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FINITE DIFFERENCE SCHEMES FOR THE KORTEWEG-DE

VRIES-KAWAHARA EQUATION

UJJWAL KOLEY

Abstract. We are concerned with the convergence of fully discrete finite difference schemes for
the Korteweg-de Vries-Kawahara equation, which is a transport equation perturbed by dispersive
terms of third and fifth order. It describes the evolution of small but finite amplitude long waves
in various problems in fluid dynamics. Both the decaying case on the full line and the periodic
case are considered. If the initial data u|t=0 = u0 are of high regularity, u0 ∈ H

5(R), the schemes
are shown to converge to a classical solution. Finally, the convergence is illustrated by an example.

Key words. Kawahara Equation, finite difference scheme, implicit schemes, convergence, exis-
tence.

1. Introduction

1.1. The Equation. This paper is concerned with the Korteweg-de Vries-Kawahara
(Kawahara) equation, which reads

(1)

{
ut + uux + ∂3

xu = ∂5
xu, (x, t) ∈ ΠT ,

u(x, 0) = u0(x), x ∈ R,

where ΠT = R× (0, T ] with fixed T > 0, u0 the given initial data, and u : ΠT 7→ R

is the unknown scalar map. It is well known that the one-dimensional waves of
small but finite amplitude in dispersive systems (e.g., the magneto-acoustic waves
in plasmas, the shallow water waves, the lattice waves, etc.) can be described by
the Korteweg-de Vries (KdV) equation, given by

(2) ut + uux + ∂3
xu = 0,

which admits either compressive or rarefactive steady solitary wave solution (by a
solitary water wave, we mean a travelling wave solution of the water wave equations
for which the free surface approaches a constant height as |x| → ∞) according to
the sign of the dispersion term (the third order derivative term). In fact, in the
galaxy of dispersive equations used to model waves phenomena, KdV equation is
undoubtedly the brightest star.

However, under certain circumstances, it might happen that the coefficient of
the third order derivative in the KdV equation becomes significantly small or even
zero. In such a scenario, it is customary to take account of the higher order effect
of dispersion in order to balance the nonlinear effect. As a result one may obtain a
generalized nonlinear dispersive equation, known as Kawahara equation, which has
a form of the KdV equation with an additional fifth order derivative term, given
by (1). The Kawahara equation, an important nonlinear dispersive wave equation,
describes solitary wave propagation in media in which the first order dispersion
is anomalously small. A more specific physical background of this equation was
introduced by Hunter and Scheurle [11], where they used it to describe the evolution
of solitary waves in fluids in which the Bond number is less than but close to 1
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the Froude number is close to 1. In the literature, this equation is also referred to
as the fifth order KdV equation or singularly perturbed KdV equation. The fifth
order term ∂5

xu is called the Kawahara term.

1.2. Mathematical Background. There exists a fairly satisfactory well posed-
ness theory for both KdV and Kawahara equations. The literature herein is sub-
stantial, and we will here only give a non-exhaustive overview. Within the existing
framework, we mention the remarkable paper by Kenig et al., where the authors
provide the local existence theory for the KdV equation in the Sobolev SpaceHs, for
s > −3/4. For a completely satisfactory well posedness theory for KdV equation,
we refer to the monograph of Tao [23], and references therein.

Over the past four decades, there has been an increased interest to understand
the solitary wave solutions of the Kawahara equation [6, 14, 16, 17]. It is found
that, similar to the KdV equation, the Kawahara equation also has solitary wave
solutions which decay rapidly to zero as t → ∞, but unlike the KdV equation
whose solitary wave solutions are non-oscillating, the solitary wave solutions of the
Kawahara equation have oscillatory trails. This shows that the Kawahara equation
is not only similar but also different from the KdV equation in the properties of
solutions. The strong physical background of the Kawahara equation and such
similarities and differences between it and the KdV equation in both the form and
the behavior of the solution render the mathematical treatment of this equation
particularly interesting. The Cauchy problem given by (1) has been studied by a
few authors [3,7,15,24,25]. In that context, we mention the paper [3], where authors
have shown that the problem (1) has a local solution u ∈ C([−T, T ];Hr(R)) if
u0 ∈ Hr(R) and r > −1. This local result combined with the energy conservation
law yields that (1) has a global solution u ∈ C([−∞,∞];L2(R)) if u0 ∈ L2(R).
Furthermore, the above mentioned results for (1) has been improved can be found
in [25]. They even managed to prove local existence of solutions for u0 ∈ Hr(R), for
r ≥ −7/5 and global existence for u0 ∈ Hr(R), for r > −1/2. For the well posedness
theory of (1), we refer to [7] and for the regularity results of such solutions, we refer
to [20].

1.3. Numerical Approaches. There has been a number of papers involving the
numerical computation of solutions of the Cauchy problem (1). For the KdV equa-
tion, a galore of numerical schemes available in literature. We just mention an
interesting fact, and rarely referred to in the current literature, is that the first
mathematical proof of existence and uniqueness of solutions of the KdV equation,
was accomplished by Sjöberg [22] in 1970, using a finite difference approximation.
His approach is based on a semi-discrete approximation where one discretizes the
spatial variable, thereby reducing the equation to a system of ordinary differen-
tial equations. However, we stress that for numerical computations also this set
of ordinary differential equations will have to be discretized in order to be solved.
Therefore, to have a completely satisfactory numerical method, one seeks a fully
discrete scheme that reduces the actual computation to a solution of a finite set of
algebraic equations. In fact, this is accomplished in a recent paper by Holden et
al. [8], both in the periodic case and on the full line.

A popular numerical approach has been the application of various spectral meth-
ods. Fourier-Galerkin spectral method for the KdV and Kawahara equations has
been studied in [1, 18, 19]. Pseudospectral method or spectral collocation method
have been used to solve PDEs like KdV, Kawahara equations in [4, 5]. On the
other hand, in [18], an error estimate for a simple spectral fully discrete scheme
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for Kawahara equation has been proved. The equation was discretized in space by
the standard Fourier-Galerkin spectral method and in time by the explicit leap-frog
scheme. For the resulting fully discrete, conditionally stable scheme they prove an
L2-error bound of spectral accuracy in space and of second-order accuracy in time.
Furthermore, finite difference schemes for Kawahara equation are also available in
literature [2, 21]. But, as far as we are concerned, there is no rigorous proof of
convergence for such schemes.

Finally, we mention that the numerical computation of solutions of the Kawa-
hara equation is rather capricious. Two competing equations are involved, namely
nonlinear convective term uux, which in the context of the equation ut = uux yields
an infinite gradient in finite time even for smooth data, and the linear dispersive
terms uxxx, uxxxxx, which in the context of the equation ut = uxxx + uxxxxx pro-
duces hard to compute dispersive waves, and these two effects combined makes it
difficult to obtain accurate and fast numerical methods. Most of the finite difference
schemes will consist of a sum of two terms, one discretizing the convective term and
one discretizing the dispersive terms. These two effects will have to balance each
other, as it is known that the Kawahara equation itself keeps the Sobolev norm
Hs(s > −1) bounded.

1.4. Scope of this Paper. In this paper, we focus on the derivation of convergent
finite difference numerical methods for (1). The problem of analyzing convergent
numerical schemes of course intimately is connected with the mathematical prop-
erties of the Cauchy problem for the Kawahara equation, which is well developed
in literature.

First part of the paper deals with the convergence analysis of the following semi
implicit (explicit discretization for the “nonlinear” term and implicit discretization
for the “dispersive” terms) finite difference scheme

(3) un+1
j = un

j −∆t un
jDun

j −∆tD2
+D−u

n+1
j +∆tD3

+D
2
−u

n+1
j , n ∈ N0, j ∈ Z,

where un
j ≈ u(j∆x, n∆t), and ∆x,∆t are small discretization parameters. Further-

more, D and D± denote symmetric and forward/backward (spatial) finite differ-
ences, respectively, and u denotes a spatial average. We remark that, this scheme
is an extension of the scheme for KdV equation, analyzed in [8], to the Kawahara
equation. We prove the following result, both for the full line and the periodic
case: If the initial data u0 ∈ H5(R), we show (see Theorem 3.2 and Remark 3.1)

that the approximation (3) converges uniformly as ∆x → 0 with ∆t = O
(
∆x

3
2

)
in

C(R× [0, T̄ ]), for any positive T̄ to the unique solution of the Kawahara equation.
Moreover, global existence of solutions has been proved. The above result gives
a positive answer to the quest for a numerical scheme for Kawahara equation, for
which we can prove convergence rigorously.

