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FINITE ELEMENT METHOD AND ITS ERROR ESTIMATES

FOR THE TIME OPTIMAL CONTROLS OF HEAT EQUATION

WEI GONG� AND NINGNING YAN†

Abstract. In this paper, we discuss the time optimal control problems governed by heat equation.
The variational discretization concept is introduced for the approximation of the control, and the

semi-discrete finite element method is applied for the controlled heat equation. We prove optimal
a priori error estimate for the optimal time T , and quasi-optimal estimates for the optimal control

u, the related state y and adjoint state p.
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1. Introduction

One of the most important optimal control problems is the optimal time control
problem. There have been extensive researches on the theoretical parts of the
time optimal control problems of ODEs (see, e.g., [4] and [5]) and time-dependent
PDEs (see [14, 15, 17] and the references cited therein), but only a few works
related to their numerical algorithms can be found, especially the finite element
approximations and error estimates for PDEs, among them we should mention the
work [8], [9] and [16].

The purpose of this work is to investigate the finite element approximations of
the time optimal control problem governed by heat equation. The model problem
that we shall investigate is the following time optimal control problem:

(1) min
u∈Uad

{
T : y(T ; y0, u) ∈ B(0, 1)

}
,

where u is the control, the state y satisfies the following controlled equation:

(2)


∂y(x,t)
∂t −∆y(x, t) = Eu(x, t) in Ω× (0,+∞),

y(x, t) = 0 on ∂Ω× (0,+∞),
y(x, 0) = y0(x) in Ω.

The details will be specified in the next section.
Although the finite element approximations of PDE-constrained optimal control

problems and related error estimates are well studied in the decades and there are
huge literatures in this aspect (see, e.g., [3], [7], [10], [11], [12] and the references
cited therein), the finite element method and its error estimates for time optimal
control problems are addressed only in a few papers. To the best of our knowl-
edge, the earliest work can be traced back to [8] and [9]. In both works, the finite
element approximations are introduced for the time optimal control problems and
the convergence analyses are provided. In [8] Knowles considered the finite dimen-
sional control (u =

∑m
i=1 fi(t)gi(x), where gi(x), i = 1, · · · ,m, are given functions)

which acts as the Robin boundary condition of the controlled equation and gave

Received by the editors March 15, 2015.
2000 Mathematics Subject Classification. 49J20, 49K20, 65N15, 65N30.
This research was supported by the National Basic Research Program of China under grant

2012CB821204, the National Natural Science Foundation of China under grant 11201464, 91330115

and 11171337.

265



266 W. GONG AND N. YAN

the error estimate for the optimal time with order O(h
3
2−δ) for an arbitrary small

δ > 0. While in [9] Lasiecka proved the convergence (without orders) of the optimal
time for the Dirichlet boundary control problem. In a recent work [16] by Wang
and Zheng, the time optimal control problem (1)-(2) is discussed. The error esti-
mate for the optimal time with order O(h + l) is provided under some additional
assumptions. These assumptions are not easy to verify in general cases. In this
paper, we introduce the variational discretization concept (see, e.g., [6] and [7]) for
the approximation of the control. Using this scheme, the error analysis becomes
easier and the optimal error estimate for the optimal time is proved without those
complicated assumptions. Moreover, the error estimates for the optimal control
and the state are also provided in this paper which are not found elsewhere.

The plan of the paper is as follows. In section 2, we introduce the model time
optimal control problem and construct its finite element approximation. The error
estimates for the time optimal control problems are then analyzed in section 3,
where the error estimates for the optimal time T , the optimal control u, the related
state y and adjoint state p are provided. Finally, we give a conclusion to the results
obtained in this paper and an outlook for some possible further works in the last
section.

2. Time optimal control problem and its finite element approximation

In this section, we formulate the model optimal control problem and its finite
element approximation.

Let Ω ⊂ Rn (n = 2 or 3) be a convex and bounded domain with sufficiently
smooth boundary ∂Ω. In the rest of the paper, we shall take the control space
U = L∞(0,+∞;L2(ω)) with ω̄ ⊂ Ω. We use the standard norms ‖ · ‖C([a,b];L2(Ω))

and ‖ · ‖L2(a,b;L2(Ω)) for related Sobolev spaces. For simplicity, we denote by ‖ · ‖
and (·, ·) the usual norm and the inner product of L2(Ω), respectively. In addition,
C denotes a general positive constant independent of the mesh size h.

Let

Uad = {v ∈ L∞(0,+∞;L2(ω)) : ‖v(t)‖L2(ω) ≤ 1 for almost every t ∈ [0,+∞)},

B(0, 1) = {w ∈ L2(Ω) : ‖w‖ ≤ 1}.
Then the model problem that we shall investigate is the following time optimal

control problem (see [16]):

(3) min
u∈Uad

{
T : y(T ; y0, u) ∈ B(0, 1)

}
with y(·; y0, u) the unique solution of the following equation

(4)


∂y(x,t)
∂t −∆y(x, t) = Eu(x, t) in Ω× (0,+∞),

y(x, t) = 0 on ∂Ω× (0,+∞),
y(x, 0) = y0(x) in Ω

corresponding to the control u and the initial value y0, here

E(f)(x) =

{
f(x) if x ∈ ω,
0 if x ∈ Ω \ ω.

