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THE IMMERSED FINITE VOLUME ELEMENT METHOD

FOR SOME INTERFACE PROBLEMS

WITH NONHOMOGENEOUS JUMP CONDITIONS

LING ZHU1,2, ZHIYUE ZHANG1, AND ZHILIN LI3,1

Abstract. In this paper, an immersed finite volume element (IFVE) method is developed for
solving some interface problems with nonhomogeneous jump conditions. Using the source removal
technique of nonhomogeneous jump conditions, the new IFVE method is the finite volume element
method applied to the equivalent interface problems with homogeneous jump conditions and have
properties of the usual finite volume element method. The resulting IFVE scheme is simple and
second order accurate with a uniform rectangular partition and the dual meshes. Error analyses
show that the new IFVE method with usual O(h2) convergence in the L2 norm and O(h) in
the H1 norm. Numerical examples are also presented to demonstrate the efficiency of the new
method.

Key words. Elliptic interface problem, non-homogeneous jump conditions, immersed finite
volume element.

1. Introduction

Interface problems are often encountered in many important physical and indus-
trial applications [11, 17].

In this paper, we consider the Poisson equation in a bounded Ω with an interface
Γ in the domain,

−∆u = f (x, y) ∈ Ω\Γ ⊂ R2,(1)

with a Dirichlet boundary condition

u(x, y) = g(x, y) (x, y) ∈ ∂Ω,(2)

and jump conditions

[u]Γ = w,(3)

[un]Γ = Q,(4)

where

[u]Γ = lim
(x,y)→Γ

(x,y)∈Ω+

u(x, y)− lim
(x,y)→Γ

(x,y)∈Ω−

u(x, y), [un]Γ = lim
(x,y)→Γ

(x,y)∈Ω+

un − lim
(x,y)→Γ

(x,y)∈Ω−

un,

with the notation un = ∇u · n. The interface Γ ∈ C2 is a curve separating Ω into
two subsets Ω+ and Ω−, and n is the unit outward normal vector of Γ pointing to
the Ω+ side, see Fig. 1 for an illustration.

In this paper, we assume that w 6= 0 and Q 6= 0. That is why we call such a
problem that has nonhomogeneous jump conditions. The jump conditions can be
obtained from the physics or mathematical derivations. For example, in Peskin’s
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Figure 1. A diagram of the domain for the interface problem.

immersed boundary (IB) model [22], the pressure and its gradient are discontinu-
ous, while the velocity is continuous, but the normal derivative of the velocity is
discontinuous.

There are variety of methods that can be applied to solve the interface problem
(1)-(4) numerically. First of all, in terms of the meshes, one can use a body fitted
mesh or an unfitted mesh. With a body fitted mesh, the standard finite element
method or finite volume element method is straightforward when w = 0. In this
paper, we discuss a new finite volume element method using a uniform mesh with
which there is almost no cost in the mesh generation; and we can utilize a fast
Poisson solver, for example, the one from Fishpack [1]. Thus here we only give a
brief literature review on numerical methods using a uniform unfitted mesh.

When w = 0, then the problem can be written as

−∆u(x) = f(x)−

∫

Γ

Q(X(s))δ(x−X(s))ds, x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,

where X(s) ∈ Γ. In this case, we can use Peskin’s IB method [22] to solve the
interface problem. IB method is first order accurate and usually requires that the
solution is continuous to have a convergent result. The immersed interface (II)
method [12] is a second order accurate finite difference method even if w 6= 0 and
Q 6= 0. To solve the resulting linear finite difference equations, both IB method
and II method can call a fast Poisson solver. The main difference between the
two methods are the right hand sides and the convergence rates. Related other
methods include the matched interface and boundary (MIB) method [25], the ghost
fluid (GF) method [3,19], the virtual node algorithm [2]. Another type of methods
is based on finite element formulation. One type of approaches is to add some
enrichment function near the interface [23] in which the number of degree of the
freedom will be changed. Our method is more related to the immersed finite element
(IFE) method [7, 14, 16] for which the structure and the number of degree of the
freedom remain unchanged. IFE method has been applied to interface problems
with nonhomogeneous jump conditions in [7, 9, 10, 24]. In [7, 15, 18], the source
removal technique was developed for treating nonhomogeneous jump conditions.
In [10], a weak formulation inspired by the boundary condition capturing method
[20] is proposed. In [24], the locally modified triangulations on irregular domains
are proposed.