Having said this, however, the above mention scheme is clearly dissipative (cf.
Figure 1), and as a result, produces below par numerical results. In fact, both phase
and amplitude errors are evident from Figure 1. To overcome such drawbacks, we
propose the following Crank-Nicolson fully implicit difference scheme
(4)

un+1
j = un

j−∆t ũ
n+ 1

2

j Du
n+ 1

2

j −∆tD+DD−u
n+ 1

2

j +∆tD2
+DD2

−u
n+ 1

2

j , n ∈ N0, j ∈ Z,

where we have used the notation un+ 1
2 = 1

2 (u
n + un+1), and ũ denotes a spa-

tial average. Moreover, in the second part of the paper, we prove the following
convergence result: If the initial data u0 ∈ H5(R), we show (see Theorem 4.2)
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that the approximation (3) converges uniformly as ∆x → 0 with ∆t = O (∆x) in
C(R× [0, T̄ ]) for any positive T̄ to the unique solution of the Kawahara equation.

To sum up, the proposed Crank-Nicolson scheme (4) has the following advan-
tages:

• The scheme is conservative, i.e., it preserves the L2-norm of the solution.
• The Figure 1 shows that the Crank-Nicolson scheme performs better than
the dissipative scheme (3). In fact, this scheme doesn’t entertain phase or
dissipation errors, while phase error and substantial dissipation error are
evident for the other scheme.

• An improvement of CFL condition helps to run the scheme for large time
efficiently.
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Figure 1. Comparison of exact and numerical solutions for dif-
ferent schemes at T = 200, with initial data (60) and c = 10.

The rest of the paper is organized as follows: In Section 2, we present the
necessary notation and a semi implicit difference scheme for the Kawahara equation
(1). Next, in Section 3, we show the convergence of the scheme for an initial data
u0 in H5(R) both for the full line and the periodic case. In Section 4, we propose
a Crank-Nicolson type difference scheme and give details about the convergence
proof of such schemes. In Section 5, we have shown the uniqueness of the solution,
while in Section 6 we exhibit a numerical experiment showing the convergence.

2. Semi Implicit Finite Difference Scheme

As we mentioned earlier, following Holden et al. [8], we first analyze a semi
implicit finite difference scheme for Kawahara equation. Here and in the sequel,
we use the letters C,K to denote various generic constants. There are situations
where constants may change from line to line, but the notation is kept unchanged so
long as it does not impact the central idea. We start by introducing the necessary
notation needed to define the scheme. Thought this paper, we reserve ∆x, and ∆t
to denote small positive numbers that represent spatial and temporal discretization
parameter of the numerical scheme respectively. Derivatives will be approximated
by finite differences, and the basic quantities are as follows. For any function
p : R → R we set

D±p(x) = ± 1

∆x

(
p(x±∆x)− p(x)

)
, and D =

1

2
(D+ +D−) .

Next, we introduce the average operators

p(x) =
1

2
(p(x+∆x) + p(x−∆x)) , p̃(x) =

1

3
(p(x+∆x) + p(x) + p(x−∆x)) .
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A simple use of Leibnitz rule allows us to verify the following identities readily:

D(pq) = pDq + qDp,(5a)

D±(pq) = S±pD±q + qD±p = S±qD±p+ pD±q,(5b)

D+D−(pq) = D−pD+q + S−q D−D−p+D+pD+q + q D+D−p.(5c)

Here we have defined the shift operator

S±p(x) = p(x±∆x).

We discretize the real axis using ∆x and set xj = j∆x for j ∈ Z. For a given
function p we define pj = p(xj). We will consider functions in `2 with the usual
inner product and norm

(p, q) = ∆x
∑

j∈Z

pjqj , ‖p‖ = ‖p‖2 = (p, p)1/2, p, q ∈ `2.

In the periodic case with period J , the sum over Z is replaced by a finite sum
j = 0, . . . , J − 1. Furthermore, we define h5-norm of a lattice function p as

‖p‖h5 := ‖p‖+ ‖D+p‖+ ‖D+D−p‖+ ‖D+DD−p‖+
∥∥D2

+D
2
−p
∥∥+

∥∥D2
+DD2

−p
∥∥ .

The various difference operators enjoy the following properties:

(p,D±q) = −(D∓p, q), (p,Dq) = −(Dp, q), p, q ∈ `2.

Further useful properties include

(6)
(u,D2

+D−u) =
1

2
(u,D−D

2
+u)−

1

2
(u,D2

+DD2
−u) =

1

2

(
u, (D−D

2
+ −D+D

2
−)u

)

=
1

2

(
u,D−D+(D− −D+)u

)
=

∆x

2
‖D+D−u‖2

In a similar fashion, we find that

(u,D3
+D

2
−u) =

1

2
(u,D3

+D
2
−u)−

1

2
(u,D3

−D
2
+u)

=
1

2

(
u,D2

−D
2
+(D+ −D−)u

)
= −∆x

2

∥∥D−D
2
+u
∥∥2 ,(7)

and

(8) (D2
+D−u,D

3
+D

2
−u) = −

∥∥D2
−D

2
+u
∥∥2 .

We also need to discretize in the time direction. Introduce (a small) time step
∆t > 0, and use the notation

Dt
+p(t) =

1

∆t

(
p(t+∆t)− p(t)

)
,

for any function p : [0, T ] → R. Write tn = n∆t for n ∈ N0 = N ∪ {0}. A fully
discrete grid function is a function u∆x : ∆tN0 → RZ, and we write u∆x(xj , tn) =
un
j . (A CFL condition will enforce a relationship between ∆x and ∆t, and hence

we only use ∆x in the notation.)
We are now ready to propose the following semi implicit scheme (based upon a

six-point stencil) to generate approximate solutions to the Kawahara equation (1)
(9)

un+1
j = un

j−
∆t

3
[un

jDun
j+D(un

j )
2]−∆tD−D

2
+u

n+1
j +∆tD3

+D
2
−u

n+1
j , n ∈ N0, j ∈ Z.

Keeping in mind that Du2
j = 2ujDuj, we can rewrite the above scheme as

(10) un+1
j = un

j −∆tun
jDun

j −∆tD−D
2
+u

n+1
j +∆tD3

+D
2
−u

n+1
j .
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For the initial data we have

u0
j = u0(xj), j ∈ Z.

Remark 2.1. This scheme can be reformulated as an operator splitting scheme as
follows. Set

u
n+1/2
j =

1

2

(
un
j+1 + un

j−1

)
− ∆t

2∆x

(
1

2

(
un
j+1

)2 − 1

2

(
un
j−1

)2
)
,

i.e., un+1/2 is solution operator of the Lax–Friedrichs scheme for Burgers’ equation,
applied to un. Then

un+1 − un+1/2

∆t
= −D2

+D−u
n+1 +D3

+D
2
−u

n+1,

i.e., un+1 is the approximate solution operator of a first-order implicit scheme for
the equation ut + uxxx = uxxxxx. If we write these two approximate solution oper-
ators as SB

∆t, and SA
∆t, respectively, the updated formula (10) reads

un+1 =
(
SA
∆t ◦ SB

∆t

)
un.

The convergence of this type of operator splitting using exact solution operators have
been shown in [9], with severe restrictions on the initial data. The results in this
paper can be viewed as a convergence result for operator splitting using approximate
operators with less restrictions on the initial data, but with specified ratios between
the temporal and spatial discretizations (CFL-like conditions).

Finally, we conclude this section by stating the following lemma, which essentially
gives a relation between discrete and continuous Sobolev norms. Since we shall use
this lemma frequently, for the sake of completeness, we present a proof of this
lemma in the full line case.

Lemma 2.1. There exists a generic constant C such that for all u ∈ H5(R)

‖u‖h5 ≤ C ‖u‖H5 ,

where we identify u with its discrete evaluation {u(xj)}j.

Proof. To begin with, observe that the discrete operator D2
+DD2

− commutes with

the continuous operator ∂5
x. A simple use of the Hölder estimate reveals that

∥∥D2
+DD2

−u
∥∥2 = ∆x

∑

j

(
1

∆x

(
D+DD2

−u(xj+1)−D+DD2
−u(xj)

))2

= ∆x
∑

j

(∫ xj+1

xj

1

∆x
∂xD+DD2

−u(x) dx

)2

≤ ∆x
∑

j

(
‖1/∆x‖L2([xj ,xj+1])

∥∥∂xD+DD2
−u(x)

∥∥
L2([xj,xj+1])

)2

=
∥∥D+DD2

−∂xu
∥∥2
L2(R)

.