Throughout this paper, we will treat the solutions of (4) as functions of the time
variable t, from R+ := [0,+∞) to the state space L2(Ω). We call the number

T̃ (y0) := min
u∈Uad

{T : y(T ; y0, u) ∈ B(0, 1)} the optimal time, while a control ũ ∈ Uad,

and satisfying the property that y(T̃ (y0); y0, ũ) ∈ B(0, 1), is called an optimal

control with corresponding optimal state ỹ := y(·; y0, ũ). Clearly, T̃ (·) defines a
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functional from L2(Ω) to R+. Just for simplicity, in the following we denote T̃ , ũ
and ỹ by T , u and y, respectively.

It is proved in [16] that the solution of the problem (3)-(4) is exist and unique.
Moreover, it can be proved that when T is the optimal time, we have the unique op-
timal control u and the adjoin state p such that the following Pontryagin maximum
principle holds (see [16])

(5)


(∂y∂t , w) + a(y, w) = (Eu,w) ∀w ∈ H1

0 (Ω), t ∈ (0, T ],
y(x, 0) = y0(x) x ∈ Ω,

−(∂p∂t , q) + a(q, p) = 0 ∀q ∈ H1
0 (Ω), t ∈ [0, T ),

p(x, T ) = y(x, T ) x ∈ Ω,∫ T
0

(E∗p, v − u)ωdt ≥ 0 ∀v ∈ Uad,
where

a(y, w) = (∇y,∇w)

and E∗ is the adjoint operator of E such that E∗p(x) = p(x) when x ∈ ω, and
(·, ·)ω is the inner product of L2(ω). Moreover, the last inequality in (5) can be
replaced by

(6) u(t) = − E∗p(t)

‖E∗p(t)‖ω
for almost every t ∈ [0, T ),

where ‖ ·‖ω is the norm of L2(ω). It should be pointed out that (6) is valid because
that ‖E∗p(t)‖ω > 0 for all t ∈ [0, T − δ), where δ is any positive constant, and the
control u has bang-bang property which reaches the boundary of Uad, see [16] for
more details.

Next, we introduce an approach to approximate the problem (3)-(4) with semi-
discrete finite element method (see, e.g., [2] and [12]) for the controlled equation
(4) and the variational discretization concept for the control u and the optimization
problem (3) (see, e.g., [6] and [7]).

Let us firstly consider the finite element approximation of the controlled equation
(4). Here we consider only n-simplex elements, as they are among the most widely
used ones. Also we consider only piecewise linear conforming Lagrange elements.
Let Ωh be a polygonal approximation to Ω with a boundary ∂Ωh. Let Th be a
partitioning of Ωh into disjoint regular n-simplices τ , so that Ω̄h =

⋃
τ∈Th τ̄ . Let

hτ be the size of the element τ , and h = max{hτ}. For simplicity, assume that
Ωh = Ω. Associated with Th is a finite dimensional subspace Sh of C(Ω̄h), such that
χ|τ are piecewise linear functions for ∀χ ∈ Sh and τ ∈ Th. Let Wh = Sh ∩H1

0 (Ω).
It is easy to see that Wh ⊂ H1

0 (Ω).
With above preparations we can formulate the semi-discrete finite element ap-

proximation of (4) as follows:{
(∂yh∂t , wh) + a(yh, wh) = (Eu,wh), ∀wh ∈Wh, t ∈ (0,+∞),

yh(x, 0) = yh0 (x), x ∈ Ω,
(7)

where yh ∈ H1(0, T ;Wh), the initial value yh0 ∈Wh is an approximation of y0.
Then the finite element approximation with variational control discretization

concept for the time optimal control problem (3)-(4) is

(8) min
u∈Uad

{
Th : yh(Th; yh0 , u) ∈ Bh(0, 1)

}
such that yh(·; yh0 , u) is the solution of equation (7), where Bh(0, 1) = {wh ∈
Wh : ‖wh‖ ≤ 1}. In this problem, we define the number T̃h(yh0 ) := min

u∈Uad

{Th :
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yh(Th; yh0 , u) ∈ Bh(0, 1)} to be the optimal time for the discrete time optimal con-
trol problem (7)-(8), while the control ũh ∈ Uad which satisfies the property that

yh(T̃ (y0); yh0 , ũh) ∈ Bh(0, 1), is called an optimal control with associated optimal

state ỹh := yh(·; yh0 , ũh). Again, we use Th, uh and yh to denote T̃h(yh0 ), ũh and ỹh,
respectively.

It should be noticed that the approach (7)-(8) provided in this paper is different
from the approach presented in [16]. Here we use the variational discretization
concept to approximate the optimization problem (3). Instead of discretising the
control space such that ul ∈ U lad with l the mesh size for the triangulation of ω,
we require that uh ∈ Uad. Then uh might be an approximated function, but not
necessarily in the finite element space Wh, especially when the restriction of Th on
ω does not give a triangulation of ω.