In this paper, we develop the immersed finite volume element (IFVE) method
which is based on IFE method, similarly to [5,8]. The finite volume element method
is also called generalized difference method [13]. Because the finite volume element
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method can preserve the mass conservation law and many important physical quan-
tities. Compared with previous work of IFVE method [5, 8], the new developed
IFVE method in this paper can deal with non-homogeneous jump conditions.

The basic idea in IFVE method for the interface problem is that the standard
finite volume element method is used away from the interface and the finite vol-
ume element schemes are modified locally near or on the interface according to
the interface relations. In [5, 8], the basis functions in the finite element space are
reconstructed to satisfy the jump conditions on the interface as accurately as possi-
ble. Here, we introduce a formulation which is based on the extension of the jump
conditions (3) and (4) along the normal lines like IFE method in [7, 15, 18]. By
the formulation, we transform the interface problem to a problem with a smooth
solution and only need to use the usual finite element basis functions. Unlike IFE
method in [7] which only need to treat the non-interface elements and interface
elements, one of the difficulties of IFVE method in this paper is that we need to
modify the so-called sub-interface dual elements.

The rest of this article is organized as follows. In section 2, we explain the source
removal idea to treat nonhomogeneous jump conditions. In section 3, we present
IFVE method that is based on the bilinear finite element. In section 4, we provide
error estimates about the numerical solution. In section 5, we give two numerical
examples to demonstrate features of the proposed method. In section 6, we draw
some conclusions about IFVE method.

2. The source removal technique of nonhomogeneous jump conditions

Our idea of the new method is to apply the source removal technique for nonho-
mogeneous jump conditions developed in [7,15,18] before applying the finite volume
element method. In this section, we briefly explain the source removal technique.
We assume that w ∈ C2(Γ) and Q ∈ C2(Γ). Let the interface Γ be represented by
the zero level set of a Lipschitz continuous function ϕ(x, y), that is,

ϕ(x, y)











< 0 if (x, y) ∈ Ω−,

= 0 if (x, y) ∈ Γ,

> 0 if (x, y) ∈ Ω+.

(5)

We assume that ϕ(x, y) ∈ C2(Ω) and |∇ϕ(x, y)| 6= 0 in a neighborhood of the
interface Γ. The signed distance function is such a function. In a neighborhood of
the interface Γ, we define the extensions of w(x, y) and Q(x, y) along the normal
line (in both directions) by

wρ(x, y) = wρ((X,Y ) + α(p1, p2)) = w(X,Y ) (X,Y ) ∈ Γ,

Qρ(x, y) = Qρ((X,Y ) + α(p1, p2)) = Q(X,Y ) (X,Y ) ∈ Γ,

where p = (p1, p2) = (ϕx, ϕy) (note that n = p/|p|), and the scalar α is determined
from the following quadratic equation,

ϕ(x, y) + (∇ϕ(x, y) · p)α+
1

2
(pTHe(ϕ(x, y))p)α2 = 0,

where

pTHe(ϕ(x, y))p = ϕ2
xϕxx + 2ϕxϕyϕxy + ϕ2

yϕyy.

The values of ϕ(x, y), ϕx, ϕy, · · · , ϕyy are approximated using the standard second
order finite difference at the grid point (x, y). Usually there are two solutions of α,
we choose the one such (X,Y ) + α(p1, p2) is closer to the interface.
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We construct uρ : Ω → R based on the extensions,

uρ(x, y) = wρ(x, y) +Qρ(x, y)
ϕ(x, y)

|∇ϕ(x, y)|
.(6)

Then we define

û(x, y) = H(ϕ(x, y))uρ(x, y) =

{

0 if ϕ(x, y) < 0,

uρ(x, y) if ϕ(x, y) ≥ 0,
(7)

where H(·) is the Heaviside function. Note that uρ(x, y) ∈ C2 in the neighborhood
of the interface Γ, û(x, y) has the same nonhomogeneous jumps conditions across
the interface as u(x, y). We refer to [7, 15, 18] for details.

The source removal technique is based on the following theorem.

Theorem 2.1. Let u(x, y) be the solution of (1) to (4) and let û(x, y) be defined
in (7). If we define q(x, y) = u(x, y) − û(x, y) = u(x, y) −H(ϕ(x, y)uρ(x, y), then
the following are true:

−∆q = f(x, y) +H(ϕ(x, y))∆uρ(x, y) (x, y) ∈ Ω\Γ,(8)

[q]Γ = 0, [qn]Γ = 0.(9)

The proof can be found in [7, 15, 18].