Similarly, we can show that
∥∥D+DD2

−∂xu
∥∥2
L2(R)

≤
∥∥DD2

−∂
2
xu
∥∥2
L2(R)

, · · · · · · · · · · · · ,
∥∥D∂4

xu
∥∥2
L2(R)

≤
∥∥∂5

xu
∥∥2
L2(R)

≤ ‖u‖2H5(R) .
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Furthermore, similar arguments can be used to show

‖u‖2 , ‖D+u‖2 , ‖D+D−u‖2 , ‖D+DD−u‖2 ,
∥∥D2

+D
2
−u
∥∥2 ≤ ‖u‖2H5(R) .

Combining above results, we conclude the proof. �

3. Convergence Analysis

In this section, we present convergence analysis of the scheme given by (10). In
what follows, we take preliminary motivation from [8] to carry out the convergence
analysis. As we will see, in the sequel, extracting a strongly convergent subsequence
from the approximating sequence {u∆x}∆x>0 mainly relies on the classical Arzelà–
Ascoli type compactness. In what follows, we first show that the implicit scheme
can be solved with respect to un+1

j . In fact, we can rewrite the scheme (10) as

(1 + ∆tD2
+D− −∆tD3

+D
2
−)u

n+1
j = un

j −∆t un
j Dun

j ,

and by taking inner product of the scheme with un+1, we conclude
((

1 + ∆tD2
+D− −∆tD3

+D
2
−

)
un+1, un+1

)

=
∥∥un+1

∥∥2 +∆t(D2
+D−u

n+1, un+1)−∆t(D3
+D

2
−u

n+1, un+1)

=
∥∥un+1

∥∥2 + 1

2
∆t∆x

∥∥D+D−u
n+1
∥∥2 + 1

2
∆t∆x

∥∥D2
+D−u

n+1
∥∥2 ≥

∥∥un+1
∥∥2 ,

thus
∥∥un+1

∥∥ ≤
∥∥(1 + ∆tD2

+D− −∆tD3
+D

2
−)u

n+1
∥∥ = ‖un −∆t unDun‖ .

Next, we state the following fundamental stability lemma, which is the first step to-
wards exhibiting the convergence proof of the scheme. For the sake of completeness,
we also furnish a sketch of the proof below.

Lemma 3.1. Let un
j be the approximate solution generated by the difference scheme

(10). Then the following estimate holds

(11)

∥∥un+1
∥∥2 +∆t∆x1/2

(
∆xλ

∥∥D2
+D−u

n+1
∥∥2

+∆x1/2
∥∥D2

+D−u
n+1
∥∥2 + δ

λ
‖Dun‖2 +∆xλ

∥∥D3
+D

2
−u

n+1
∥∥2

+ 2∆xλ
∥∥D2

+D
2
−u

n+1
∥∥2 +∆x1/2

∥∥D+D−u
n+1
∥∥2 ) ≤ ‖un‖2 .

provided the CFL condition

(12) λ
∥∥u0
∥∥
(
1

3
+

1

2
λ
∥∥u0
∥∥
)

<
1− δ

2
, δ ∈ (0, 1),

holds where λ = ∆t/∆x3/2.

Proof. Following Holden et al. [8] and setting w := u−∆t uDu, we conclude that

(13) ‖w‖2 + δ∆x2 ‖Du‖2 ≤ ‖u‖2 ,
provided the CFL condition (12) is satisfied.

Next we study the full difference scheme by adding the “Airy term” ∆tD2
+D−u

n+1
j

and the “Kawahara term” ∆tD3
+D

2
−u

n+1
j . Thus the full difference scheme (10) can

be written as

v = w −∆tD2
+D−v +∆tD3

+D
2
−v.
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Furthermore, a simple application of the identities (6)–(8) implies, for the function
un

‖w‖2 =
∥∥un+1

∥∥2 +∆t∆x1/2
(
∆xλ

∥∥D2
+D−u

n+1
∥∥2 +∆x1/2

∥∥D2
+D−u

n+1
∥∥2

+∆xλ
∥∥D3

+D
2
−u

n+1
∥∥2 + 2∆xλ

∥∥D2
+D

2
−u

n+1
∥∥2 +∆x1/2

∥∥D+D−u
n+1
∥∥2 )

≤‖un‖2 − δ∆x2 ‖Du‖2 ,(14)

and finally addition of (13) and (14) completes the proof. �

To proceed further, we note that the Arzelà–Ascoli compactness framework de-
mands an estimate for the temporal derivative of the solutions. To achieve that,
we consider the equation satisfied by the discrete time derivative. In what follows,
we have the following lemma:

Lemma 3.2. Let un
j be an approximate solution generated by the the difference

scheme (10). Then the following estimate holds
∥∥Dt

+u
n
∥∥2 +∆t2

∥∥D2
+D−D

t
+u

n
∥∥2 +∆t2

∥∥D2
+D−D

t
+u

n
∥∥2

+∆t2
∥∥D3

+D
2
−D

t
+u

n
∥∥2 + 2∆t2

∥∥D2
+D

2
−D

t
+u

n
∥∥2

+∆t∆x
∥∥D+D−D

t
+u

n
∥∥2 + δ̃∆x2

∥∥DDt
+u

n−1
∥∥2

≤
∥∥Dt

+u
n−1
∥∥2 (1 + 3∆t ‖Dun‖∞) ,(15)

provided ∆t is chosen such that

(16) 6 ‖u0‖2 λ2 + ‖u0‖λ <
1− δ̃

2
, δ̃ ∈ (0, 1).

Proof. The proof uses same type of arguments as in Lemma 3.1. For a complete
argument, consult Holden et al. [8]. �

Next, we rewrite the difference scheme (10) in the form

(17) αn+1 = Dt
+u

n =
1

2µ
D+D−u

n − unDun −D2
+D−u

n+1 +D3
+D

2
−u

n+1,

where µ = ∆t/∆x2 = λ/∆x1/2. Therefore, following Sjoberg [22], we proceed as
below:
∥∥D3

+D
2
−u

n+1
∥∥ ≤

∥∥αn+1
∥∥+ ‖unDun‖+ 1

2µ
‖D+D−u

n‖+
∥∥D2

+D−u
n
∥∥

≤
∥∥αn+1

∥∥+ ‖Dun‖∞ ‖u0‖+
1

2µ

(
ε
∥∥D3

+D
2
−u

n
∥∥+ C(ε) ‖u0‖

)

+
(
ε2
∥∥D3

+D
2
−u

n
∥∥+ C(ε2) ‖u0‖

)

≤
∥∥αn+1

∥∥+ ‖u0‖
(
ε1
∥∥D3

+D
2
−u

n
∥∥+ C(ε1) ‖u0‖

)

+
1

2µ
ε
∥∥D3

+D
2
−u

n
∥∥+ 1

2µ
C(ε) ‖u0‖+ ε2

∥∥D3
+D

2
−u

n
∥∥+ C(ε2) ‖u0‖

≤
∥∥αn+1

∥∥+
(
ε2 + ε1 ‖u0‖+

∆x1/2

2λ
ε

)
∥∥D3

+D
2
−u

n
∥∥

+ C(ε1) ‖u0‖2 +
(
∆x1/2

2λ
C(ε) + C(ε2)

)
‖u0‖

︸ ︷︷ ︸
A(ε1,ε2,ε)
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≤
∥∥αn+1

∥∥+ 1

2

∥∥D3
+D

2
−u

n
∥∥+A (choosing ε1, ε2 and ε appropriately)

=
∥∥αn+1

∥∥+ 1

2

∥∥D3
+D

2
−

(
un+1 −∆tαn+1

)∥∥+A

≤
∥∥αn+1

∥∥+ 1

2

∥∥D3
+D

2
−u

n+1
∥∥+ 1

2
∆t
∥∥D3

+D
2
−α

n+1
∥∥+A

≤
∥∥αn+1

∥∥+ 1

2

∥∥D3
+D

2
−u

n+1
∥∥+ 1

2
‖αn‖ (1 + 3∆t ‖Dun‖∞)

1/2
+A

≤
∥∥αn+1

∥∥+ 1

2

∥∥D3
+D

2
−u

n+1
∥∥+ 1

2
‖αn‖ (1 + 3λ ‖u0‖)1/2 +A.

Hence, we conclude

(18)
∥∥D3

+D
2
−u

n+1
∥∥ ≤ c0 + c1

∥∥αn+1
∥∥+ c2 ‖αn‖ ,

for some constants c0, c1 and c2 that are independent of ∆x. Exploiting this and
the interpolation inequalties, we get
∥∥αn+1

∥∥2 ≤ ‖αn‖2 +∆t
(
ε
∥∥D2

+D−u
n
∥∥+ C(ε) ‖un‖

)
‖αn‖2

≤ ‖αn‖2 + C∆t
(
ε
(
c0 + c1 ‖αn‖+ c2

∥∥αn−1
∥∥)+ C(ε) ‖u0‖

)
‖αn‖2 .