Again, it can be proved that the problem (7)-(8) admits a unique optimal control
uh ∈ Uad. Moreover, it can be proved that when Th is the optimal time for the
discrete problem (7)-(8), we have the unique optimal control uh and the discrete
adjoint state ph such that

(9)


(∂yh∂t , wh) + a(yh, wh) = (Euh, wh) ∀wh ∈Wh, t ∈ (0, Th],

yh(x, 0) = yh0 (x) x ∈ Ω,

−(∂ph∂t , qh) + a(qh, ph) = 0 ∀qh ∈Wh, t ∈ [0, Th),
ph(x, Th) = yh(x, Th) x ∈ Ω,∫ Th

0
(E∗ph, v − uh)ωdt ≥ 0 ∀v ∈ Uad.

For the discrete optimal control uh we actually have the following observation: for
each t ∈ [0, Th) there holds

(10) uh(t) =

{
− E∗ph(t)
‖E∗ph(t)‖ω if ‖E∗ph(t)‖ω 6= 0,

E∗vh for ∀vh ∈Wh satisfying ‖vh‖ω ≤ 1 if ‖E∗ph(t)‖ω = 0.

3. Error analysis

In this section, we will discuss the error estimate of the time optimal control
problem (3)-(4) and its finite element approximation (7)-(8).

Firstly, let us introduce two lemmas, which are the standard results of finite
element analysis. The proof of these lemmas can be found in many references, see,
e.g., [1], [2], [12] and [13].

Lemma 3.1. Let y(·; y0, u) be the solution of equation (4) and yh(·; yh0 , u) be the
standard finite element approximation of y(·, y0, u) defined in (7). Assume that
y0 ∈ H1

0 (Ω), u ∈ L2(0, T ;L2(ω)), Ω is a convex domain or with smooth boundary.
Then we have

‖y(·; y0, u)‖C([0,T ];L2(Ω)) + ‖y(·; y0, u)‖L2(0,T ;H1(Ω))

≤ C(‖y0‖+ ‖Eu‖L2(0,T ;L2(Ω)))(11)

and

‖y(·; y0, u)− yh(·; yh0 , u)‖L2(0,T ;L2(Ω))

+h‖y(·; y0, u)− yh(·; yh0 , u)‖C([0,T ];L2(Ω))

+h‖y(·; y0, u)− yh(·; yh0 , u)‖L2(0,T ;H1(Ω))

≤ Ch2(‖y0‖H1(Ω) + ‖Eu‖L2(0,T ;L2(Ω))).(12)
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Lemma 3.2. Let λ1 be the first eigenvalue of the operator −∆, and λh1 be the first
eigenvalue of the discrete Laplace operator −∆h which is approximated by standard
piecewise linear and continuous finite elements. Then it holds

(13) |λ1 − λh1 | ≤ Ch2.

Moreover, we need some regularity results for the solutions of the time optimal
control problems. Since u ∈ L∞(0,+∞;L2(ω)), it follows that y ∈ L2(0, T ;H2(Ω)∩
H1

0 (Ω))∩H1(0, T ;L2(Ω)) under the assumption that y0 ∈ H1
0 (Ω), which in turn im-

plies y ∈ C([0, T ];H1
0 (Ω)) (see [10]). From (5) we conclude that p ∈ L2(0, T ;H2(Ω)∩

H1
0 (Ω)) ∩H1(0, T ;L2(Ω)) and p ∈ C([0, T ];H1

0 (Ω)).
Next, we will present the property of the discrete optimal time, which has been

provided in [16].

Lemma 3.3. Let T and Th be the optimal times for the time optimal control
problem (3)-(4) and its approximation (7)-(8) with the initial value y0 and yh0 ,
respectively. Let

g(s) =

{
0 s ∈ (0, 1],
ln s

λ1
s ∈ (1,+∞)

and

gh(s) =

{
0 s ∈ (0, 1],
ln s

λh
1

s ∈ (1,+∞),

where λ1 and λh1 are defined in Lemma 3.2. Then, it holds that

(14) T (y0) ≤ g(‖y0‖)
and

(15) Th(yh0 ) ≤ g(‖yh0 ‖).

Now we are in the position to prove our main result: the error estimate for the
approximation of the optimal time. Some of the ideas for the proof follow [16].

Theorem 3.1. Let T and Th be the optimal times for the time optimal control
problem (3)-(4) and its approximation (7)-(8), respectively. Assume that the con-
ditions in Lemma 3.1 are all valid. Then

(16) |T − Th| ≤ Ch.