Remark 2.1. While q(x, y) is smooth (C1(Ω)) across the interface Γ, the right-
hand side of (8) is discontinuous across the interface.

3. The immersed finite volume element method

For a rectangular domain Ω = (−1, 1)× (−1, 1), we now consider a rectangular
decomposition Th consisting of closed rectangle elementsK such that Ω = ∪K∈Th

K.
We will use Nh to denote the set of all nodes or vertices of Th,

Nh = {p : p is a vertex of element K ∈ Th and p ∈ Ω},

and we let N0
h = Nh ∩ Ω, which denotes the set of interior vertices.

We then introduce a dual mesh T ∗
h related to Th. The elements of T ∗

h are called
control volumes. In each element K ∈ Th consisting of vertices xk, xl, xm, xn, we
take Q as the joint of the two lines connecting the midpoints of the opposite sides
of the rectangle element K. This is called the central dual decomposition. Then
connect Q to the midpoints by straight lines γkl,K . For a vertex xk we let Vk be
the rectangle whose edges are γkl,K in which xk is a vertex of the element K. We
call Vk a control volume centered at xk. Obviously, we have

∪xk∈Nh
Vk = Ω.

For simplicity, let the decomposition Th is equal in the x-direction or the y-direction.
See Fig. 2 for the illustration of Vk. Vk also denotes the dual element of the node
xk.

We call the grid T ∗
h regular or quasi-uniform if there exists a positive constant

C > 0 such that:

C−1h2 ≤ meas(Vk) ≤ Ch2, for all Vk ∈ T ∗
h .

Here, h is the maximal diameter of all elements K ∈ Th.

For an arbitrary interface Γ, some of the dual elements will be cut through by Γ.
There are three cases of a dual element Vk centered at a node point xk = (xi, yj),
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Figure 2. The dual element Vk centered at xk.

see Fig. 3 for an illustration. Type I is an non-interface dual element; Type III is
an interface dual element; Type II is a sub-interface dual element, that is, the dual
element Vk is not cut through by Γ, but the elements related to Vk are cut through
by Γ. Here, we assume that the interface Γ intersects the edges of the elements at
D and E, and approximate the arc DE by the line segment DE. The area of the
region enclosed by the DE and the arc DE is of order O(h3).

(xi, yj)

Vi,j

(xi, yj)

Vi,j

(xi, yj)

Vi,j

I II III

Γ Γ

D
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D

E

Figure 3. The three kinds of the dual element.

If w = 0 and Q = 0 on Γ, we integrate (1) on Vi,j , and employ the Green’s
formula to obtain the weak form. We need to find u ∈ H1(Ω) with u = g on ∂Ω
such that

−

∫

∂Vi,j

(

∂u

∂x
dy −

∂u

∂y
dx

)

=

∫

Vi,j

fdxdy.(10)

In this case, the standard finite volume element method can be applied.
In this paper, we focus on the case when w 6= 0 and Q 6= 0. We employ to

the source removal technique [7, 15, 18] and combine the technique with the finite
volume element method.

We integrate (8) on Vi,j , and employ the Green’s formula to obtain

−

∫

∂Vi,j

(

∂q

∂x
dy −

∂q

∂y
dx

)

=

∫

Vi,j

fdxdy +

∫

Vi,j

H(ϕ(x, y))∆uρdxdy.(11)

Then we introduce the bilinear finite element space Wh ⊂ H1(Ω) with respect to
the decomposition Th. Let {φi,j(x, y)} be the bilinear nodal basis functions of the
usual finite-element space Wh,

φi,j(x, y) =







(

1−
|x− xi|

h

)(

1−
|y − yj|

h

)

(x, y) ∈ Ri,j ,

0 otherwise,
(12)



THE IMMERSED FINITE VOLUME ELEMENT METHOD 373

where Ri,j is a rectangular element centered at the point (xi, yj).

Theorem 3.1. There exists a unique qh ∈ Wh such that

−

∫

∂Vi,j

(

∂qh
∂x

dy −
∂qh
∂y

dx

)

=

∫

Vi,j

fdxdy +

∫

Vi,j

H(ϕ(x, y))∆uρdxdy,(13)

where

qh|Vi,j
=

∑

m,n={−1,0,1}

φi+m,j+nqh,i+m,j+n.

