∇
(
Dψh̃

)
: τ d

h .

Note that, while τh is divergence free (according to (111)), its lack of strong sym-

metry stops us of replacing

∫
Ω−

∇
(
Dψh̃

)
: τ d

h exactly by

∫
Ω−

e
(
Dψh̃

)
: τ d

h, as

we did in that proof. However, what we can certainly do in the present discrete
case is to write

∇
(
Dψh̃

)
= e

(
Dψh̃

)
+ η

(
Dψh̃

)
,

where

η
(
Dψh̃

)
=

1

2

{
∇
(
Dψh̃

)
+

(
∇
(
Dψh̃

))t }
.

In this way, we have that

aN
(
(τh,ψh̃), (τh,ψh̃)

)
= ∥τ d

h∥20,Ω− + ⟨Wψh̃,ψh̃⟩Γ +

∫
Ω−

e
(
Dψh̃

)
: τ d

h +

∫
Ω−
η
(
Dψh̃

)
: τ d

h ,

which, following the last part of the proof of Lemma 5.1, yields
(113)

aN
(
(τh,ψh̃), (τh,ψh̃)

)
≥ 1

2

{
∥τ d

h∥20,Ω− + ⟨Wψh̃,ψh̃⟩Γ
}

−
∣∣∣ ∫

Ω−
η
(
Dψh̃

)
: τ d

h

∣∣∣ .
Next, using from (110) that

∫
Ω−
τ d
h : ηh =

∫
Ω−
τh : ηh = 0 ∀ηh ∈ Lχh , we find

that ∫
Ω−
η
(
Dψh̃

)
: τ d

h =

∫
Ω−

{
η
(
Dψh̃

)
− Πχh

(
η
(
Dψh̃

))}
: τ d

h ,

from which, applying the approximation property of Lχh (cf. (109) in (H.5)),

(H.3), the boundedness of D : H1/2+ϵ(Γ) → H1+ϵ(Ω−), and the inverse inequality
satisfied by Hφ

h̃,0
(cf. (108) in (H.4)), we deduce that

(114)∣∣∣ ∫
Ω−
η
(
Dψh̃

)
: τ d

h

∣∣∣ ≤
∥∥η(Dψh̃

)
− Πχh

(
η
(
Dψh̃

))∥∥
0,Ω− ∥τ d

h∥0,Ω−

≤ C hϵ
∥∥η(Dψh̃

)∥∥
ϵ,Ω− ∥τ d

h∥0,Ω− ≤ C hϵ
∥∥∇Dψh̃

∥∥
ϵ,Ω− ∥τ d

h∥0,Ω−

≤ C hϵ
∥∥Dψh̃

∥∥
1+ϵ,Ω− ∥τ d

h∥0,Ω− ≤ C hϵ
∥∥ψh̃

∥∥
1/2+ϵ,Γ

∥τ d
h∥0,Ω−

≤ C

{
h

h̃

}ϵ ∥∥ψh̃

∥∥
1/2,Γ

∥τ d
h∥0,Ω− ≤ C

{
h

h̃

}ϵ {
1

2

∥∥ψh̃

∥∥2
1/2,Γ

+
1

2
∥τ d

h∥20,Ω−

}
.

Therefore, using that ⟨Wψ,ψ⟩Γ ≥ α2 ∥ψ∥21/2,Γ ∀ψ ∈ H
1/2
0 (Γ) (cf. (51)), it

follows from (113) and (114) that

aN
(
(τh,ψh̃), (τh,ψh̃)

)
≥ 1

2

{
1 − C

{
h

h̃

}ϵ}
∥τ d

h∥20,Ω− +
1

2

{
α2 − C

{
h

h̃

}ϵ}
∥ψh̃∥

2
1/2,Γ ,
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which yields the existence of a sufficiently small constant c0 > 0 such that for each

h ≤ c0 h̃, aN is uniformly strongly coercive on ṼN,h.
�

The well-posedness and convergence of (106) can now be established.