Proof. Let us start with proving

(17) Th − T ≤ Ch.
Let u be the optimal control to the time optimal control problem (3)-(4) with
optimal time T . Then it follows from (12) that

‖y(T ; y0, u)− yh(T ; yh0 , u)‖ ≤ Ch,
where yh(T ; yh0 , u) is the solution of (7). Note that T and u are the optimal time
and the optimal control to the time optimal control problem (3)-(4). We have that
y(T ; y0, u) ∈ B(0, 1), and therefore ‖y(T ; y0, u)‖ ≤ 1. It follows that

‖yh(T ; yh0 , u)‖ ≤ ‖y(T ; y0, u)‖+ ‖y(T ; y0, u)− yh(T ; yh0 , u)‖
≤ 1 + Ch.(18)

If yh(T ; yh0 , u) ∈ Bh(0, 1), that is yh(T ; yh0 , u) takes value in Bh(0, 1) at time
T . Considering that Th is the optimal time of the discrete time optimal control
problem (7)-(8), we have that Th ≤ T , which proves (17) in the case of yh(T ; yh0 , u) ∈
Bh(0, 1).
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Next, let us consider the other case that yh(T ; yh0 , u) is outside of Bh(0, 1). Let
y∗h := yh(T ; yh0 , u) be the initial value of the discrete time optimal control problem
(7)-(8), let T ∗h and u∗h be the related optimal time and optimal control. Then the
solution yh(T +T ∗h ; y∗h, u

∗
h) ∈ Bh(0, 1). Moreover, it follows from (15) and (18) that

(19) T ∗h ≤
1

λh1
ln ‖y∗h‖ ≤

1

λh1
ln(1 + Ch) ≤ C

λh1
h.

Using Lemma 3.2, (19) implies that

(20) T ∗h ≤
C

λ1
h.

We construct another control as

ū(t) =

{
u(t) t ∈ (0, T ],
u∗h(t− T ) t ∈ (T,+∞).

Then, it is easy to see that ū ∈ Uad and yh(T + T ∗h ; yh0 , ū) ∈ Bh(0, 1). Considering
that Th is the optimal time of the discrete time optimal control problem (7)-(8),
we have that

(21) Th ≤ T + T ∗h .

Then (17) follows from (20) and (21) immediately. In summary, (17) is proved in
all cases, including yh(T ; yh0 , u) is in Bh(0, 1) and outside of Bh(0, 1).

Now, we are in the position to prove

(22) T − Th ≤ Ch.

Let uh be the optimal control to the discrete time optimal control problem (7)-(8).
Then it follows from (12) that

‖y(Th; y0, uh)− yh(Th; yh0 , uh)‖ ≤ Ch,

where y(Th; y0, uh) is the solution of (4) with right hand side substituted by Euh.
Considering that Th and uh are the optimal time and the optimal control to the
discrete time optimal control problem (7)-(8), we have that ‖yh(Th; yh0 , uh)‖ ≤ 1,
and therefore

‖y(Th; y0, uh)‖ ≤ ‖yh(Th; yh0 , uh)‖+ ‖y(Th; y0, uh)− yh(Th; yh0 , uh)‖
≤ 1 + Ch.(23)

If y(Th; y0, uh) ∈ B(0, 1), that is y(Th; y0, uh) takes value in B(0, 1) at time Th.
Considering that T is the optimal time of the time optimal control problem (3)-(4),
we have that T ≤ Th, which proves (22) in the case of y(Th; y0, uh) ∈ B(0, 1).

Next, we consider the other case that y(Th; y0, uh) is outside of B(0, 1). Let
y∗ := y(Th; y0, uh) be the initial value of the time optimal control problem (3)-(4),
let T ∗ and u∗ be the related optimal time and optimal control. Then the solution
y(Th + T ∗; y∗, u∗) ∈ B(0, 1). Moreover, it follows from (14) and (23) that

(24) T ∗ ≤ 1

λ1
ln ‖y∗‖ ≤ 1

λ1
ln(1 + Ch) ≤ C

λ1
h.

We now construct a new control

û(t) =

{
uh(t) t ∈ (0, Th],
u∗(t− Th) t ∈ (Th,+∞).
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Then, it is easy to see that û ∈ Uad and y(Th + T ∗; y0, û) ∈ B(0, 1). Considering
that T is the optimal time of the time optimal control problem (3)-(4), we have
that

(25) T ≤ Th + T ∗.

Then (22) follows from (24) and (25). In summary, (22) is proved in all cases,
including y(Th; y0, uh) is in B(0, 1) and outside of B(0, 1).

Summing up, (16) follows from (17) and (22). This completes the proof. �

After deriving the error estimate between the optimal time T and the discrete op-
timal time Th, we are going to consider the errors between (y, p, u) and (yh, ph, uh),
which are the solutions of the problems (5) and (9), respectively.

Theorem 3.2. Let T and Th be the optimal times for the time optimal control
problem (3)-(4) and its approximation (7)-(8), let (y, p, u) and (yh, ph, uh) be the so-
lutions of problems (5) and (9), respectively. Assume that the conditions in Lemma

3.1 are all valid. Let T̃ = min{T, Th}. Then, for all t ∈ [0, T̃ ) and ε ∈ (0, 1) there
hold

(26) ‖y(t)− yh(t)‖ ≤ Ch1−ε(

∫ t

0

ds

‖E∗p(s)‖4ω
)

1
2 ,

(27) ‖p(t)− ph(t)‖ ≤ Ch1−ε

‖E∗p(t)‖ω
,

(28) ‖u(t)− uh(t)‖ω ≤
Ch1−ε

‖E∗p(t)‖2ω
.

Proof. To begin with, we prove an error estimate with reduced order:

(29) ‖p− ph‖C([0,T̃ ];L2(Ω)) ≤ Ch
1
2 .