We rewrite (13) in terms of uh = qh + û to obtain the IFVE scheme:

−

∫

∂Vi,j

(

∂uh

∂x
dy −

∂uh

∂y
dx

)

=(14)

∫

Vi,j

fdxdy −

∫

∂Vi,j

(

∂û

∂x
dy −

∂û

∂y
dx

)

+

∫

Vi,j

H(ϕ(x, y))∆uρdxdy.

As shown in Fig. 3, the dual element Vi,j of type I or type II is entirely in Ω−,
and thus the last two terms of integration over the element Vi,j are zero since
H(ϕ(x, y)) = 0 and û = 0. If this element is entirely in Ω+, we have

∫

∂Vi,j

(

∂û

∂x
dy −

∂û

∂y
dx

)

−

∫

Vi,j

H(ϕ(x, y))∆uρdxdy

=

∫

∂Vi,j

(

∂uρ

∂x
dy −

∂uρ

∂y
dx

)

−

∫

Vi,j

∆uρdxdy = 0.

When the dual element is Type III, the last two terms of integration are not zero
in general. We define

uh|Vi,j
(x, y) =































∑

m,n={−1,0,1}

φi+m,j+nuh,i+m,j+n if Vi,j is type I or II,

∑

m,n={−1,0,1}

φi+m,j+nuh,i+m,j+n+

∑

m,n={−1,0,1}

φi+m,j+nû(xi+m, yj+n) otherwise.

As a result, if Vi,j is type I or II, we use the following scheme

−

∫

∂Vi,j

(

∂uh

∂x
dy −

∂uh

∂y
dx

)

=

∫

Vi,j

fdxdy.(15)

If Vi,j is type III, we use the scheme (14).
However, if we treat Type II as above, we will get wrong results since the element

K3 is cut through by the interface Γ, see Fig. 4 for an illustration. That is, on
K3, uh 6= φi,juh,i,j + φi+1,juh,i+1,j + φi+1,j+1uh,i+1,j+1 + φi,j+1uh,i,j+1. For this
case, we could reconstruct the bilinear nodal basis function φi,j as described in [8].
In [8], φi,j (also φi+1,j , φi+1,j+1, φi,j+1) is a piecewise functions with two bilinear
polynomials on K3 patched up together by the interface jump conditions. The
schemes proposed in [8] is complicated and difficult to implement. Clearly, such
basis functions depend on the interface location and the jump conditions. In our
proposed approach, we modify the scheme without changing the basis functions.
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Figure 4. The dual element Vi,j of Type II.

We reconsider the schemes from (13) for sub-interface dual elements. If Vi,j ∈
Ω−, then H(ϕ(x, y)) = 0. Hence, we have

−

∫

∂Vi,j

(

∂qh
∂x

dy −
∂qh
∂y

dx

)

=

∫

Vi,j

fdxdy.(16)

Furthermore, we use uh = qh + û to get the scheme,

−

∫

∂Vi,j

(

∂uh

∂x
dy −

∂uh

∂y
dx

)

=

∫

Vi,j

fdxdy(17)

+
∑

m,n={−1,0,1}

H(ϕ(xi+m, yj+n))Ai+m,j+nuρ(xi+m, yj+n),

where

Ai,j = −

∫

∂Vi,j

(

∂φi,j

∂x
dy −

∂φi,j

∂y
dx

)

.(18)

Similarly, if Vi,j ∈ Ω+, then H(ϕ(x, y)) = 1 and we have

−

∫

∂Vi,j

(

∂uh

∂x
dy −

∂uh

∂y
dx

)

=

∫

Vi,j

f(x, y)dxdy +

∫

Vi,j

∆uρdxdy(19)

+
∑

m,n={−1,0,1}

H(ϕ(xi+m, yj+n))Ai+m,j+nuρ(xi+m, yj+n).

If we consider the local conservation property on a control volume of the finite
volume element method, we can get a simpler scheme than (19). Now, we let
q̃ = u+ ũ, and define

ũ(x, y) = (1 −H(ϕ(x, y)))uρ(x, y) =

{

0 if ϕ(x, y) > 0,

uρ(x, y) if ϕ(x, y) ≤ 0.
(20)

(1) is written similarly as Theorem 2.1,

−∆q̃ = f(x, y)− (1−H(ϕ(x, y)))∆uρ(x, y) (x, y) ∈ Ω\Γ.(21)

Along the interface Γ, q̃ also satisfies the homogeneous jump condition as follows,

[q̃]Γ = 0, [q̃n]Γ = 0.