Since ‖un‖ is bounded by ‖u0‖,

(19)
∥∥αn+1

∥∥2 ≤ ‖αn‖2 +∆t
(
d1 ‖αn‖2 + d2

(
‖αn‖3 + ‖αn‖2

∥∥αn−1
∥∥
))

,

for constants d1 and d2 which only depend on ‖u0‖ and λ. Set an = ‖αn‖2, so that

an+1 ≤ an +∆t
(
d1an + d2

(
a3/2n + ana

1/2
n−1

))
.

Now let A = A(t) be the solution of the differential equation

dA

dt
= d1A+ 2d2A

3/2, A (t1) = a1 > 0.

This solution has a blow-up time

T∞ = t1 +
2

d1
ln

(
1 +

d1
d2
√
a1

)
.

Furthermore, following [8], we conclude that for tn < T∞, we have

an ≤ A(tn), n ∈ N.

Therefore, we can follow Sjöberg [22] to prove convergence of the scheme for
t < T̄ . We proceed as follows: We construct the piecewise quintic continuous
interpolation u∆x(x, t) in two steps. First we make a spatial interpolation for each
tn:

(20)

un(x) =
1

6
(un

j−1 + 4un
j + un

j+1) + (x− xj)Dun
j +

1

2
(x− xj)

2D+D−u
n
j

+
1

6
(x − xj)

3D2
+D−u

n
j +

1

24
(x − xj)

4D2
+D

2
−u

n
j

+
1

120
(x − xj)

5D3
+D

2
−u

n
j , x ∈ [xj , xj+1).

Next we interpolate in time:

(21) u∆x(x, t) = un(x)+(t−tn)Dt
+u

n(x), x ∈ R, t ∈ [tn, tn+1], (n+1)tn+1 ≤ T̄ .

Notice that

u∆x(xj , tn) =
1

6
(un

j−1 + 4un
j + un

j+1), j ∈ Z, n ∈ N0.
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Moreover, observe that u∆x is continuous everywhere and four times continuously
differentiable in space, and the function u∆x satisfies for x ∈ [xj , xj+1) and t ∈
[tn, tn+1]

∂xu∆x(x, t) = Dun
j + (x− xj)D+D−u

n
j +

1

2
(x− xj)

2D2
+D−u

n
j

+
1

6
(x− xj)

3D2
+D

2
−u

n
j +

1

24
(x − xj)

4D3
+D

2
−u

n
j(22)

+ (t− tn)Dt
+

(
Dun

j + (x− xj)D+D−u
n
j

+
1

2
(x− xj)

2D2
+D−u

n
j

)

+ (t− tn)Dt
+

(1
6
(x− xj)

3D2
+D

2
−u

n
j

+
1

24
(x− xj)

4D3
+D

2
−u

n
j

)
,

∂2
xu∆x(x, t) = D+D−u

n
j + (x− xj)D

2
+D−u

n
j

+
1

2
(x− xj)

2D2
+D

2
−u

n
j +

1

6
(x− xj)

3D3
+D

2
−u

n
j(23)

+ (t− tn)Dt
+

(
D+D−u

n
j + (x− xj)D

2
+D−u

n
j

)

+ (t− tn)Dt
+

(1
2
(x− xj)

2D2
+D

2
−u

n
j +

1

6
(x− xj)

3D3
+D

2
−u

n
j

)
,

∂3
xu∆x(x, t) = D2

+D−u
n
j + (x− xj)D

2
+D

2
−u

n
j +

1

2
(x− xj)

2D3
+D

2
−u

n
j

+ (t− tn)Dt
+

(
D2

+D−u
n
j + (x− xj)D

2
+D

2
−u

n
j

+
1

2
(x− xj)

2D3
+D

2
−u

n
j

)
,(24)

∂4
xu∆x(x, t) = D2

+D
2
−u

n
j + (x− xj)D

3
+D

2
−u

n
j

+ (t− tn)Dt
+

(
D2

+D
2
−u

n
j + (x− xj)D

3
+D

2
−u

n
j

)
,(25)

∂5
xu∆x(x, t) = D3

+D
2
−u

n
j + (t− tn)Dt

+D
3
+D

2
−u

n
j ,(26)

∂tu∆x(x, t) = Dt
+u

n(x),(27)

which implies

‖u∆x( · , t)‖L2(R) ≤ ‖u0‖L2(R) ,(28)

‖∂xu∆x( · , t)‖L2(R) ≤ C,(29)

‖∂tu∆x( · , t)‖L2(R) ≤ C,(30)
∥∥∂3

xu∆x( · , t)
∥∥
L2(R)

≤ C,(31)
∥∥∂5

xu∆x( · , t)
∥∥
L2(R)

≤ C,(32)

for t ≤ T̄ and for a constant C which is independent of ∆x. The first bound (28),
follows by exact integration of the square of (21) over each interval [xj , xj+1) and
summation over j. The last bound (32) follows from

(33)
∥∥D3

+D
2
−u

n
∥∥ ≤

∥∥Dt
+u

n
∥∥+ ‖ūn‖∞ ‖Dun‖+

∥∥D2
+D−u

n
∥∥ ≤ C.
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The bound on ∂tu∆x also implies that u∆x ∈ Lip([0, T̄ ];L2(R)). Then an appli-
cation of the Arzelà–Ascoli theorem using (28) shows that the set {u∆x}∆x>0 is se-

quentially compact in C([0, T̄ ];L2(R)), such that there exists a sequence
{
u∆xj

}
j∈N

which converges uniformly in C([0, T̄ ];L2(R)) to some function u. Then we can ap-
ply a straightforward modification of the proof of the Lax–Wendroff like result
in [10] to conclude that u is a weak solution. For the benefit of the reader we
formulate the appropriate theorem here.

Theorem 3.1. Suppose that u0 ∈ L2(R). Consider the approximations u∆x given
by (20) and (21). Suppose that u∆x converges strongly in L2

loc(R × [0, T ]) to u as
∆x → 0. Then u ∈ L∞([0, T ];L2(R)) is a weak solution of the Cauchy problem (1),
that is, it satisfies

∫ T

0

∫ ∞

−∞

(
φtu+ φxu

2 + φxxxu− φxxxxxu
)
dxdt+

∫ ∞

−∞

φ(x, 0)u0(x) dx = 0,(34)

for all φ ∈ C∞
0 (R× [0, T ]).

Proof. The proof follows the standard approach as in [10, Thm. 2.1]. �

The bounds (29), (30), (31) and (32) mean that u is actually a strong solution
such that (1) holds as an L2-identity. Thus the limit u is the unique solution to
the Kawahara equation taking the initial data u0.

Summing up, we have proved the following theorem:

Theorem 3.2. Assume that u0 ∈ H5(R). Then there exists a finite time T̄ , de-
pending only on ‖u0‖H5(R), such that for t ≤ T̄ , the difference approximations

defined by (10) converge uniformly in C(R × [0, T̄ ]) to the unique solution of the

Kawahara equation (1) as ∆x → 0 with ∆t = O
(
∆x

3
2

)
.

3.1. Global Existence. Inspired by [22], we now proceed to conclude the exis-
tence of a solution of the equation (1) for all time. We begin with following Lemma.

Lemma 3.3. Let u(x, t) be a solution of the problem (1). Then there exist a
constants α1, α2 such that

(35)

∫

R

u2(x, t) dx =

∫

R

u2(x, 0) dx =

∫

R

u2
0 dx = α1

(36)

∫

R

(
1

3
u3 − u2

x − u2
xx

)
dx =

∫

R

(
1

3
u3
0 − (u′

0)
2 − (u′′

0)
2
)

dx = α2

Proof. To prove (35), we start by multyplying the equation (1) by u and integrate
by parts in space
∫

R

uut dx =

∫

R

−u2ux − uuxxx + uuxxxxx dx

= −
∫

R

(
1

3
u3)x dx −

∫

R

(uuxx −
1

2
u2
x)x dx−

∫

R

uxuxxxx dx

= −
∫

R

(
1

3
u3)x dx −

∫

R

(uuxx −
1

2
u2
x)x dx−

∫

R

(uxuxxx −
1

2
u2
xx)x dx = 0.