Let us consider two different cases.
(i) At first we consider the case Th ≤ T . Let (yh(u), ph(u)) be the solutions of

the following auxiliary equations
(∂yh(u)

∂t , wh) + a(yh(u), wh) = (Eu,wh) ∀wh ∈Wh, t ∈ (0, Th],
yh(u)(x, 0) = yh0 (x) x ∈ Ω,

−(∂ph(u)
∂t , qh) + a(qh, ph(u)) = 0 ∀qh ∈Wh, t ∈ [0, Th),
ph(u)(x, Th) = yh(u)(x, Th) x ∈ Ω.

(30)

Note that u is defined in [0, T ], and then (30) is well defined when Th ≤ T .
Here and later we extend uh from (0, Th] to (0, T ] by setting uh(t) = u(t) when

t ∈ (Th, T ]. It is clear that u and uh are all in the control set Uad. It follows from
(5) and (9) that

(31)

∫ T

0

(E∗p, uh − u)ωdt ≥ 0

and

(32)

∫ Th

0

(E∗ph, u− uh)ωdt ≥ 0.
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Adding the above two inequalities together leads to∫ Th

0

(E∗p− E∗ph(u), uh − u)ωdt+

∫ T

Th

(E∗p, uh − u)ωdt

+

∫ Th

0

(E∗ph(u)− E∗ph, uh − u)ωdt ≥ 0.(33)

Considering the definition of uh in (Th, T ], we have that u = uh in (Th, T ]. Thus
(33) can be rewritten to be

(34)

∫ Th

0

(E∗p− E∗ph(u), uh − u)ωdt+

∫ Th

0

(E∗ph(u)− E∗ph, uh − u)ωdt ≥ 0.

It follows from (9) and (30) that∫ Th

0

(E∗ph(u)− E∗ph, uh − u)ωdt =

∫ Th

0

(ph(u)− ph, Euh − Eu)dt

=

∫ Th

0

(
(
∂(yh − yh(u))

∂t
, ph(u)− ph) + a(yh − yh(u), ph(u)− ph)

)
=

∫ Th

0

(
− (

∂(ph(u)− ph)

∂t
, yh − yh(u)) + a(yh − yh(u), ph(u)− ph)

)
+(yh(Th)− yh(u)(Th), yh(u)(Th)− yh(Th))

= 0 + (yh(Th)− yh(u)(Th), yh(u)(Th)− yh(Th))

= −‖yh(Th)− yh(u)(Th)‖2.(35)

Therefore, (34) and (35) imply that

‖yh(Th)− yh(u)(Th)‖2 ≤
∫ Th

0

(E∗(p− ph(u)), uh − u)ωdt

≤
∫ Th

0

(E∗(p− ph(y)), uh − u)ωdt

+

∫ Th

0

(E∗(ph(y)− ph(u)), uh − u)ωdt,(36)

where ph(y) is the solution of the following equation

(37)

{
−(∂ph(y)

∂t , qh) + a(qh, ph(y)) = 0 ∀qh ∈Wh, t ∈ [0, Th),
ph(y)(x, Th) = Phy(x, Th) x ∈ Ω

with Phy ∈ Wh an appropriate approximation of y. It is easy to see that ph(y)
is the standard finite element approximation of p̃, where p̃ is the solution of the
equation {

−(∂p̃∂t , q) + a(q, p̃) = 0 ∀q ∈ H1
0 (Ω), t ∈ [0, Th),

p̃(x, Th) = y(x, Th) x ∈ Ω,
(38)

and it follows from (12) that

(39) ‖p̃− ph(y)‖C([0,Th];L2(Ω)) ≤ Ch.
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Similar to the proof of (35) we have∫ Th

0

(E∗(ph(y)− ph(u)), uh − u)ωdt

=

∫ Th

0

(ph(y)− ph(u), E(uh − u))dt

=(yh(Th)− yh(u)(Th), Phy(Th)− yh(u)(Th)).(40)

Then (36), (40) and ε-Young inequality imply that

‖yh(Th)− yh(u)(Th)‖2 ≤ C‖Phy(Th)− yh(u)(Th)‖2

+C

∫ Th

0

(E∗(p− ph(y)), uh − u)ωdt.(41)

It is obvious that y(Th) ∈ H1
0 (Ω). If we choose Phy(Th) as the L2 projection of

y(Th) onto Wh, we can conclude from the standard projection error estimate ([2])
and (12) that

‖Phy(Th)− yh(u)(Th)‖ ≤ ‖Phy(Th)− y(Th)‖+ ‖y(Th)− yh(u)(Th)‖
≤ Ch.(42)

Note that u, uh ∈ Uad and p, ph(u) ∈ L2(0, Th;L2(Ω)). Then (39) implies that∫ Th

0

(E∗(p− ph(y)), uh − u)ωdt

≤ ‖p− ph(y)‖L2(0,Th;L2(ω))‖u− uh‖L2(0,Th;L2(ω))

≤ C‖p− ph(y)‖L2(0,Th;L2(ω))

≤ C‖p̃− p‖L2(0,Th;L2(Ω)) + C‖p̃− ph(y)‖L2(0,Th;L2(Ω))

≤ C‖p̃− p‖L2(0,Th;L2(Ω)) + Ch2.(43)

Moreover, it can be shown from (11) that

(44) ‖p̃− p‖L2(0,Th;L2(Ω)) + ‖p̃− p‖C([0,Th];L2(Ω)) ≤ C‖p̃(Th)− p(Th)‖.