We integrate (21) on Vi,j and get the numerical scheme,

−

∫

∂Vi,j

(

∂q̃h
∂x

dy −
∂q̃h
∂y

dx

)

=

∫

Vi,j

f(x, y)dxdy −

∫

Vi,j

(1 −H(ϕ(x, y)))∆uρdxdy,
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where Vi,j is a sub-interface dual element and belongs to Ω+. Then, (1−H(ϕ(x, y)))
= 0. Thus, by q̃h = uh + ũ, we have

−

∫

∂Vi,j

(

∂uh

∂x
dy −

∂uh

∂y
dx

)

=

∫

Vi,j

fdxdy(22)

−
∑

m,n={−1,0,1}

(1−H(ϕ(xi+m, yj+n)))Ai+m,j+nuρ(xi+m, yj+n).

In (22), we avoid the computation of the term

∫

Vi,j

∆uρdxdy in (19). Hence,

IFVE method that we proposed can be summarized as follows: For Type I, we
use the formula (15); for Type II, we use the formula (17) or (22); for Type III,
we use the formula (14). We refer the readers to [7, 8] for the details about the
computation of the integrals.

4. Error estimates

We analyze our proposed method in this section. For simplicity, we consider the
homogeneous Dirichlet boundary condition, i.e., g = 0. In fact, we can get the same
conclusion as g 6= 0. We define the dual volume element space W ∗

h of the bilinear
finite element space Wh ⊂ H1

0 (Ω),

W ∗
h = {v ∈ L2(Ω) : v|Vi,j

= constant, ∀ Vi,j ∈ T ∗
h}.

Let Ih : C(Ω) → Wh and I∗h : C(Ω) → W ∗
h be the usual interpolation operators,

i.e.,

Ihq =
∑

(xi,yj)∈Nh

qi,jφi,j(x, y) and I∗hq =
∑

(xi,yj)∈Nh

qi,jχi,j(x, y),

where

χi,j(x, y) =

{

1 (x, y) ∈ Vi,j ,

0 elsewhere,

qi,j = q(xi, yj), and φi,j(x, y) is defined as (12).
Then, (cf. [4, 21])

|q − Ihq|Hm(Ω) ≤ Ch2−m|q|H2(Ω) ∀q ∈ C(Ω), m = 0, 1.(23)

|qh − I∗hqh|L2(Ω) ≤ Ch|qh|H1(Ω) ∀qh ∈ Wh.(24)

We multiply both sides of (8) by a test function v ∈ H1
0 (Ω) and integrate over

Ω to get the weak form. The problem is then to find q ∈ H1
0 (Ω) such that

a(q, v) = (f̃ , v) ∀v ∈ H1
0 (Ω),(25)

where the bilinear form a(q, v) =

∫

Ω

∇q·∇vdxdy, f̃ = f(x, y)+H(ϕ(x, y))∆uρ(x, y).

The finite element approximation qh of (25) is defined as a solution to the fol-
lowing problem: Finding qh ∈ Wh such that

a(qh, vh) = (f̃ , vh) ∀vh ∈ Wh,(26)

where the bilinear form a(qh, vh) =

∫

Ω

∇qh · ∇vhdxdy.

Multiply (13) by vi,j and add all the terms, we obtain

−
∑

(xi,yj)∈Nh

vi,j

∫

∂Vi,j

∇qh · nds = −
∑

(xi,yj)∈Nh

vi,j

∫

Vi,j

f̃dxdy.
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Then the bilinear form a(qh, I
∗
hvh) = −

∑

(xi,yj)∈Nh

vi,j

∫

∂Vi,j

∇qh · nds.

Let us introduce the following discrete norms:

|qh|L2(Ω),h =





∑

(xi,yj)∈Nh

meas(Vi,j)q
2
h,ij





1/2

,

|qh|H1(Ω),h =





∑

(xi,yj)∈Nh

∑

(xm,yn)∈Π(i,j)

meas(Vi,j)(qh,ij − qh,mn)/dij,mn





1/2

,

‖qh‖
2
1,h = |qh|

2
L2(Ω),h + |qh|

2
H1(Ω),h,

where dij,mn is the distance between (xi, yj) and (xm, yn), and Π(i, j) is the index
set of those vertices that along with (xi, yj), which are in some element of Th.