Theorem 6.1. Assume that the hypotheses (H.1) up to (H.5) are satisfied, and

let c0 be the positive constant provided by Lemma 6.1. Then, for each h ≤ c0 h̃

there exists a unique ((σh,φh̃), (uh,χh)) ∈ X̃N,h × YN,h solution of (106). In

addition, there exist C1, C2 > 0, independent of h and h̃, such that

∥((σh,φh̃), (uh,χh))∥XN×YN ≤ C1 ∥f∥0,Ω− ,

and

(115)

∥((σ,φ), (u,χ)) − ((σh,φh̃), (uh,χh))∥XN×YN

≤ C2 dist
(
((σ,φ), (u,χ)), X̃N,h ×YN,h

)
.

6.2. C & H coupling with non-homogeneous Dirichlet on Γ0. We now let
Hσh , Hφ

h , Lu
h , and Lχh be finite dimensional subspaces of H(div ; Ω−), H1/2(Γ),

L2(Ω−), and L2
skew(Ω

−), respectively, and define

(116) Hφ
h,0 :=

{
ψ ∈ Hφ

h : ⟨r,ψ⟩Γ = 0 ∀ r ∈ RM(Γ)
}

= Hφ
h ∩H

1/2
0 (Γ).

Note that, differently from the previous section, in this case we do not need to take
any different meshsize for Hφ

h,0. Then we introduce the product spaces

X̃D,h := Hσh × Hφ
h,0 and YD,h := Lu

h × Lχh ,

and define the Galerkin scheme associated with (83) as: Find ((σh,φh), (uh,χh))

∈ X̃D,h ×YD,h such that
(117)

aD((σh,φ), (τ ,ψ)) + bD((τ ,ψ), (uh,χh)) = FD(τ ,ψ) ∀ (τ ,ψ) ∈ X̃D,h ,

bD((σh,φh), (v,η)) = GD(v,η) ∀ (v,η) ∈ YD,h ,

where aD, bD, FD, andGD are the bilinear forms and functionals defined in Section
5.2.

Next, we apply again the discrete Babuška-Brezzi theory to prove the unique
solvability, stability, and convergence of (117). To this end, in what follows we
assume the following hypotheses:

(̃H.1) the bilinear form bD satisfies the discrete inf-sup condition uniformly on

X̃D,h ×YD,h, that is there exists β̃ > 0, independent of h, such that
(118)

sup
(τh,ψh)∈X̃D,h\{0}

bD((τh,ψh), (v,η))

∥(τh,ψh)∥XD

≥ β̃ ∥(v,η)∥YD ∀ (v,η) ∈ YD,h .

(̃H.2) div Hσh ⊆ Lu
h .

(̃H.3) there holds P0(Ω
−) I ⊆ Hσh and RM(Γ) ⊆ Hφ

h .

(̃H.4) there exists ψ̃ ∈ H1/2(Γ) such that ⟨ν, ψ̃⟩Γ > 0 and ψ̃ ∈ Hφ
h for each

h > 0.
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Similarly as in the previous section, the bilinear form bD is independent of the

ψ-component, and hence its discrete inf-sup condition (cf. (118) in (̃H.1)) involves

only the subspaces Hσh , Lu
h , and Lχh . In addition, hypothesis (̃H.2) implies now

that the discrete kernel of bD reduces to
(119)

ṼD,h :=

{
(τh,ψh) ∈ X̃D,h : div τh = 0 in Ω− and

∫
Ω−
τh : ηh = 0 ∀ηh ∈ Lχh

}
.

As announced right before the statement of Lemma 5.8, we now establish the
discrete weak-coerciveness of aD.

Lemma 6.2. There exists α̂ > 0, independent of h but depending explicitly on ψ̃,
such that
(120)

sup
(τ ,ψ)∈ṼD,h\{0}

|aD((σh,φh), (τ ,ψ)) |
∥(τ ,ψ)∥XD

≥ α̂ ∥(σh,φh)∥XD ∀ (σh,φh) ∈ ṼD,h .