When Th ≤ T and h is small enough, the initial conditions in (5), (38) and the
error estimate (16) imply that

‖p̃(Th)− p(Th)‖ = ‖y(Th)− p(Th)‖
= ‖y(Th)− e∆(T−Th)y(T )‖

= ‖y(Th)− e∆(T−Th)(e∆(T−Th)y(Th) +

∫ T

Th

e∆(T−s)Eu(s)ds)‖

≤ ‖(1− e2∆(T−Th))y(Th)‖+ ‖
∫ T

Th

e∆(T−s)Eu(s)ds‖

≤ ‖1− e2∆(T−Th)‖ ‖y(Th)‖+

∫ T

Th

e−λ1(T−s)ds

≤ Cλ1(T − Th)‖y(Th)‖+
C

λ1
(T − Th)

≤ C|T − Th| ≤ Ch.(45)

It follows from (44) and (45) that

(46) ‖p̃− p‖L2(0,Th;L2(Ω)) + ‖p̃− p‖C([0,Th];L2(Ω)) ≤ Ch.
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Therefore, we can conclude from (41), (43), (42) and (46) that

(47) ‖yh(Th)− yh(u)(Th)‖ ≤ Ch 1
2 .

It is easy to see from (12) that

(48) ‖y(Th)− yh(u)(Th)‖ ≤ Ch.

Then (47) and (48) imply that

(49) ‖y(Th)− yh(Th)‖ ≤ Ch 1
2 .

We can then conclude from (9), (11), (37) and (49) that

‖ph − ph(y)‖C([0,Th];L2(Ω)) ≤ C‖ph(Th)− ph(y)(Th)‖

= C‖yh(Th)− Phy(Th)‖ ≤ Ch 1
2 .(50)

Thus, it follows from (39), (46) and (50) that

(51) ‖p− ph‖C([0,Th];L2(Ω)) ≤ Ch
1
2 ,

which proves the error estimate (29) with the case Th ≤ T .
(ii) Next we consider the case T < Th. Let (y(uh), p(uh)) be the solutions of the

following auxiliary equations
(∂y(uh)

∂t , w) + a(y(uh), w) = (Euh, w) ∀w ∈ H1
0 (Ω), t ∈ (0, T ],

y(uh)(x, 0) = y0(x) x ∈ Ω,

−(∂p(uh)
∂t , q) + a(q, p(uh)) = 0 ∀q ∈ H1

0 (Ω), t ∈ [0, T ),
p(uh)(x, T ) = y(uh)(x, T ) x ∈ Ω.

(52)

For the case of T < Th, we set u(t) = uh(t) for t ∈ (T, Th]. Then, it follows from
(31) and (32) that∫ T

0

(E∗p− E∗p(uh), uh − u)ωdt+

∫ Th

T

(E∗ph, u− uh)ωdt

+

∫ T

0

(E∗p(uh)− E∗ph, uh − u)ωdt ≥ 0.(53)

Considering the definition of u in (T, Th], we have that u = uh in (T, Th]. Thus
(53) can be replaced as

(54)

∫ T

0

(E∗p− E∗p(uh), uh − u)ωdt+

∫ T

0

(E∗p(uh)− E∗ph, uh − u)ωdt ≥ 0.

It follows from (5) and (52) that∫ T

0

(E∗p− E∗p(uh), uh − u)ωdt =

∫ T

0

(p− p(uh), Euh − Eu)dt

=

∫ T

0

(
(
∂(y(uh)− y)

∂t
, p− p(uh)) + a(y(uh)− y, p− p(uh))

)
=

∫ T

0

(
− (

∂(p− p(uh))

∂t
, y(uh)− y) + a(y(uh)− y, p− p(uh))

)
+(y(uh)(T )− y(T ), y(T )− y(uh)(T ))− (y0 − y0, p(0)− p(uh)(0))

= −‖y(T )− y(uh)(T )‖2.(55)
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Therefore, (54) and (55) imply that

‖y(T )− y(uh)(T )‖2 ≤
∫ T

0

(E∗(p(uh)− ph), uh − u)ωdt

≤
∫ T

0

(E∗(p(uh)− p(yh)), uh − u)ωdt

+

∫ T

0

(E∗(p(yh)− ph), uh − u)ωdt,(56)

where p(yh) is the solution of the following equation{
−(∂p(yh)

∂t , q) + a(q, p(yh)) = 0 ∀q ∈ H1
0 (Ω), t ∈ [0, T ),

p(yh)(x, T ) = yh(x, T ) x ∈ Ω.
(57)

Let p̃h ∈Wh be the solution of the equation{
−(∂p̃h∂t , qh) + a(qh, p̃h) = 0 ∀qh ∈Wh, t ∈ [0, T ),

p̃h(x, T ) = yh(x, T ) x ∈ Ω,
(58)

it is easy to see that p̃h is the standard finite element approximation of p(yh), and
it follows from (12) that

(59) ‖p̃h − p(yh)‖C([0,T ];L2(Ω)) ≤ Ch.

