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FINITE VOLUME METHOD ON HYBRID MESHES

FOR COASTAL OCEAN MODEL

ZHIGANG LAI, BIN WU, AND QINGSONG ZOU

Abstract. In this paper we design a modified version of FVCOM by adopting hybrid meshes and
shifting the placement of velocity variables from the centroids of elements to the middle points of
edges. A simplified version of geostrophic equation is solved to test the new scheme, and illustrates
a nearly uniform error distribution.
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1. Introduction

The present study is a step toward the formulation of an unstructured-grid,
primitive equation, 3D ocean model which features horizontal mixed triangular-
quadrilateral meshes and vertically hybrid coordinate that is flexible in ocean ap-
plications with scales crossing river-estuary-shelf-basin-global. The model frame-
work is partially adopted from the Finite Volume Coastal Ocean Model (FVCOM)
which is an unstructured-triangular-grid open-source community ocean model and
has been successfully applied to many scientific and engineering problems [2, 3, 4, 5].

The model development starts with the aim of modifying FVCOM to support a
mixture of triangular and quadrilateral elements. Since at least two triangles are
required to match the same area of a quadrilateral element, this modification al-
lows the model domain be partitioned with an optimal number of non-overlapping
elements for given grid resolution and could significantly relieve the computational
cost of FVCOM, especially in high-resolution numerical modelling. Several poten-
tial benefits of using hybrid meshes in ocean modelling were also considered which
includes but not limited to: 1) flexibility in either h (mesh size) or p (polynomial or-
der) type of model refinement; 2) easily implementing velocity radiation boundary
condition which may be a difficult task in an unstructured-triangular-grid model;
3) nesting an unstructured- and structured-grid model with the exactly matched
boundary cells to reduce numerical instabilities due to interpolation between two
meshes; 4) better numerical performance by reducing certain mesh shape related
instability issues. These motivate us to examine the possibility of migrating the
discretization method of FVCOM to the new hybrid mesh and try to understand
its numerical properties and identify the potential aspects for future improvement.

In addition, the numerical design of FVCOM is based on finite volume methods
in which the velocity variables (u, v) are placed at the centroid of each triangle
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while the pressure variables are at three vertices. This placement of variables sim-
plifies the model by avoiding the specification of boundary conditions for veloci-
ties. However, it also brings some numerical difficulties which have to be treated
with special attentions. First, without the velocity information along the boundary
curves, the velocity gradient normal to the solid wall cannot be expressed explicitly.
Therefore, in FVCOM, ghost cells are used to mimic the viscous boundary layer
properly. Second, the velocities close to the open boundary can only be determined
by the specified pressure conditions, which in most cases is the surface elevations
caused by tidal fluctuations. To consider non-tidal components of velocities such as
wind-driven flows or western boundary currents at open boundaries, one has to use
mean-flow option in FVCOM, which actually is not very useful for real applications.

To avoid the above mentioned issues, the velocity variables in the new model
are to be placed at the middle points of edges of the elements. It should be noted
that this placement of variables is different from the lowest-order Raviart-Thomas
element [9] as no constraint on the velocity is needed, while the latter requires
the normal velocity be specified at edges and this is essentially the triangular C-
grids that are widely used in unstructured-grid ocean modelling [1, 7]. Actually,
our variable placement is very similar to the non-conforming linear elements of
velocities that were used in a finite element scheme for two-layer shallow water
equations [8]. Combining with linear conforming elements of surface elevations, the
resulting discrete scheme is free of two-grid oscillations and appears suitable for
coastal semi-enclosed basins circulation problems [8].

While the mesh is constructed in different way, and the placement of velocity
and pressure variables changes, the numerical scheme of finite volume discretization
changes accordingly. In this paper a FVCOM-like low order finite volume approach
is described to resolve the velocities based on a mixed triangular-quadrilateral mesh.
A simple geostrophic problem that determines the large-scale, steady-state ocean
circulation is used to validate the model, discuss its numerical properties and iden-
tify the potential aspects for future improvement.

The remainder of this paper is organized as follows. In section 2, the numerical
discretization of the geostrophic problem is introduced. In section 3, a numerical
experiment is presented, followed by a detailed description of the results. The major
finding and conclusions are summarized in section 4.