Proof. This is a direct consequence of Lemma 5.8 using hypotheses (̃H.3) and

(̃H.4). �

As a consequence of the foregoing analysis, we can provide now the well-posedness
and convergence of (117).

Theorem 6.2. Assume that the hypotheses (̃H.1) up to (̃H.4) are satisfied. Then,

there exists a unique ((σh,φh), (uh,χh)) ∈ X̃D,h × YD,h solution of (117). In
addition, there exist C1, C2 > 0, independent of h, such that

∥((σh,φh), (uh,χh))∥XD×YD ≤ C1

{
∥gD∥1/2,Γ0

+ ∥f∥0,Ω−

}
,

and

(121)

∥((σ,φ), (u,χ)) − ((σh,φh), (uh,χh))∥XD×YD

≤ C2 dist
(
((σ,φ), (u,χ)), X̃D,h ×YD,h

)
.

6.3. C & H coupling with non-homogeneous Neumann on Γ0. We let Hσh ,
Hφ

h , Lu
h , Lχh , and Hλ

h̃
be finite dimensional subspaces of H(div ; Ω−), H1/2(Γ),

L2(Ω−), L2
skew(Ω

−), and H1/2(Γ0), respectively, and define, as in (116), the sub-
space

(122) Hφ
h,0 := Hφ

h ∩H
1/2
0 (Γ) .

Note that, in order to be able to define specific discrete subspaces satisfying the
assumptions to be specified below, we need to take a different meshsize for the
finite element subspace of H1/2(Γ0). However, as in the previous section, this is
not required for Hφ

h,0. Then we introduce the product spaces

X̃N,h := Hσh × Hφ
h,0 and YN,h,h̃ := Lu

h × Lχh ×Hλ
h̃
,

and define the Galerkin scheme for (98) as: Find ((σh,φh), (uh,χh,λh̃)) ∈ X̃N,h×
YN,h,h̃ such that

(123)
aN ((σh,φ), (τ ,ψ)) + bN ((τ ,ψ), (uh,χh,λh̃)) = FN (τ ,ψ) ,

bN ((σh,φh), (v,η, ξ)) = GN (v,η, ξ) ,



486 G.N. GATICA, G.C. HSIAO, S. MEDDAHI, AND F.J. SAYAS

for all (τ ,ψ) ∈ X̃N,h and (v,η, ξ) ∈ YN,h,h̃, where aN , bN , FN , and GN are those
bilinear forms and functionals defined in Section 5.3.

Proceeding as before, in what follows we apply the discrete Babuška-Brezzi the-
ory to establish the well-posedness and convergence of (123). For this purpose, we
now assume the following hypotheses:

(̂H.1) the bilinear form bN satisfies the discrete inf-sup condition uniformly on

X̃N,h ×YN,h,h̃, that is there exists β̃ > 0, independent of h and h̃, such that

(124)

sup
(τh,ψh)∈X̃N,h\{0}

bN ((τh,ψh), (v,η, ξ))

∥(τh,ψh)∥XN

≥ β̃ ∥(v,η, ξ)∥YN
∀ (v,η, ξ) ∈ YN,h,h̃ .

(̂H.2) div Hσh ⊆ Lu
h .

(̂H.3) there holds P0(Ω
−) I ⊆ Hσh .

(̂H.4) there exists ξ̃ ∈ H1/2(Γ0) such that ⟨ν, ξ̃⟩Γ0 > 0 and ξ̃ ∈ Hλ
h̃

for each
h > 0.

Note, as in both previous sections, that the bilinear form bN is also independent

of the ψ-component, and hence its discrete inf-sup condition (cf. (124) in (̂H.1))

involves only the subspaces Hσh , Lu
h , and Lχh . In addition, hypothesis (̂H.2) implies

now that the discrete kernel of bN reduces to
(125)

ṼN,h :=

{
(τh,ψh) ∈ X̃N,h : div τh = 0 in Ω− ,

∫
Ω−
τh : ηh = 0 ∀ηh ∈ Lχh ,

and ⟨γ−
ν (τh), ξ⟩Γ0 = 0 ∀ ξ ∈ Hλ

h̃

}
.