Similar to the proof of (55) we have∫ T

0

(E∗(p(uh)− p(yh)), uh − u)ωdt =

∫ T

0

(p(uh)− p(yh), E(uh − u))dt

= (y(uh)(T )− y(T ), y(uh)(T )− yh(T )).(60)

Then (56), (60) and ε-Young inequality imply that

‖y(T )− y(uh)(T )‖2 ≤ C‖y(uh)(T )− yh(T )‖2

+C

∫ T

0

(E∗(p(yh)− ph), uh − u)ωdt.(61)

From (12), we also have

‖y(uh)(T )− yh(T )‖ ≤ Ch.(62)

Note that u, uh ∈ Uad and p(yh), ph ∈ L2(0, T̃ ;L2(Ω)). Then (59) implies that∫ T

0

(E∗p(yh)− E∗ph, uh − u)ωdt

≤ ‖p(yh)− ph‖L2(0,T ;L2(ω))‖u− uh‖L2(0,T ;L2(ω))

≤ C‖p(yh)− ph‖L2(0,T ;L2(ω))

≤ C‖p̃h − ph‖L2(0,T ;L2(Ω)) + C‖p̃h − p(yh)‖L2(0,T ;L2(Ω))

≤ C‖p̃h − ph‖L2(0,T ;L2(Ω)) + Ch2.(63)

Moreover, it can be shown from (11) that

(64) ‖p̃h − ph‖L2(0,T ;L2(Ω)) + ‖p̃h − ph‖C([0,T ];L2(Ω)) ≤ C‖p̃h(T )− ph(T )‖.
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Using the initial conditions in (9), (58) and the error estimate (16) again, we have
that

‖p̃h(T )− ph(T )‖
= ‖yh(T )− ph(T )‖
= ‖yh(T )− e∆h(Th−T )yh(Th)‖

= ‖yh(T )− e∆h(Th−T )(e∆h(Th−T )yh(T ) +

∫ Th

T

e∆h(Th−s)Euh(s)ds)‖

≤ ‖(1− e2∆h(Th−T ))yh(T )‖+ ‖
∫ Th

T

e∆h(Th−s)Euh(s)ds‖

≤ ‖1− e2∆h(Th−T )‖ ‖yh(T )‖+

∫ Th

T

e−λ
h
1 (Th−s)ds

≤ Cλh1 (Th − T )‖yh(T )‖+
C

λh1
(Th − T )

≤ C|T − Th| ≤ Ch.(65)

This together with (64) gives

(66) ‖p̃h − ph‖L2(0,T ;L2(Ω)) + ‖p̃h − ph‖C([0,T ];L2(Ω)) ≤ Ch.

Therefore, it follows from (61), (62), (63) and (66) that

(67) ‖y(T )− y(uh)(T )‖ ≤ Ch 1
2 .

Combing (62) and (67) we are led to

(68) ‖y(T )− yh(T )‖ ≤ Ch 1
2 .

We can conclude from (9), (11), (57) and (68) that

‖p− p(yh)‖C([0,T ];L2(Ω)) ≤ C‖y(T )− yh(T )‖ ≤ Ch 1
2 .(69)

Thus, it follows from (59), (66) and (69) that

(70) ‖p− ph‖C([0,T ];L2(Ω)) ≤ Ch
1
2 .

Again we proved the error estimate (29) with the case T < Th.
We can observe from the proof of the error estimate (29) that the main reason

for the reduction of convergence order for ‖p−ph‖C([0,T̃ ];L2(Ω)) lies in the estimates

of (43) and (63), where ‖u− uh‖L2(0,T̃ ;L2(ω)) is bounded from above by a constant

C. So we need the estimate of ‖u− uh‖C([0,T̃ ];L2(Ω)) to improve the estimate of p.

Using (6), (10), (51) and (70), we have that for all t ∈ [0, T̃ ), if ‖E∗ph(t)‖ω 6= 0
then

‖u(t)− uh(t)‖ω =
∥∥∥ E∗p(t)

‖E∗p(t)‖ω
− E∗ph(t)

‖E∗ph(t)‖ω

∥∥∥
ω

=
1

‖E∗ph(t)‖ω‖E∗p(t)‖ω

∥∥∥E∗ph(t)‖E∗p(t)‖ω − E∗p(t)‖E∗ph(t)‖ω
∥∥∥
ω

≤ 1

‖E∗ph(t)‖ω‖E∗p(t)‖ω

(∣∣∣‖E∗p(t)‖ω − ‖E∗ph(t)‖ω
∣∣∣‖E∗ph(t)‖ω

+‖E∗ph(t)− E∗p(t)‖ω‖E∗ph(t)‖ω
)