Lemma 4.1. ( [6,13]) There exist two positive constants C0, C1 > 0, independent
of h, such that

C0|qh|L2(Ω),h ≤ ‖qh‖L2(Ω) ≤ C1|qh|L2(Ω),h ∀qh ∈ Wh,

C0‖qh‖H1(Ω),h ≤ ‖qh‖H1(Ω) ≤ C1‖qh‖H1(Ω),h ∀qh ∈ Wh.

Lemma 4.2. ( [6,13]) There exist two positive constants C0, C1 > 0, independent
of h and h0 > 0, such that for all 0 < h ≤ h0,

|a(qh, I
∗
hvh)| ≤ C1‖qh‖H1(Ω),h‖vh‖H1(Ω),h ∀qh, vh ∈ Wh,(27)

a(qh, I
∗
hvh) ≥ C0‖qh‖

2
H1(Ω),h ∀qh, vh ∈ Wh.(28)

This lemma guarantees the existence and uniqueness of the IFVE solution.

Lemma 4.3. For any qh, vh ∈ Wh, we have

a(qh, vh) = a(qh, I
∗
hvh) + Eh(qh, vh).(29)

with

Eh(qh, vh) =
∑

K∈Th

∫

∂K

(∇qh · n)(vh − I∗hvh)ds.

Moreover, there is a positive constant C > 0, independent of h, such that

|Eh(qh, vh)| ≤ Ch ‖ qh ‖H1(Ω),h‖ vh ‖H1(Ω),h .(30)

Proof. For each K ∈ Th with vertices xk, xl, xm, xn, we use Kk, Kl, Km, Kn to
denote a quasi-uniform rectangle formed by γkl and the edges of K, xkl denotes
the midpoint of the edge xkxl, see Fig. 5 for the sketch.

Due to qh ∈ Wh, we find −∆qh = 0. It follows by multiplying by I∗hvh and
integrating on K that:

−

∫

K

∆qhI
∗
hvhdxdy = −

∑

i=k,l,m,n

∫

Ki

∆qhI
∗
hvhdxdy(31)

= −

∫

∂K

(∇qh · n)I∗hvhds− vk

∫

γnk+γkl

∇qh · nds− vl

∫

γkl+γlm

∇qh · nds

−vm

∫

γlm+γmn

∇qh · nds− vn

∫

γmn+γnk

∇qh · nds.
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Figure 5. The element K.

Similarly,

−

∫

K

∆qhvhdxdy = −

∫

∂K

(∇qh · n)vhds+

∫

K

∇qh · ∇vhdxdy.(32)

Thus, from (31) and (32), we have:
∫

K

∇qh · ∇vhdxdy = −vk

∫

γnk+γkl

∇qh · nds− vl

∫

γkl+γlm

∇qh · nds

−vm

∫

γlm+γmn

∇qh · nds− vn

∫

γmn+γnk

∇qh · nds+

∫

∂K

(∇qh · n)(vh − I∗hvh)ds.

For the proof of (30), c.f. Lemma 3.1 in [5]. �

Theorem 4.1. Assume that Th is regular and q ∈ H1
0 (Ω) and qh ∈ Wh are the

solutions of (11) and (13), respectively. If the solution q satisfies q ∈ H2(Ω) and

f̃ ∈ L2(Ω) ∩H1(Ω\Γ), then

||q − qh||H1(Ω) ≤ Ch(‖q‖H2(Ω) + ‖f̃‖L2(Ω)),(33)

||q − qh||L2(Ω) ≤ Ch2(‖q‖H2(Ω) + ‖f̃‖H1(Ω\Γ)).(34)

Proof. By (29), (23), (24) and (30), let ρh = Ihq − qh,

‖q − qh‖
2
H1(Ω) = a(q − qh, q − Ihq) + a(q − qh, ρh)

= a(q − qh, q − Ihq) + (f̃ , ρh − I∗hρh)− Eh(qh, ρh)

≤ Ch‖q − qh‖H1(Ω)‖q‖H2(Ω) + Ch‖f̃‖L2(Ω)‖ρh‖H1(Ω),h

+Ch‖qh‖H1(Ω),h‖ρh‖H1(Ω),h.

By Lemma 4.2 and the approximation theory we have

‖qh‖H1(Ω),h ≤ C‖f̃‖L2(Ω),

‖ρh‖H1(Ω),h ≤ ‖q − qh‖H1(Ω) + Ch‖q‖H2(Ω).