2. The new scheme with numerical treatments

Under the Boussinesq approximation, the incompressible, hydrostatic Navier-
Stokes equation for the momentum in the model is

(1)
dU

dt
+ fk × U = −g∇η −

1

ρ0
∇B +∇ · Ah∇U + ∂zAv∂zU,

where U = (u, v) represents the horizontal velocity components, ρ0 is the reference
density, B is the baroclinic pressure obtained through integrating the hydrostatic
relation ∂zp = −gρ from z = 0 with in-situ density ρ, g is the gravitational accel-
eration, η is the sea surface elevation, f is the Coriolis parameter, k is the vertical
unit vector, Ah and Av are lateral and vertical turbulent eddy viscosity respectively,
and ∇ stands for 2D gradient or divergence operators.

The geostrophic equation is the lowest order of equation (1) for rapidly rotating
fluids in the ocean interior with ignorable frictional effects and over large (> 100
km) spatial and long (> 2 days) temporal scales [6]. Recently, an unstructured
grid, finite volume, 3D primitive equation, turbulent closure coastal ocean model is
developed by Chen et al. [2, 3, 4, 5], which is called Finite Volume Coastal Ocean
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Figure 1. The placement of velocity and pressure variables in
FVCOM (left) and our scheme (right).

Model (FVCOM). It is a prognostic model, which uses a transformation in the
vertical to convert irregular bottom topography into a rectangular computational
domain for a simple numerical approach. FVCOM is composed of external and
internal modes that are computed separately using two split steps, and is solved
numerically by the flux calculation in the integral form of primitive equations over
non-overlapping, unstructured triangular grids. This numerical approach combines
the best of the finite element method for accurate coastal geometric fit and the finite
difference method for simple structure of the model code and computational effi-
ciency. In addition, the flux calculation method with an integral form of equations
provides a better representation of momentum, mass, salt, and heat conservation.

In FVCOM, the velocity variables (u, v) are placed at the centroid of each tri-
angle element, while pressure variables are at the vertices. This setting can avoid
the specification of boundary conditions for velocities, but brings some numerical
difficulties at the same time, as we have described in the previous section. Different
from FVCOM, we construct the mesh by using both triangular and quadrilateral
elements. In the region away from the boundary, the use of quadrilateral elements
provides us more flexibility in numerical treatments. Moreover, we place the veloc-
ity variables at the middle points of the edges. Fig. 1 makes comparison for the
placement of velocity and pressure variables in FVCOM and our scheme, in which
the circles indicate the positions of pressure variables and the points indicate the
velocity variables. A typical local snapshot of our mesh is shown in Fig. 2.

In order to illustrate our numerical treatments, a simplified version of the geostrophic
equation for homogeneous (without density variation) fluids is considered, which is
written as

(2) −fv = −g
∂η

∂x
, fu = −g

∂η

∂y
,

where x, y are Cartesian coordinates in eastward and northward directions, u and
v are velocity components in x and y direction respectively, g is the gravitational
acceleration and η is the surface elevation (or pressure) with respect to the reference
level z = 0. The Coriolis parameter, f , is the component of the earth’s rotation
perpendicular to the ocean surface and set to be constant, the value of which is
specified according to the center latitude of a local region.

Integrating both sides of (2) on a typical cell Ω, we obtain














∫∫

Ω

fvdxdy =

∫∫

Ω

g
∂η

∂x
dxdy,

∫∫

Ω

fudxdy = −

∫∫

Ω

g
∂η

∂y
dxdy.
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Figure 2. The triangular and quadrilateral elements together
with the placement of velocity and pressure variables.

Figure 3. The control cells associated with velocity (left) and
pressure (right).

The region of Ω is quadrilateral, which is created by locating the centroids of
triangular and quadrilateral elements, and connecting the centroids with vertices,
as shown in Fig. 3. The right hand side of the equations can be transformed into
boundary integral. For example,

∫∫

Ω

g
∂η

∂x
dxdy =

∮

∂Ω

gηdy.

Note that the boundary of Ω is composed of four line segments. On each linear
segment, the trapezoid rule can be applied for the calculation of integral, as long
as the values of η on both end points are known. Assume that the values of η
at all vertices are given. It is remained to specify the values at the centroids. In
each triangle element, the value of η at the centroid can be approximately found by
constructing linear interpolation with respect to the values at the three vertices and
then evaluating it at the centroid. In this way, the numerical error for computing
∮

∂Ω
gηdy is O(h3), where h is the maximum diameter of the elements. For quadri-

lateral elements, the value of η at the centroid can be approximated by bilinear
interpolation.
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Figure 4. The hybrid mesh for circular ocean basin.