≤ C

‖E∗p(t)‖ω
‖E∗ph(t)− E∗p(t)‖ω ≤

Ch
1
2

‖E∗p(t)‖ω
,(71)
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else if ‖E∗ph(t)‖ω = 0 we may choose uh(t) = 1√
|ω|

with |ω| the measure of ω, then

‖u(t)− uh(t)‖ω =
∥∥∥ E∗p(t)

‖E∗p(t)‖ω
− ‖E∗p(t)‖ω√

|ω| ‖E∗p(t)‖ω

∥∥∥
ω

=
1√

|ω| ‖E∗p(t)‖ω

∥∥∥√|ω|E∗p(t)− ‖E∗p(t)‖ω∥∥∥
ω

=
1√

|ω| ‖E∗p(t)‖ω

∥∥∥√|ω|E∗(p(t)− ph(t))− ‖E∗p(t)‖ω + ‖E∗ph(t)‖ω
∥∥∥
ω

≤
C
√
|ω|√

|ω| ‖E∗p(t)‖ω
‖E∗p(t)− E∗ph(t)‖ω ≤

Ch
1
2

‖E∗p(t)‖ω
.(72)

Then (71) and (72) imply that for all t ∈ (0, T̃ ) there holds

‖u(t)− uh(t)‖ω ≤
Ch

1
2

‖E∗p(t)‖ω
.(73)

Inserting (73) into both the estimates of (43) and (63) and proceeding as above we
are led to

(74) ‖p(t)− ph(t)‖ ≤ Ch 3
4

( 1

‖E∗p(t)‖ω

) 1
2

,

which in turn implies

‖u(t)− uh(t)‖ω ≤ Ch
3
4

( 1

‖E∗p(t)‖ω

) 3
2

.(75)

Repeat the above process, a bootstrapping like technique enables us to estimate
that for all positive integer n > 1 and all t ∈ (0, T̃ ),

‖p(t)− ph(t)‖ ≤ C
h

1
2 + 1

22
+···+ 1

2n

‖E∗p(t)‖
1
2 + 1

22
+···+ 1

2n−1
ω

=
Ch2( 1

2−
1

2n+1 )

‖E∗p(t)‖2( 1
2−

1
2n )

ω

=
C‖E∗p(t)‖nωh1− 1

2n

‖E∗p(t)‖ω

≤ Ch1− 1
2n

‖E∗p(t)‖ω
,

because that ‖E∗p(t)‖ω ≤ C. Then (27) is proved. Moreover, we can also obtain

‖u(t)− uh(t)‖ω ≤
Ch1−ε

‖E∗p(t)‖2ω
(76)

for all t ∈ (0, T̃ ) and ε ∈ (0, 1), this gives (28).
Last, we consider the error for the state y. It is easy to see that yh(u) is the

standard finite element approximation of y on the time interval [0, Th] when Th ≤ T
and yh is the standard finite element approximation of y(uh) on the time interval
[0, T ] when T ≤ Th. Then it follows from (12) that

(77) ‖y − yh(u)‖C([0,Th];L2(Ω)) ≤ Ch when Th ≤ T

and

(78) ‖yh − y(uh)‖C([0,T ];L2(Ω)) ≤ Ch when T ≤ Th.
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Moreover, it can be proven from (11) and (28) that

(79) ‖y(t)− y(uh)(t)‖ ≤ C‖u− uh‖L2(0,t;L2(ω)) ≤ Ch1−ε(

∫ t

0

ds

‖E∗p(s)‖4ω
)

1
2

and

(80) ‖yh(u)(t)− yh(t)‖ ≤ C‖u− uh‖L2(0,t;L2(ω)) ≤ Ch1−ε(

∫ t

0

ds

‖E∗p(s)‖4ω
)

1
2 .

Collecting the above results we obtain

(81) ‖y(t)− yh(t)‖ ≤ Ch1−ε(

∫ t

0

ds

‖E∗p(s)‖4ω
)

1
2 ,

which proves (26). Then the proof of the theorem is completed. �

Remark 3.1. It should be noted that when ‖E∗p(t)‖ω ≥ C > 0 for all t ∈ [0, T̃ ],

Theorem 3.2 implies that for all t ∈ [0, T̃ ] and ε ∈ (0, 1),

‖y − yh‖C([0,T̃ ];L2(Ω)) + ‖p− ph‖C([0,T̃ ];L2(Ω)) + ‖u− uh‖C([0,T̃ ];L2(ω)) ≤ Ch
1−ε.

This is the quasi-optimal error estimate.

4. Conclusion and outlook

In this paper, we discussed the finite element approximation to the time optimal
control problem. The variational discretization concept was introduced for the
approximation of the control, and the semi-discrete finite element method for the
controlled equation was applied. The error estimates for the optimal time T , the
optimal control u, the related state y and adjoint state p were provided. The
quasi-optimal error estimates were obtained.

There are still many important issues to be addressed in this area. The fully
discrete finite element method for the controlled equation and the numerical algo-
rithm for the time optimal control problem should be investigated. It is also very
interesting to study a posteriori error estimates and superconvergence for the time
optimal control problems. Moreover, the research for efficient numerical algorithms
of time optimal control problem and their application remains a challenge, which
calls for more new techniques.
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