The proof of (33) is then completed.
To obtain the L2 error estimate, we use the standard dual argument. Let r ∈

H1
0 (Ω) be the unique function satisfying

−∆r = q − qh ∀(x, y) ∈ Ω, and r = 0 on ∂Ω.(35)
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Then we have ‖r‖H2(Ω) ≤ ‖q − qh‖L2(Ω). By (33) and (29),

‖q − qh‖
2
L2(Ω) = a(q − qh, r − rh) + a(q − qh, rh)

≤ Ch(‖q‖H2(Ω) + ‖f̃‖L2(Ω))‖r − rh‖H1(Ω) + a(q − qh, rh)

≤ Ch(‖q‖H2(Ω) + ‖f̃‖L2(Ω))‖r − rh‖H1(Ω)

+(f̃ , rh − I∗hrh)− Eh(qh, rh).

As xkl is the middle point of each edge (see Fig. 5), we have:
∫

K

(rh − I∗hrh)ds = 0 for all K ∈ Th.

So that, by (24),

(f̃ , rh − I∗hrh) =
∑

K∈Th

(f̃ − f̃K , rh − I∗hrh)K ≤ Ch2‖f̃‖H1(Ω\Γ)‖rh‖H1(Ω),h.

Here, if K is an non-interface element, f̃K is the average value of f̃ on K; if K is
an interface element,

f̃K =

{

f̃+
K if (x, y) ∈ K+ ⊂ Ω+,

f̃−
K if (x, y) ∈ K− ⊂ Ω−,

where K = K+ ∪K−, and f̃+
K and f̃−

K are the average values of f̃ on K+ and K−,
respectively.

And we have

Eh(qh, Ihr) ≤ Ch2‖qh‖H1(Ω),h‖Ihr‖H1(Ω),h,

see [21] for the proof.
Thus, by taking rh = Ihr, we get

‖q − qh‖
2
L2(Ω) ≤ Ch2(‖q‖H2(Ω) + ‖f̃‖H1(Ω\Γ))‖r‖H2(Ω)

+Ch2‖f̃‖H1(Ω\Γ)‖q − qh‖L2(Ω)

≤ Ch2(‖q‖H2(Ω) + ‖f̃‖H1(Ω\Γ))‖q − qh‖L2(Ω).

The proof of (34) is completed. �

5. Numerical experiments

We present two numerical examples in this section to show the convergence
results of IFVE method proposed in this paper. We define e∞, e0, e1 as the errors
in the L∞, L2 norms and semi-H1 norm, respectively,

e∞ = max
(xi,yj)∈Ω

|u(xi, yj)− uh(xi, yj)|,

e0 = h





∑

(xi,yj)∈Ω

|u(xi, yj)− uh(xi, yj)|
2





1
2

,

e1 = h





∑

(xi,yj)∈Ω

|ux(xi, yj)− uh,x(xi, yj)|
2 + |uy(xi, yj)− uh,y(xi, yj)|

2





1
2

,
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where uh,x(xi, yj) is defined as follows, i.e.,

uh,x(xi, yj) ≈






























uh,i+1,j − uh,i,j

h
if xixi+1 ∩ Γ = Ø,

(uh,i+1,j − uρ(xi+1, yj))− uh,i,j

h
if xixi+1 ∩ Γ 6= Ø and uh,i+1,j ∈ Ω+,

uh,i+1,j − (uh,i,j − uρ(xi, yj))

h
if xixi+1 ∩ Γ 6= Ø and uh,i+1,j ∈ Ω−,

where uh,i,j = uh(xi, yj).
The derivative uh,y(xi, yj) is defined as similar. We define the functions u+, u−

as follows,

u(x, y) =

{

u+(x, y) if (x, y) ∈ Ω+ ∪ Γ,

u−(x, y) if (x, y) ∈ Ω−.

Example 1. The level set function ϕ(x, y) and the solution u± are given by

ϕ(x, y) =
√

x2 + y2 − 0.5, u+ = ln(x2 + y2), u− = sin(x + y),

see Fig. 6 for a solution plot, the domain, and the interface. The source term f(x, y)
and the Dirichlet boundary data g(x, y) are determined from the exact solution
u±(x, y).

Figure 6. (a) The domain and interface of Example 1. (b) A plot
of the exact solution of Example 1.