To prove (36), we start by multyplying (1) by u2 and integrate by parts in space
∫

R

u2ut dx =

∫

R

−u3ux − u2uxxx + u2uxxxxx dx
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= −
∫

R

(
1

4
u4)x dx + 2

∫

R

(uux)uxx dx − 2

∫

R

(uux)uxxxx dx

= 2

∫

R

(−ut − uxxx + uxxxxx)uxxdx− 2

∫

R

(−ut − uxxx + uxxxxx)uxxxxdx

= 2

∫

R

utxux dx − 2

∫

R

uxxuxxx dx + 2

∫

R

uxxuxxxxx dx

− 2

∫

R

utxuxxx dx+ 2

∫

R

uxxxuxxxx dx− 2

∫

R

uxxxxuxxxxx dx

= 2

∫

R

utxux dx + 2

∫

R

utxxuxx dx.

From this we can conclude that

d

dt

∫

R

(
1

3
u3 − u2

x − u2
xx

)
dx = 0.

Hence (36) follows. �

Lemma 3.4. Let u(x, t) be a solution of the problem (1). Then there exists a
constant α such that

(37) max |ux(x, t)| ≤ α

(38) ‖v‖2 ≤ eγt
∥∥∥−u0u

′

0 − u
′′′

0 + u
′′′′′

0

∥∥∥
2

, v =
∂u

∂t
.

Proof. From (36), it follows that

‖uxx‖2 ≤ 1

3

∫

R

|u3| dx+ ‖ux‖2 + |α2|

≤ 1

3
(c(ε) ‖u‖+ ε ‖uxx‖) ‖u‖2 +

(
c(ε) ‖u‖2 + ε ‖uxx‖2

)
+ |α2|

=
1

3
(c(ε)

√
α1 + ε ‖uxx‖)α1 +

(
c(ε)α1 + ε ‖uxx‖2

)
+ |α2|.

Now we can rewrite the above inequality in the following form

(39) a ‖uxx‖2 − b ‖uxx‖ − c ≤ 0,

for some constants a, b, c, where a = 1−ε, b = 1
3α1ε and c = 1

3 c(ε)
√
α1+c(ε)α1+|α2|.

Now it is easy to see that (39) gives,
(√

a ‖uxx‖ −
b

2
√
a

)2

≤ c+
b2

4a
.

From the above relation, it is clear that ‖uxx‖ ≤ α3, for some constant α3. Again
using the interpolation inequality, ‖ux‖ ≤ (c(ε) ‖u‖+ ε ‖uxx‖), we can conclude
that ‖ux‖ ≤ α4, for some constant α4. Also we can use a similar type interpolation
inequality to conclude that (37) holds.

Now the function v(x, t) = ∂u
∂t satisfies,

dv

dt
= −vux − uvx − vxxx + vxxxxx.

Multiplying the above equation by v and integrating in space yields,

1

2

d

dt
‖v‖2 = −(v, vux)− (v, uvx)− (v, vxxx) + (v, vxxxxx) ≤ (v2, ux).
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Now (37) gives,

d

dt
‖v‖2 ≤ max |ux| ‖v‖2 ≤ C ‖v‖2 ,

which implies

‖v‖2 =

∥∥∥∥
∂u(·, t)

∂t

∥∥∥∥
2

≤ eγt
∥∥∥∥
∂u(·, 0)

∂t

∥∥∥∥
2

= eγt
∥∥∥−u0u

′
0 − u

′′′

0 + u
′′′′′

0

∥∥∥
2

Hence, we have established (38). �

Now to get a bound on ‖uxxx‖, we proceed as follows:

1

2

d

dt

∫

R

u2
xxx dx =

∫

R

uxxxuxxxt dx = −
∫

R

uxxxxuxxt dx =

∫

R

uxxxxxuxt dx

=

∫

R

uxt(ut + uux + uxxx) dx

=

∫

R

vvx dx+

∫

R

uuxuxt dx− 1

2

d

dt

∫

R

u2
xx dx

=

∫

R

(
1

2
v2)x dx+

∫

R

uuxuxt dx− 1

2

d

dt

∫

R

u2
xx dx

=

∫

R

vu2
x dx+

∫

R

vuuxx dx− 1

2

d

dt

∫

R

u2
xx dx

≤ (max |ux|)(‖ux‖ ‖v‖) + (max |u|)(‖uxx‖ ‖v‖)−
1

2

d

dt

∫

R

u2
xx dx

A simple use of interpolation inequality implies all the terms max |u|,max |ux|,
‖ux‖ , ‖uxx‖ are bounded by some constant. Hence, the above expression implies

d

dt

∫

R

(
1

2
u2
xxx +

1

2
u2
xx

)
dx ≤ α ‖v‖ .

Therefore we conclude that,

(40) ‖uxxx‖2 ≤ C1e
γt
(∥∥∥−u0u

′
0 − u

′′′

0 + u
′′′′′

0

∥∥∥
)
.

Furthermore, we use the Kawahara equation (1) and triangular inequality to con-
clude that

(41) ‖uxxxxx‖ ≤ C1e
γt
(∥∥∥−u0u

′
0 − u

′′′

0 + u
′′′′′

0

∥∥∥
)
+ C2,

where C1 and C2 are constants. One can see that the bound (38) guarantees that
∂u
∂t is square integrable for every t and (40), (41) that the problem (1) with the
initial function u(x, T1) instead of u0(x) has a solution for T1 ≤ t ≤ T2 = 2T1.
Consequently, we get a solution of the Kawahara equation for 0 ≤ t ≤ T . Now to
obtain the existence of sloutions for all t > 0, we will repeat the extension procedure.
For this purpose suppose that existence can be proven only in 0 < T < ∞. Now if we
look at the expression for T∞, we find that only A(t1) depends on t. But A(t1) can,
because of (38), be chosen to hold in the whole interval 0 ≤ t ≤ T . Consequently,
if we consider problem (1) with u0(x) = u(x, τ) for some τ sufficiently close to T ,
we can, by using the local procedure, get existence for values of t lying outside
0 ≤ t ≤ T .

Remark 3.1. To keep the presentation fairly short we have only provided details in
the full line case. However, we note that the same proofs apply, mutatis mutandis,
also in the periodic case.
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4. Crank-Nicolson Finite Difference Scheme

We recall that, being dissipative, the fully discrete scheme (10) for the Kawahara
equation (1) has several disadvantages. For example, as the Figure 1 indicates, semi
implicit scheme given by (10) is clearly inferior to the other schemes, since both
the phase error and substantial dissipation error is evident for the scheme given by
(10). This observation, in fact, encourage us to quest for a conservative, provably
convergent, scheme for the kawahara equation. To sum up, as we will see in the
sequel, the scheme (42) ensures such properties.

To this end, we propose the following fully implicit Crank-Nicolson scheme (based
upon a six-point stencil) to generate approximate solutions of the Kawahara equa-
tion (1)
(42)

un+1
j = un

j −∆tG(u
n+ 1

2

j )−∆tD+DD−u
n+ 1

2

j +∆tD2
+DD2

−u
n+ 1

2

j , n ∈ N0, j ∈ Z,

where we have used the following notations:

un+ 1
2 :=

1

2
(un + un+1), and G(u) := ũDu.

For the initial data we have

u0
j = u0(xj), j ∈ Z.

Note that since the scheme (42) is implicit in nature, we must guarantee that the
scheme is well-defined, i.e., it admits a solution. This has been addressed in next
subsection (cf. Remark 4.1)

4.1. Convergence analysis. To begin with, we show that the Crank-Nicolson
scheme is L2-conservative. For that, we simply take inner product of the scheme

(42) and u
n+ 1

2

j , to obtain

1

2∆t
(un+1 − un, un+1 + un)

=− (un+ 1
2 ,Gun+ 1

2 )− (un+ 1
2 , D+DD−u

n+ 1
2 ) + (un+ 1

2 , D2
+DD2

−u
n+ 1

2 )

A simple straightforward calculation, making use of summation-by-parts formula,
reveals that

(D+DD−u, u) = 0, (D2
+DD2

−u, u) = 0, and (G(u), u) = 0.

Thus, we conclude that ∥∥un+1
∥∥ = ‖un‖ .

To solve (42), we use a simple fixpoint iteration, and define the sequence {w`}`≥0

by letting w`+1 be the solution of the linear equation
(43){
wl+1 = v −∆tG

(
v+wl

2

)
− 1

2∆tD+DD− (v + wl+1) +
1
2∆tD2

+DD2
− (v + wl+1) ,

w0 = v := un.

To this end, we first prove the following stability lemma which essentially serves as
a building block for the subsequent convergence analysis.