There are two ways to compute
∫∫

Ω
fvdxdy. The first way is approximating the

integrand by constant function and then integrating, i.e.,
∫∫

Ω

fvdxdy ≈ fv|Ω|,

in which |Ω| stands for the area of Ω. Notice that on the right hand side the symbols
f and v both represent the function values of f and v at some specified point. It
is easily seen that the error of this rule is O(h3). The second way is finding an
appropriate linear polynomial to approximate the function v in the triangles “1”
and “2”, as shown in Fig. 3. Notice that the triangle “1” is located in a triangle
element and there are three control points of velocity variables which are located
at the middle points of the three edges of the element. It is natural to construct a
linear interpolating polynomial and then integrate it in triangle “1”. The integral
on triangle “2” is calculated similarly. The difference is that a bilinear polynomial
is constructed since it is in a quadrilateral element. The second way leads to better
numerical accuracy than the first, but the cost is that more than one velocity
variables are used to approximate the integral, which forces us to solve a linear
system.

As shown in Fig. 3, the control cell corresponding to a pressure variable can be
formed by successively connecting the centroids of elements and middle points of
edges. The idea for calculating the integrals on the domain or along the edge is
similar to that used in the numerical treatments associated with velocity variables.

Although equation (2) is simple, it dictates the fundamentally dynamical feature
in geophysical fluids. Therefore, it forms a basic test case to examine the perfor-
mance of a numerical method when applying it to ocean modelling. In the next
section the effectiveness of our new scheme will be illustrated through the equation.

3. Numerical experiments

The geostrophic flows in a circular ocean basin with a radius of 17.5 km are
evaluated on hybrid triangular-quadrilateral meshes, as shown in Fig. 4. In this
experiment, the precise value of the Coriolis parameter has little impact on the
results, thus a constant value of 1.0 × 10−4 (evaluated at 45oN) is given. The
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Figure 5. The absolute error of numerical solution.

surface elevation assumes a specified Gaussian distribution which is defined by

(3) η = A exp

(

−
x2 + y2

σ2

)

,

where A = 2.0m and σ = 2.5 × 107m. Taking derivative in equation (3) with
respect to x and y respectively and inserting them into equation (2), one can find
the analytical solution for the geostrophic flows, which is

(4)



















v = −gA exp

(

−
x2 + y2

σ2

)(

2x

σ2

)

/f,

u = gA exp

(

−
x2 + y2

σ2

)(

2y

σ2

)

/f.

It should be noted that in the above solution, no boundary conditions could be
considered at the coastline of the closed basin. But in the numerical discretization,
a slippery condition with zero velocity crossing the boundary is specified along the
coastline. This different treatment of boundary conditions will cause a discrepancy
between the analytical and numerical solutions as shown later. But it has no
relevance to the accuracy of the numerical discretization.

The numerical experiment suggests that the finite volume approach in FVCOM
can be used in the new discretization of velocities with a consistent numerical error
over triangular and quadrilateral elements. By subtracting the analytical from the
numerical solutions, the absolute errors are obtained and then illustrated in Fig.
5. The figure shows a tendency of the absolute error to increase toward the center
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Figure 6. The relative error of numerical solution.

of the basin. However, it is worth noting that the magnitude of the velocities
(4) turns to be stronger toward the center of the basin. As a result, it is not
surprising that the error grows toward the center. To reveal the relation between
magnitudes of numerical error and analytic solution, we explore the ratio of them
and find in Fig. 6 a more or less uniform error pattern except close to the coastline
where the discrepancy should be related to the inability to consider the boundary
condition in the analytical solution, as pointed out in the previous paragraph. Since
homogeneous boundary condition is applied, it is easily found that the relative error
at the boundary is 1. Meanwhile, it is observed from Fig. 6 that the error decays
rapidly to less than 0.04.

4. Concluding remarks

The FVCOM is a popular ocean model, but still contains some numerical difficul-
ties. We modify FVCOM by adopting hybrid meshes and changing the placement
of velocity and pressure variables, and explore the possibility of overcoming the
difficulties. The new scheme illustrates satisfactory numerical properties through
experiments on a simplified version of geostrophic equation.

The new scheme still needs rigorous theoretical analysis, which is our future
project of this topic. For general equation, more numerical treatments are required
during the discretization process.
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