In Table 1, we show a grid refinement analysis. The first column is the mesh size
h. The third column is the estimated order of convergency using the formula

order =
log(e∞,N/e∞,2N)

log 2
,

where N is the number of intervals in x or y directions. The fifth and seventh
columns are similar but with L2 and semi-H1 norms, respectively. We can see
clearly second order convergence in the L∞, L2 norms, and first order in the semi-
H1 norm as expected.

Example 2. The solution u± are the same as Example 1. But the interface which
is the zero level set of ϕ(x, y) is complicated, where

ϕ(r, θ) = r − 0.5− 0.1 sin(5θ) θ ∈ (0, 2π),
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Table 1. A grid refinement analysis of the immersed finite volume
element (IFVE) method for Example 1.

h e∞ order e0 order e1 order
1/10 4.066× 10−3 3.205× 10−3 3.476× 10−1

1/20 1.208× 10−3 1.75 9.128× 10−4 1.81 1.614× 10−1 1.11
1/40 3.471× 10−4 1.80 2.431× 10−4 1.91 7.885× 10−2 1.03
1/80 9.411× 10−5 1.88 6.569× 10−5 1.89 3.912× 10−2 1.01
1/160 2.475× 10−5 1.93 1.681× 10−5 1.97 1.952× 10−2 1.00

where tan θ = x/y, see Fig. 7 for a plot of the solution, the domain, and the
interface.

Figure 7. (a) The domain and interface of Example 2. (b) A plot
of the exact solution of Example 2.

Table 2. A grid refinement analysis of the immersed finite volume
element (IFVE) method for Example 2.

h e∞ order e0 order e1 order
1/10 2.138× 10−2 1.123× 10−2 3.620× 10−1

1/20 4.965× 10−3 2.11 2.531× 10−3 2.15 1.672× 10−1 1.11
1/40 1.011× 10−3 2.30 6.297× 10−4 2.01 8.114× 10−2 1.04
1/80 2.423× 10−4 2.06 1.077× 10−4 2.55 4.051× 10−2 1.00
1/160 6.534× 10−5 1.89 2.849× 10−5 1.92 2.019× 10−2 1.00

In Table 2, we can see that although the interface is complicated, IFVE method
still has second order convergence in the L∞, L2 norms, and first order convergence
in the semi-H1 norm.

At last, we use the linear regression to analyze the data in Table 1, and find that
the data obey

||uh − u||∞ ≈ 0.2938h1.8403, ||uh − u||0 ≈ 0.2596h1.8946, |uh − u|1 ≈ 3.6684h1.0354.

The data in Table 2 obey

||uh − u||∞ ≈ 2.6348h2.1065, ||uh − u||0 ≈ 1.7402h2.1801, |uh − u|1 ≈ 3.8257h1.0374.

See Fig. 8 for these linear regressions. These results further indicate our results.



THE IMMERSED FINITE VOLUME ELEMENT METHOD 381

−6 −5 −4 −3 −2 −1
−12

−10

−8

−6

−4

−2

0

log(h)

lo
g(

er
ro

r)
(a)

−6 −5 −4 −3 −2 −1
−12

−10

−8

−6

−4

−2

0

log(h)

lo
g(

er
ro

r)

(b)

Figure 8. (a) The linear regression of the data in Table 1. (b) The
linear regression of the data in Table 2. In this diagram, ′◦′ denotes
L∞ norm error, the straight line ′−′ denotes the linear regression
for L∞ norm error, ′∗′ denotes L2 norm error, the dotted line ′−−′

denotes the linear regression for L2 norm error, ’+’ denotes semi-
H1 norm error, the dot dash line ′− .′ denotes the linear regression
for semi-H1 norm error.

6. Conclusion

In this paper, we have presented IFVE method for Poisson equations with non-
homogeneous jump conditions across an arbitrary interface. The method possesses
both the advantages of local conservation in the finite volume element method and
the capability of IFE method for handling the nonhomogeneous jump conditions
across the interface. Particularly, in the interface or the sub-interface dual ele-
ments, we do not modify the usual bilinear basis functions, and only modify the
right-hand sides of the resulting linear system of equations, which greatly reduces
the complexity of the numerical method, and speeds-up the entire algorithm. The
resulting IFVE scheme is simple to implement and maintains the data structure as
for a regular problem. We have shown that our proposed method is second order
accurate in the L∞ and L2 norms, and first order in the semi-H1 norm.
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