Lemma 4.1. Choose a constant L such that 0 < L < 1 and set

K =
6− L

1− L
> 6.
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We consider the iteration (43) with w0 = un, and assume that the following CFL
condition holds

(44) λ ≤ L/ (K ‖un‖h5) , with λ = ∆t/∆x.

Then there exists a function un+1 which solves (42), and lim`→∞ w` = un+1. Fur-
thermore the following estimate holds:

(45)
∥∥un+1

∥∥
h5 ≤ K ‖un‖h5 .

Proof. To begin with, note that by setting ∆wl := wl+1 − wl, a straightforward
calculation using the iterative scheme (43) returns

(
1 +

1

2
∆tD+DD− − 1

2
∆tD2

+DD2
−

)
∆wl

=∆t

[
G

(
v + wl

2

)
−G

(
v + wl−1

2

)]
:= ∆t∆G.(46)

Next, applying the discrete operatorD2
+DD2

− to (46), then multiplying the resulting
equation by ∆xD2

+DD2
−∆wl, and subsequently summing over j ∈ Z, we conclude

∥∥D2
+DD2

−∆wl

∥∥2 = ∆t
(
D2

+DD2
−∆G, D2

+DD2
−∆wl

)

≤ ∆t
∥∥D2

+DD2
−∆G

∥∥ ∥∥D2
+DD2

−∆wl

∥∥ .
After some manipulations, we find that

∆G =
1

4

[
∆̃wl−1D (v + wl−1) + ˜(v + wl)D (∆wl−1)

]
.

Next, in order to calculate D2
+DD2

−∆G, we use the identities (5a), (5b), and (5c)
repeatedly, and the discrete Sobolev inequalities (cf. [8, Lemma A.1]). This results
∥∥∥D2

+DD2
−

(
∆̃wl−1D (v + wl−1)

)∥∥∥ ≤ C

∆x
max

{
‖v‖h5 , ‖wl−1‖h5

}
‖∆wl−1‖h5 .

A similar argument shows that
∥∥∥D2

+DD2
−

(
˜(v + wl)D (∆wl−1)

)∥∥∥ ≤ C

∆x
max

{
‖v‖h5 , ‖wl‖h5

}
‖∆wl−1‖h5 .

Combining the above two results, we obtain

(47)
∥∥D2

+DD2
−∆wl

∥∥ ≤ C λmax
{
‖v‖h5 , ‖wl‖h5 , ‖wl−1‖h5

}
‖∆wl−1‖h5 .

Observe that, appropriate inequality like (47) can be obtained for ‖∆wl‖, ‖D+∆wl‖,
‖D+D−∆wl‖, ‖D+DD−∆wl‖, and

∥∥D2
+D

2
−∆wl

∥∥, which in turn can be used, along
with (47), to conclude

‖∆wl‖h2 ≤ λmax
{
‖v‖h2 , ‖wl‖h2 , ‖wl−1‖h2

}
‖∆wl−1‖h2 .

To proceed further, we need to estimate
∥∥D2

+DD2
−wl

∥∥. To that context, we first
observe that w1 satisfies the following equation

(48) w1 = v +∆tG(v)− 1

2
∆tD+DD− (v + w1) +

1

2
∆tD2

+DD2
− (v + w1) .

Again, we apply the discrete operator D2
+DD2

− to the above equation (48) satisfied
by w1, and subsequently taking the inner product with D2

+DD2
−(v + w1), we get

∥∥D2
+DD2

−w1

∥∥2 =
∥∥D2

+DD2
−v
∥∥2 +∆t

(
D2

+DD2
−G(v), D2

+DD2
−(v + w1)

)

=
∥∥D2

+DD2
−v
∥∥2 +∆t

(
D2

+DD2
−G(v), D2

+DD2
−w1

)

≤
∥∥D2

+DD2
−v
∥∥2 +∆t2

∥∥D2
+DD2

−G(v)
∥∥2 + 1

4

∥∥D2
+DD2

−w1

∥∥2 .
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Next, a simple calculation using identities (5a)–(5c) along with the discrete Sobolev
inequalities (cf. [8, Lemma A.1]) confirm that

∥∥D2
+DD2

−G(v)
∥∥ =

∥∥D2
+DD2

−(ṽ Dv)
∥∥ ≤ 2

∆x
‖v‖2h5 .

Hence

(49)
∥∥D2

+DD2
−w1

∥∥ ≤ 4

3

(
1 + 4λ2 ‖v‖2h5

)1/2
‖v‖h5 .

Now choose a constant L ∈ (0, 1), and define K by

K =
6− L

1− L
> 6.

Moreover, the CFL condition (44) confirms that

4

3

√
1 + 4λ2 ‖v‖2h5 ≤ 4.

In view of the inequality (49), the above estimate implies that
∥∥D2

+DD2
−w1

∥∥ ≤ K ‖v‖h5 .

Observe that similar estimates can be obtained for the lower order discrete deriva-
tive of wl. Hence, we conclude

‖w1‖h5 ≤ K ‖v‖h5 .

Furthermore, assume inductively that

‖wl‖h5 ≤ K ‖v‖h5 , for l = 1, . . . ,m,(50a)

‖∆wl‖h5 ≤ L ‖∆wl−1‖h5 , for l = 2, . . . ,m.(50b)

We have already shown (50a) for m = 1. To show (50b) for m = 2, note that

‖∆w2‖h5 ≤ λmax
{
‖v‖h5 , ‖w1‖h5

}
‖∆w1‖h5 ≤ 4λ ‖v‖h5 ‖∆w1‖h5 ≤ L ‖∆w1‖h5 ,

by CFL condition (44). To show (50a) for m > 1,

‖wm+1‖h5 ≤
m∑

l=0

‖∆wl‖h5 + ‖v‖h5 ≤ ‖(w1 − v)‖h5

m∑

l=0

Ll + ‖v‖h5

≤ (‖w1‖h5 + ‖v‖h5)
1

1− L
+ ‖v‖h5 ≤ 4 + 2− L

1− L
‖v‖h5 = K ‖v‖h5 .

Then
‖∆wm+1‖h5 ≤ λK ‖v‖h5 ‖∆wm‖h5 ≤ L ‖∆wm‖h5 ,

if the CFL condition (44) holds.
To sum up, if L ∈ (0, 1), and K is defined by K = (6−L)/(1−L), and λ satisfies

the CFL-condition

λ ≤ L

K ‖v‖h5

,

then we have the desired estimate (45). Finally, using (50b), one can show that
{w`} is Cauchy, hence {w`} converges. This completes the proof. �

Remark 4.1. We remark that, the existence of solution for the implicit scheme
(42) is guaranteed, by virtue of the above Lemma 4.1. Having said this, however, the
above result only guarantees that the iteration scheme converges for one time step
under CFL condition (44), where the ratio between temporal and spatial mesh sizes
must be smaller than an upper bound that depends on the computed solution at that
time, i.e., un. Since we want the CFL-condition to only depend on the initial data
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u0, we have to derive local a priori bounds for the computed solution un. This has
been achieved in the sequel (cf. Theorem 4.1) to conclude that the iteration scheme
(43) converges for sufficiently small ∆t.

The following lemma plays an important role in the convergence analysis:

Lemma 4.2. Let the approximate solution un be generated by the Crank-Nicholson
scheme (42). Then, there exists a polynomial Q(X), with positive coefficients, such
that

Dt
+ (‖un‖h5) ≤ Q

(∥∥∥un+ 1
2

∥∥∥
h5

)
≤ Q (K ‖un‖h5) .

Proof. Applying the discrete operator D2
+DD2

− to (42), and subsequently taking

inner product with D2
+DD2

−u
n+ 1

2 yields

1

2

∥∥D2
+DD2

−u
n+1
∥∥2 =

1

2

∥∥D2
+DD2

−u
n
∥∥2 +∆t(D2

+DD2
−G(un+ 1

2 ), D2
+DD2

−u
n+ 1

2 ),

which implies

Dt
+

(∥∥D2
+DD2

−u
n
∥∥) ≤ 2

(D2
+DD2

−G(un+ 1
2 ), D2

+DD2
−u

n+ 1
2 )∥∥D2

+DD2
−u

n+1
∥∥+

∥∥D2
+DD2

−u
n
∥∥ .

For the moment we drop the index n+ 1
2 from our notation, and use the notation

u for un+ 1
2 , where n is fixed. We proceed to calculate

(D2
+DD2

−G(u), D2
+DD2

−u) := (D2
+DD2

− (uDu) , D2
+DD2

−u)

= (D−uD+(Du), D2
+DD2

−u) + (S−uD2
+DD2

−(Du), D2
+DD2

−u)

+ (D+uD+(Du), D2
+DD2

−u) + (D2
+DD2

−uDu,D2
+DD2

−u)

:= E1(u) + E2(u) + E3(u) + E4(u).