In turn, (̂H.3) guarantees that there holds the decomposition (cf. (1) - (2))

Hσh = H̃σh ⊕ P0(Ω
−) I ,

where

H̃σh :=
{
τh ∈ Hσh :

∫
Ω−

tr τh = 0
}
.

In other words, τh − π
I
τh ∈ H̃σh for each τh ∈ Hσh . Hence, the discrete analogue

of Lemma 5.5 is established now as a consequence of (̂H.4).

Lemma 6.3. Let Hh,h̃ :=
{
τh ∈ Hσh : ⟨γ−

ν (τh), ξ⟩Γ0 = 0 ∀ ξ ∈ Hλ
h̃

}
. Then

there exists c̃2 > 0, independent of h and h̃, such that

(126) ∥τh∥2div ;Ω− ≤ c̃2 ∥τh − π
I
τh∥2div ;Ω− ∀ τh ∈ Hh,h̃ .

Proof. Let τh ∈ Hh,h̃ and write π
I
τh = dhI. Then

0 = ⟨γ−
ν (τh), ξ̃⟩Γ0 = ⟨γ−

ν (τh − π
I
τh), ξ̃⟩Γ0 + dh ⟨ν, ξ̃⟩Γ0 ,

which gives

|dh| ≤ C
∥ξ̃∥1/2,Γ0

| ⟨ν, ξ̃⟩Γ0 |
∥τh − πIτh∥div ;Ω− .

This inequality and the fact that ∥τh∥2div ;Ω− = ∥τh − π
I
τh∥2div ;Ω− + 2 d2h |Ω−|

imply (126). �
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In this way, noting that ṼN,h ⊆ Hh,h̃×Hφ
h,0, and using now Lemma 6.3 (instead

of Lemma 5.5) together with (75) (cf. Lemma 5.4), (54), and (53), we conclude the

strong coerciveness of aN on ṼN,h. Therefore, we summarize the foregoing analysis
in the following main result.

Theorem 6.3. Assume that the hypotheses (̂H.1) up to (̂H.4) are satisfied. Then,

there exists a unique ((σh,φh), (uh,χh,λh̃)) ∈ X̃N,h ×YN,h,h̃ solution of (123).
In addition, there exist C1, C2 > 0, independent of h, such that

∥((σh,φh), (uh,χh,λh̃))∥XN×YN ≤ C1

{
∥gN ∥−1/2,Γ0

+ ∥f∥0,Ω−

}
,

and

(127)

∥((σ,φ), (u,χ,λ)) − ((σh,φh), (uh,χh,λh̃))∥XN×YN

≤ C2 dist
(
((σ,φ), (u,χ,λ)), X̃N,h ×YN,h,h̃

)
.

6.4. C & H coupling with homogeneous Neumann on Γ0. We now let Hσh,0,
Hφ

h , L
u
h , and Lχh be finite dimensional subspaces of H0(div ; Ω−), H1/2(Γ), L2(Ω−),

and L2
skew(Ω

−), respectively, and define, as in previous occasions,

(128) Hφ
h,0 = Hφ

h ∩H
1/2
0 (Γ) .

Then we introduce the product spaces

X̃N,h := Hσh,0 × Hφ
h,0 and YN,h := Lu

h × Lχh ,

and define the Galerkin scheme associated with (104) as: Find ((σh,φh), (u,χ)) ∈
X̃N,h ×YN,h such that
(129)

aN ((σh,φh), (τ ,ψ)) + bN ((τ ,ψ), (uh,χh)) = FN (τ ,ψ) ∀ (τ ,ψ) ∈ X̃N,h ,

bN ((σh,φh), (v,η)) = GN (v,η) ∀ (v,η) ∈ YN,h ,

where aN , bN , FN , and GN are those bilinear forms and functionals defined in
Section 5.4.

