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A LITERATURE SURVEY OF MATHEMATICAL STUDY OF

METAMATERIALS

JICHUN LI

Abstract. Since the successful construction of the so-called double negative metamaterials in

2000, there has been a growing interest in studying metamaterials across many disciplinaries. In

this paper, we present a survey of recent progress in metamaterials and its applications from the
mathematical point of view. Due to the great amount of papers published in this area, here we

mainly discuss those issues interested to us. Our main goal is to attract more mathematicians to

study this fascinating subject.
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1. Introduction

In terms of metamaterials, we are specifically interested in those artificially struc-
tured composite materials with simultaneously negative electric permittivity ε and
magnetic permeability µ.

According to Solymar and Shamonina [1, p.317], four seminar papers made the
birth of the subject of metamaterials. The first one is by Russian physicist Vic-
tor Veselago [2], who wrote the fundamental paper on metamaterial (he called the
left-hand material). In this paper, he investigated many properties unique to sub-
stances with both negative permittivity ε and negative permeability µ, even though
nobody knew how to construct such a material at that time. The second important
paper is due to the paper published in 2000 by David Smith et al. [3]. In this paper,
through a physical experiment they demonstrated a composite medium (formed by
a periodic array of interspaced conducting nonmagnetic split ring resonators and
continuous wires) exhibits a frequency region in the microwave regime with simulta-
neously negative values of effective permeability µeff (ω) and permittivity εeff (ω),
where ω is the frequency of incident radiation. This split ring structure forms the
first successfully constructed left-handed medium, or double negative metamaterial.
The third seminar paper is due to Shelby, Smith and Schultz [4], who in early 2001
presented experimental data at microwave frequencies on a structured metamaterial
that there exists a frequency band where the effective index of refraction (normally
defined as n =

√
εµ) is negative when both ε and µ are negative. The other land-

mark work is due to John Pendry’s perfect lens paper published in 2000 [5], in which
he proposed the idea to use a slab of negative refractive index material to bring
light to a perfect focus without the usual constraints imposed by wavelength. The
principle behind this is that the negative refractive index material can restore not
only the phase of propagating waves but also the amplitude of evanescent waves.

Since 2000, there has been a tremendous growing interest in studying meta-
material across many disciplines due to its potential revolutions in areas such as
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communications, sensing, radar technology, sub-wavelength imaging, data storage,
and invisible cloak device.

2. Metamaterial Invisibility Cloaks

In June 23, 2006’s issue of Science magazine, Leonhardt [6] and Pendry et al.
[7] independently published their works on electromagnetic cloaking. Leonhardt
used a conformal mapping to describe how an inhomogeneous indices of refraction
n(x) in two dimensions can cause light rays to go around a region and emerge on
the other side as if they had passed through a free space where n = 1. While
Pendry’s idea is to enclose a finite size object to be cloaked by a specially designed
metamaterial coating, which can control the electromagnetic field by mimicking the
heterogeneous anisotropic nature of the matrices of permittivity and permeability
obtained through changes of coordinates. In Nov.10, 2006’s Science, Schurig et
al. [8] demonstrated the first practical realization of such a cloak with the use of
a metamaterial consisting of concentric layers of split ring resonators (SRRs) and
made a copper cylinder invisible to an incident plane wave at a specific microwave
frequency (8.5 GHz).

Actually, there are many other cloaking ideas with metamaterials. For example,
Alu and Engheta [9] proposed an idea of employing a plasmonic or metamaterial
cover to drastically reduce the overall scattering from moderately sized objects by
means of a scattering cancellation effect. Later they [10] extended the idea to
using a plasmonic coating to render an electromagnetic sensor almost invisible to
detection by incident waves, while the sensor can remain effective as a device to
receive, measure, and observe incident waves.

The idea of ”cloaking by anomalous localized resonance” was proposed in 2006 by
Milton and Nicorovici [11] and has been further developed by many researchers such
as Bruno and Lintner[12], Bouchitte and Schweizer [13], Ammari et al. [14], Kohn
et al. [15], and Nguyen [16]. As Kohn et al. [15] mentioned that the mathematical
problem of this type cloaking boils down to the investigation of the behavior of
the elliptic problem ∇ · (a(x)∇u(x)) = f(x), where a(x) is a complex coefficient
with a matrix-shell-core structure, with real part equal to 1 in the matrix and the
core, and −1 in the shell. The interesting problem is to understand the resonant
behavior of the solution when the imaginary part of a(x) goes to zero, and how
the location of the source f plays in the resonance. Many papers are restricted to
radial geometries except [14, 15].

Among many proposed cloaking techniques with metamaterials, Pendry et al.’s
cloaking technique [7] seems to be the most popular one, which is nicknamed as
transformation optics/electromagnetics (e.g., [17, 18]). It is agreed now that the
transformation based cloaking was first discovered back in 2003 by mathematicians
Greenleaf et al. [19, 20, 21] for nondetectability examples in the context of the
Calderón problem.

The principle behind transformation optics is to use a coordinate transformation
to derive the spatial dependent permittivity and permeability to guide the wave.
For electromagnetic wave, the derivation boils down to the important property that
Maxwell’s equations are form invariant under coordinate transformations.

Theorem 2.1. [22, Appendix A] Consider the time-harmonic Maxwell’s equations
(assuming time harmonic variation of exp(jωt)):

(1) ∇×E + jωµH = 0, ∇×H − jωεE = 0,
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where E(x) and H(x) are the electric and magnetic fields in the frequency domain,
and ε and µ are the permittivity and permeability of the material.