To begin with, we see that
∣∣E1(u)

∣∣ ≤ C ‖D−u‖∞
∥∥D2

+DD2
−u
∥∥2 ≤ C(

∥∥D2
+DD2

−u
∥∥2 + ‖u‖2)

∥∥D2
+DD2

−u
∥∥2

≤ C
∥∥D2

+DD2
−u
∥∥ Q (‖u‖h5) .

Similar arguments shows that
∣∣E3(u)

∣∣ ≤ C
∥∥D2

+DD2
−u
∥∥ Q (‖u‖h5) , and

∣∣E4(u)
∣∣ ≤ C

∥∥D2
+DD2

−u
∥∥ Q (‖u‖h5) .

To estimate the last term, we proceed as follows:

E2(u) := (S−uD2
+DD2

−(Du), D2
+DD2

−u)

v:=D2
+DD2

−
u

======= (S−uD v, v) = −(D
(
v S−u

)
, v)

=
∆x

2
(D+(S

−u)D v, v) +
1

2
(S−v D(S−u), v).

Therefore, we conclude
∣∣E2(u)

∣∣ ≤ C
∥∥D2

+DD2
−u
∥∥ Q (‖u‖h5) .

Using all the above estimates, we have

2
(D2

+DD2
−G(un+ 1

2 ), D2
+DD2

−u
n+ 1

2 )∥∥D2
+DD2

−u
n+1
∥∥+

∥∥D2
+DD2

−u
n
∥∥ ≤ 2

C
∥∥∥D2

+DD2
−u

n+ 1
2

∥∥∥ Q
(∥∥∥un+ 1

2

∥∥∥
h5

)

∥∥D2
+DD2

−u
n+1
∥∥+

∥∥D2
+DD2

−u
n
∥∥

≤ Q
(∥∥∥un+ 1

2

∥∥∥
h5

)
≤ Q (K ‖un‖h5) .
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Hence, we conclude

Dt
+

(∥∥D2
+DD2

−u
n
∥∥) ≤ Q (K ‖un‖h5) .

Moreover, even easier calculations help us to conclude

Dt
+ (‖un‖) = 0, Dt

+ (‖D+u
n‖) , Dt

+ (‖D+D−u
n‖) ≤ Q (K ‖un‖h5)

Dt
+

(∥∥D2
+D−u

n
∥∥) , Dt

+

(∥∥D2
+D

2
−u

n
∥∥) ≤ Q (K ‖un‖h5) .

This essentially finishes the proof. �

We can now state the following stability-result:

Theorem 4.1. If the initial function u0 is H5-regular, then there exist constants
C, T > 0 only depending on ‖u0‖ such that for small enough λ:

‖un‖h5 ≤ C, ∀tn ≤ T.

Proof. Set yn = ‖un‖h5 . By Lemma 4.2, there is a polynomial Q(X) with positive
coefficients such that Dt

+yn ≤ Q(K yn).
Next, we consider the following ordinary differential equation

{
y′(t) = Q(K y(t)),

y(0) = C ‖u0‖H5 .

Since the function Q is locally Lipschitz continuous for positive arguments, this
ODE has a unique solution which blows up at some finite time, say at t = T∞.
We choose T = T∞/2. Also, note that the solution y(t) of the above differential
equation is strictly-increasing and convex.

We now prove by induction that if

λ ≤ L

K y(T )
,(51)

then

∀tn ≤ T : yn ≤ y(tn)

Since y(0) = C ‖u0‖H5 , in view of the Lemma 4.3, the claim follows for n = 0.
We assume that the claim holds for n = 0, 1, 2, ...,m. As 0 < ym ≤ y(T ), (51)
implies that λ satisfies the CFL condition (44). So, from Lemma 4.1, we have
ym+1 ≤ Kym.

Therefore, using the induction hypothesis, we conclude

yn ≤ yn−1 +∆tQ(Kyn−1) ≤ y(tn−1) + ∆tQ(Ky(tn−1))︸ ︷︷ ︸
=y′(tn−1)

≤ y(tn−1) +

∫ tn

tn−1

y′(t)t = y(tn).

This proves the claim. �

Finally, a simple use of discrete Sobolev inequalities (cf. [8, Lemma A.1]) along
with Theorem 4.1, and the scheme (42) implies that

∥∥Dt
+u

n
∥∥ ≤ C.

Therefore, we can follow Sjöberg [22] to prove convergence of the scheme (42)
for t < T .

Summing up, we have proved the following theorem:
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Theorem 4.2. Assume that u0 ∈ H5(R). Then there exists a finite time T , de-
pending only on ‖u0‖H5(R), such that for t ≤ T , the difference approximations

defined by (42) converge uniformly in C(R × [0, T ]) to the unique solution of the
Kawahara equation (1) as ∆x → 0 with ∆t = O (∆x).

4.2. Error Estimate. To this end, we derive an error estimate in both space and
time for the smooth solutions of the Kawahara equation (1).

First, recall that for our approximation of the nonlinear term uux, we choose

G(u) = ũDu =
1

3
D(u2) +

1

3
uDu,

so that, for u smooth, we have

G(u)− uux = O(∆x2), as ∆x 7→ 0.

Moreover, a straightforward truncation error analysis shows that both our approx-
imations for ∂3

xu, and ∂5
xu are second order accurate.

Now we are ready to present the error estimate analysis for smooth solutions of
(1). In what follows, we begin with the following useful lemma.

Lemma 4.3. If ux is uniformly bounded, then we have

|(G(U)−G(u), U − u)| ≤ C ‖U − u‖2 , where C :=
1

2
‖ux‖∞ .(52)

Proof. Let us set e := U − u. Then, observe that U2 − u2 = (2u+ e)e = 2ue+ e2,
and therefore

(D(U2 − u2), e) = 2(D(ue), e) + (D(e2), e).

A similar argument shows that

(UDU − uDu, e) = (eDu, e) + (uDe, e) + (eDe, e).

Hence

(G(U)−G(u), e) = −1

3
(uDe, e) +

1

3
(eDu, e) + (G(e), e).

Furthermore, since eDe = 1
2D−(eS

+e), we conclude

−(uDe, e) = −1

2
(u,D−(eS

+e)) =
1

2
(D−u, eS

+e) ≤ C ‖e‖2 .

Finally, since (eDu, e) ≤ 2C ‖e‖2, and (G(e), e) = 0, we conclude the lemma.
�

We now state the following error estimate result.

Theorem 4.3. Let u be a smooth solution of the Kawahara equation (1), and Un

be the approximate solution generated by the difference scheme (10). Then

‖Un − u(tn)‖ ≤ CT (u)(∆x2 +∆t2), for tn ≤ T.(53)

Proof. To begin with, we first introduce en := Un − un, with un := u(tn). Then,
since u satisfies the Kawahara equation (1), we have

en+1 − en

∆t
+D+DD−e

n+ 1
2 −D2

+DD2
−e

n+ 1
2 := −G(Un+ 1

2 ) +G(un+ 1
2 )−Kn,

(54)

where

Kn :=
un+1 − un

∆t
+G(un+ 1

2 ) +D+DD−u
n+ 1

2 −D2
+DD2

−u
n+ 1

2

−
(
ut + uux + ∂3

xu− ∂5
xu
)n+ 1

2 ,
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where we have used the notation un+ 1
2 := u(tn + 1

2∆t). Next, a simple truncation
error analysis shows that

∥∥∥∥
un+1 − un

∆t
− u

n+ 1
2

t

∥∥∥∥+
∥∥∥G(un+ 1

2 )− (uux)
n+ 1

2

∥∥∥ ≤ C(u)(∆x2 +∆t2),

∥∥∥D+DD−u
n+ 1

2 − (∂3
xu)

n+ 1
2

∥∥∥+
∥∥∥D2

+DD2
−u

n+ 1
2 − (∂5

xu)
n+ 1

2

∥∥∥ ≤ C(u)∆x2.

Therefore, multiplying the equation (54) by en+
1
2 returns

(en+1 − en

∆t
, en+

1
2

)
+
(
D+DD−e

n+ 1
2 , en+

1
2

)
−
(
D2

+DD2
−e

n+ 1
2 , en+

1
2

)

=
(
G(un+ 1

2 ) +G(Un+ 1
2 ), en+

1
2

)
−
(
Kn, en+

1
2

)

Hence, by virtue of Lemma 4.3, we conclude

∥∥en+1
∥∥2 − ‖en‖2 ≤ C∆t

∥∥∥en+
1
2

∥∥∥
2

+ C∆t ‖Kn‖
∥∥∥en+

1
2

∥∥∥

≤ C∆t
(
‖en‖2 +

∥∥en+1
∥∥2
)
+ C∆t ‖Kn‖2 .