We assume the following hypotheses:

(H.1) the bilinear form bN satisfies the discrete inf-sup condition uniformly on

X̃N,h ×YN,h, that is there exists β̃ > 0, independent of h, such that
(130)

sup
(τh,ψh)∈X̃N,h\{0}

bN ((τh,ψh), (v,η))

∥(τh,ψh)∥XN

≥ β̃ ∥(v,η)∥YN ∀ (v,η) ∈ YN,h .

(H.2) div Hσh,0 ⊆ Lu
h .

(H.3) there holds RM(Γ) ⊆ Hφ
h .

As in all the previous subsections, we note once again that the bilinear form bN

does not depend on the ψ-component, and hence the eventual verification of its
discrete inf-sup condition (cf. (130) in (H.1)) is determined only by the subspaces

Hσh,0, Lu
h , and Lχh . In turn, it is also quite obvious from (H.2) that the discrete

kernel of bN reduces to
(131)

ṼN,h :=

{
(τh,ψh) ∈ X̃N,h : div τh = 0 in Ω− ,

∫
Ω−
τh : ηh = 0 ∀ηh ∈ Lχh

}
.
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Furthermore, it is clear that (H.3) yields the decomposition Hφ
h = Hφ

h,0 ⊕
RM(Γ), and ψh − πRMψh ∈ Hφ

h,0 for all ψh ∈ Hφ
h . Consequently, (131) and the

application of (103) to the above discrete context confirm that the bilinear form

aN is strongly coercive on ṼN,h.

The well-posedness and convergence of (129) is established next as a straight-
forward consequence of the foregoing analysis.

Theorem 6.4. Assume that the hypotheses (H.1) up to (H.3) are satisfied. Then,

there exists a unique ((σh,φh), (uh,χh)) ∈ X̃N,h × YN,h solution of (129). In
addition, there exist C1, C2 > 0, independent of h, such that

∥((σh,φh), (uh,χh))∥XN×YN
≤ C1 ∥f∥0,Ω− ,

and

(132)

∥((σ,φ), (u,χ)) − ((σh,φh), (uh,χh))∥XN×YN

≤ C2 dist
(
((σ,φ), (u,χ)), X̃N,h ×YN,h

)
.

We end this paper by remarking that specific subspaces satisfying the hypotheses
described in each one of the subsections of the present section can be easily found
in the existing literature. Indeed, we first observe that the expressions defining the

bilinear forms bN , bD, and bN involved in (H.1), (̃H.1), and (H.1), respectively,
are the same as the one arising from the mixed formulation of the linear elasticity
problem in Ω− with Dirichlet or homogeneous Neumann boundary conditions on
∂Ω−. Hence, any triple of finite element subspaces (Hσh ,Lu

h ,L
χ
h ) (or (Hσh,0,Lu

h ,L
χ
h ))

yielding the discrete stability of that problem will satisfy our aforementioned hy-
potheses. In particular, besides the classical PEERS (cf. [2]), we can consider for
any integer k ≥ 1 the PEERSk and the BDMSk elements, whose definitions and
corresponding proofs of stability are provided in [47]. In addition, new stable mixed
finite element methods for 3D linear elasticity with a weak symmetry condition for
the stresses have been constructed recently in [4] and [6] by using the finite element
exterior calculus. This is a quite abstract framework involving several sophisti-
cated mathematical tools (see also [5] and [7] for further details), which has been
simplified in some particular cases by employing more elementary and classical tech-
niques (see, e.g. [10]). The resulting Arnold-Falk-Winther (AFW) element with the
lowest polynomial degrees, which is referred to as of order 1, and which certainly

constitutes another feasible choice verifying (H.1), (̃H.1), and (H.1), consists of
piecewise linear approximations for the stress σ and piecewise constants functions
for both the velocity u and vorticity χ unknowns.