This gives us, for sufficiently small ∆t

∥∥en+1
∥∥2 ≤ (1 + C∆t) ‖en‖2 + C∆t(∆x2 +∆t2)2.

Finally, a repeated use of the above inequality along with the observation e0 = 0
helps us to conclude

∥∥en+1
∥∥2 ≤ eCT

∥∥e0
∥∥2 + Cn∆t(∆x2 +∆t2)2 ≤ CT (∆x2 +∆t2)2, for tn ≤ T.

This finishes the proof of the theorem. �

5. Uniqueness

To prove the uniqueness, let us assume that there exists two solutions u(x, t)
and v(x, t) of the problem (1). Then the function w = u− v satisfies the following
equation

(55)

wt = −(uux − vvx)− wxxx + wxxxxx

= −wux − vwx − wxxx + wxxxxx

w(x, 0) = 0.

Hence, by taking inner product of the above equation with w, we have

(w,wt) =
1

2

∂ ‖w‖2
∂t

= −(w,wux)− (w, vwx)− (w,wxxx) + (w,wxxxxx)

= −(w2, ux) + (w2, vx)/2.

Now use of estimate (37) implies,

∂ ‖w‖2
∂t

≤ C ‖w‖2 ,

for some constant C. Now as ‖w(·, 0)‖2 = 0, it is clear that ‖w(·, t)‖2 = 0 for all t
which consequently implies uniqueness.
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6. Numerical Experiment

Fully discrete schemes given by (10) and (42) have been tested on suitable test
case, one-soliton interaction, in order to demonstrate its effectiveness. It is well
known that a soliton is a self-reinforcing solitary wave that maintains its shape while
it travels at a constant speed. Solitons are caused by a cancellation of nonlinear
and dispersive effects in the medium. In recent years the soliton solutions of the
fifth order KdV-type highly nonlinear equations

(56) ut + upux + uxxx + γuxxxxx = 0,

(with p > 0) have received considerable attention in the literature [12, 13]. In
particular, attention has been focused on the role of the last term in this equation,
which describes higher order dispersive effects and may have an important influence
on the properties of the solitons. It has been shown (cf. [13]) that the stationary
solitary waves can exist only at γ < 0. The solitons of equation (56) with γ > 0 are
radiating and they are unstable. It has also been numerically demonstrated that
the solitary waves at γ < 0 exist and the fifth order derivative term with γ < 0
plays a stabilizing role. Several authors [2,21] have studied the soliton experiments
in the context of both KdV and Kawahara equation. We shall compare our schemes
with the schemes given in [2] and [18].

6.1. The Method of Ceballos, Sepulveda and Villagran. We mention that
all the numerical experiments performed in [2] are based on the equation given by

(57) ut + ux + uux + uxxx = uxxxxx.

However, it is very easy to see that (1) and (57) are completely equivalent by way
of simple change of variables. In [2], authors have considered the following scheme
for the Kawahara equation (1)

un+1
i − un

i

∆t
+

1

2
D−[u

n
i ]

2 +Aun+1
i = 0,

where A = D+D+D− −D+D+D+D−D−. We shall refer to this scheme as JMO
scheme.

6.2. Spectral Method. We also compare our result with the highly accurate
spectral scheme given in [18]. This is a Fourier–Galerkin scheme, integrated in
time using an explicit leap-frog scheme. For a positive integer N , consider the
space SN defined by

SN = span
{
exp(ikx) : k ∈ Z ∩ [−N,N ]

}
.(58)

The fully discrete Fourier–Galerkin (spectral) approximation to (1) is a map U

from [0,∞) to the real-valued elements of SN such that, for all ϕ ∈ SN :

(59)
(
Un+1 −Un−1, ϕ

)
+ 2∆t

(
UnUn

x +Un
xxx −Un

xxxxx, ϕ
)
= 0.

We shall refer to this scheme as the spectral scheme.

6.3. One Soliton solution. In the case of Kawahara equation given by (1), if we
consider the initial profile of the form

u(x, 0) =
105

169
sech4

(
1

2
√
13

(x− c)

)
,(60)
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then it is known (cf. [4]) that the explicit solution is given by the following travelling
wave

u(x, t) =
105

169
sech4

(
1

2
√
13

(x− 36t

169
− c)

)
.

This result can be verified through substitution. We have applied all numerical
methods to simulate the periodic single soliton solution with initial data u0(x) =
u(x, 0). In Figure 2, we show the exact solutions at T = 100 and T = 250 as well as
the numerical solutions computed using 4096 grid points in the interval [−80, 80].
We have also computed numerically the error for a range of ∆x, where the L2-error

x

-80 -60 -40 -20 0 20 40 60 80

u

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

40 45 50 55 60 65

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62
Exact Solution

JMO Scheme

Kawahara-dissipative

Crank-Nicolson

Spectral Scheme

t=0 t=100 t=250

Figure 2. Comparison of exact and numerical solutions with ini-
tial data (60) and c = 10.

at time T is defined by

E1
∆x(T ) =

√√√√ 1

N

N∑

j=1

|u(xj , T )− u∆x(xj , T )|2,

and the relative error is defined by

E2
∆x(T ) = 100×

∑N
j=1 |u(xj , T )− u∆x(xj , T )|

∑N
j=1 u(xj , T )

.

In Table 6.3, and Table 6.3, we show L2-errors and relative errors respectively for
this example at time T = 10. An expected first and second order convergence has
been observed for the schemes (10) and (42) respectively.

Table 1. L2 errors for the one-soliton solution at time T = 10.

N E
1
∆x(10)/JMO E

1
∆x(10)/(10) Rate E

1
∆x(10)/(42) Rate E

1
∆x(10)/Spectral

512 1.50e-3 3.40e-3 2.63e-4 3.47e-08
1024 7.56e-4 1.70e-3 1.00 2.40e-4 0.13 3.51e-10
2048 3.81e-4 8.32e-4 1.03 6.11e-5 1.97 1.66e-11
4096 1.19e-4 4.17e-4 0.99 1.97e-5 1.63 8.47e-13
8192 9.62e-5 2.09e-4 0.97 5.49e-6 1.84 5.89e-14

Figure 2 confirms that all the difference methods have resolved the main features
of the solution. In particular, we see that both spectral scheme and Crank-Nicolson
scheme have maintained the shape (e.g., speed, height) of the soliton. However, the
phase error as well as significant amplitude error are evident for both Kawahara-
dissipative (10) and JMO schemes after long time. Nevertheless, we observe that
the qualitative features of both schemes are “right”, but neither their heights nor
their positions are correct.
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Table 2. Relative errors for the one-soliton solution at time T = 10.

N E
2
∆x(10)/JMO E

2
∆x(10)/(10) E

2
∆x(10)/(42) E

2
∆x(10)/Spectral

512 1.42e0 3.33e0 2.99e-1 8.32e-05
1024 7.25e-1 1.65e0 2.52e-1 6.64e-07
2048 3.70e-1 8.37e-1 6.46e-2 3.24e-08
4096 1.88e-1 4.22e-1 6.14e-2 1.59e-09
8192 9.54e-2 2.12e-1 1.54e-2 1.14e-10

7. Conclusion

We have considered the Kawahara equation that has applications in fluid me-
chanics. This is a generalized nonlinear dispersive equation which has a form of the
KdV equation with an additional fifth order derivative term.

A popular numerical approach has been the application of various spectral meth-
ods. There has been a great deal of work on the Fourier-Galerkin spectral method
for the nonlinear dispersive equations. In particular, convergence of spectral method
for the Kawahara equation has been shown.

We proved here convergence of two fully discrete implicit finite difference schemes
for the Kawahara equation. We have observed that the fully discrete conservative
scheme (42) works far better than the dissipative scheme (10) in practice. In fact
as Figure 2 depicts, the phase error and the dissipation error is evident for the
dissipative scheme given by (10). On the other hand, the conservative scheme (42)
resolves the solution very well, even after long time.

However, one of the crucial assumption in our convergence analysis was the
regularity of the initial profile. In our case, we have assumed that the initial datum
is in H5(R). In future, we plan to prove the convergence of a finite difference scheme
for the Kawahara equation with reduced regularity assumptions on initial data.
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