In turn, the bilinear form bN involved in (̂H.1) corresponds also to the one
arising from the mixed formulation of the linear elasticity problem in Ω−, but now
with Dirichlet boundary condition on Γ and non-homogeneous Neumann boundary
condition on Γ0. As stated at the beginning of Section 6.3, we recall here that a dif-
ferent meshsize h̃ is assumed to define the finite element subspace Hλ

h̃
of H1/2(Γ0).

In other words, we consider a partition Γ0,h̃ of Γ0 that is independent of the parti-

tion Γ0,h of Γ0 inherited from a regular triangulation Th of Ω−. In this case, given
an integer k ≥ 0, and denoting the classical PEERS from [2] by PEERS0, we first
take either PEERSk or BDMSk (when k ≥ 1) to define the triple (Hσh ,Lu

h ,L
χ
h ), and

then let Hλ
h̃

be the space of continuous piecewise polynomials on Γ0,h̃ of degree
≤ k+1. Similarly, one could also take the above described AFW element of order 1



MIXED-FEM AND BEM FOR 3D STOKES 489

and set Hλ
h̃
as the space of continuous piecewise polynomials on Γ0,h̃ of degree ≤ 1.

Hence, proceeding analogously as in the proofs of [32, Lemmata 4.1, 4.2, and 4.3],

one can easily show that for each one of the foregoing choices there exist C0, β̃ > 0,

independent of h and h̃, such that whenever h ≤ C0 h̃, the hypothesis (̂H.1) is

satisfied with the constant β̃. We can also refer to [28, Lemma 7.5] for a closely
related argument.

Furthermore, it is easy to see that the above described pairs of finite element
subspaces

(
Hσh ,Lu

h

)
(or

(
Hσh,0,Lu

h

)
) also verify the respective hypotheses (H.2),

(̃H.2), (̂H.2), and (H.2), which imply that the first components of the discrete
kernels of bN and bD become all free divergent. In addition, it is clear that the
corresponding subspaces Lχh satisfy the approximation property required by (H.5).

Moreover, it is quite straightforward to notice that the first condition in (̃H.3), and

(̂H.3), are both satisfied by any of the previously mentioned choices of Hσh .

Next, with respect to the boundary element subspaces of H1/2(Γ) and H
1/2
0 (Γ),

we first let Γh and Γh̃ be independent partitions of Γ, with Γh being the one inherited
from a regular triangulation Th of Ω−. Hence, in order to satisfy the regularity
assumption (H.3) and the inverse inequality (H.4), it suffices to consider an integer
k ≥ 0, set Hφ

h̃
as the space of continuous piecewise polynomials on Γh̃ of degree

≤ k+1, and define Hφ

h̃,0
as the intersection of H

1/2
0 (Γ) with Hφ

h̃
. Similarly, defining

Hφ
h as the space of continuous piecewise polynomials on Γh of degree ≤ k + 1, we

find that the second condition in (̃H.3), and (H.3), follow straightforwardly from
the fact that RM(Γ) is certainly contained in the space of continuous piecewise

polynomials on Γh of degree ≤ 1. On the other hand, concerning (̃H.4) and (̂H.4),

we just remark that the existence of ψ̃ ∈ H1/2(Γ) and ξ̃ ∈ H1/2(Γ0) satisfying the
required conditions in those hypotheses, follows by simply adapting the procedure
suggested in [23, paragraph right before Lemma 8] to the present 3D case (see
also [33, Section 3.2]). To this end, we just need to define Hφ

h (resp. Hλ
h̃
) as any

subspace of H1/2(Γ) (resp. H1/2(Γ0)) containing the space of continuous piecewise
polynomials on Γh (resp. Γ0,h) of degree ≤ 1.

Finally, while the definitions of Hφ

h̃,0
and Hφ

h,0 (cf. (105), (116), (122), and

(128)) are theoretically correct, we remark that for the sake of the computational
implementation of the corresponding Galerkin schemes, it will be better off to
introduce Lagrange multipliers handling the orthogonality conditions defining these
boundary element subspaces. We omit further details and leave this issue and
other related matters, including numerical essays and the analysis of the associated
experimental rates of convergence, for a separate work.
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