Under a coordinate transformation x′ = x′(x), the equations (1) keep the same
form in the transformed coordinate system:

(2) ∇′ ×E′ + jωµ′H ′ = 0, ∇′ ×H ′ − jωε′E′ = 0,

where all new variables are given by

(3) E′(x′) = A−TE(x), H ′(x′) = A−TH(x), A = (aij), aij =
∂x′i
∂xj

,

and

(4) µ′(x′) = Aµ(x)AT /det(A), ε′(x′) = Aε(x)AT /det(A).

A simple proof of Theorem 2.1 can be found in Appendix A of [22]. Due to
the singularity of the parameters of the perfect cloaking, mathematicians proposed
the approximate cloaking concept by incorporating regularization into the cloak-
ing construction. In mathematical community, the approximate/near cloaking has
recently been extensively studied. For example, near cloaking schemes were devel-
oped for electric impedance tomography [23, 24], for scalar waves governed by the
Helmholtz equation (e.g., [48, 26, 27]), for full Maxwell equations [28, 29, 30], and
for the second-order wave equations [31].

3. Well-posedness analysis

The recent development of metamaterials raised some issues in the theoretical
and numerical study of time-harmonic Maxwells equations. There are some con-
cerns about the effects on the well-posedness of the problem and the regularity of
the solution caused by the possible sign-change of the dielectric permittivity and/or
of the magnetic permeability. For example, at the optical frequencies sign-change
of the permittivity does happen at the interface between a metal and a classical
medium. Another case is that sign-change happens for both permittivity and per-
meability at the interface between a dielectric and double negative metamaterials.

In a series of papers [32, 33, 34, 35, 36, 37], Dhia et al. studied the well-posedness
of time harmonic Maxwells equations with sign-changing coefficients. For example,
in [35], they proved that in a bounded domain Ω the equation

−∇ · (µ−1∇φ)− ω2εφ = f,

with f ∈ L2(Ω) and Dirichlet boundary conditions, may be strongly ill-posed in
the usual H1 framework for a sign-changing function µ.

Well-posedness results have been obtained by Fernandes & Raffetto for anisotropic
metamaterials [38], and for bianisotropic media [39]. In 2014, Fernandes and Raf-
fetto [40] deduced many regularity results for the time-harmonic Maxwell’s equa-
tions

∇×H = jωD + Je, ∇×E = −jωB − Jm, in Ω

satisfying the constitutive relations of a bianisotropic material

E = εD + χB, H = ξD + µB, in Ω

where ε, χ, ξ, µ are 3×3 matrix-valued functions of the space, j =
√
−1, and ω > 0 is

the angular frequency. Here D and B are the electric and magnetic flux densities,
respectively. They obtained the local regularity of the electromagnetic fields by
considering that the physical domain Ω is filled by just a general bianisotropic
material.
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In [41], Cocquet et al. proved some well-posedness results for first order sym-
metric systems describing wave propagation in electromagnetic, acoustic, and lin-
ear elastic metamaterials, where they assume that the coefficients of the governing
equations are frequency dependent. As for electromagnetics, they considered two
models. The first model describes wave propagation in bi-anisotropic metamateri-
als: Find (E,H) ∈ H(curl; Ω)2 such that

ωε(ω,x)E + ωξ(ω,x)H −∇×H = −J(x), in Ω,

ωη(ω,x)E + ωµ(ω,x)H +∇×E = −M(x), in Ω,

n× (E + Λ(n×H)) = 0, x ∈ ∂Ω, impedance boundary condition

where ξ and η are coupling coefficients. The second model is for wave propaga-
tion in chiral media described by the Drude-Born-Fedorov system: Find (E,H) ∈
H(curl; Ω)2 such that

ωε(ω,x)E + ωβ(ω,x)ε(ω,x)∇×E −∇×H = −J(x), in Ω,

ωµ(ω,x)H + ωβ(ω,x)µ(ω,x)∇×H +∇×E = −M(x), in Ω,

n× (E + Λ(n×H)) = 0, x ∈ ∂Ω, impedance boundary condition

where β is the chirality of the material. Generic well-posedness results are proved
for both models with either scalar physical parameters or 3× 3 tensor coefficients.

As for time-dependent problems, Nicaise [42] obtained the existence result for
the following model:

∂D

∂t
− curlH = 0, in Ω× (0,∞),

∂B

∂t
+ curlE = 0, in Ω× (0,∞),

H × n = J , E × n = 0, on ∂Ω× (0,∞),

E(0) = E0, H(0) = H0, in Ω,

with the Drude-Born-Fedorov constitutive relations

D = ε(E + βcurlE), B = µ(H + βcurlH),

and another model:

ε
∂

∂t
(E + βcurlE)− curlH = 0, in Ω× (0,∞),

µ
∂

∂t
(H + βcurlH) + curlE = 0, in Ω× (0,∞),

H · n = E · n = 0, on ∂Ω× (0,∞),

E(0) = E0, H(0) = H0, in Ω,

In [43], Liaskos obtained some well-posedness results for the following initial
boundary value problem:

ε
∂

∂t
(E + β(t)curlE)− curlH = −Je, in Ω× (0,∞),

µ
∂

∂t
(H + β(t)curlH) + curlE = −Jm, in Ω× (0,∞),

divE = divH = 0, in Ω× (0,∞),

H · n = E · n = curlE · n = curlH · n = 0, on ∂Ω× (0,∞),

E(0) = E0, H(0) = H0, in Ω.
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Many other related results can be found in papers (cf. [44, 45, 46]) and a recent
book by Roach et al. [47].

4. Homogenization of metamaterials

Rigorous derivation of the effective properties of metamaterials is quite challeng-
ing and is still in its early stage. In [48], Kohn and Shipman made a great effort in
clarifying the meaning of the effective dielectric permittivity and magnetic perme-
ability in the quasi static limit, which assumes that the scale of the microstructure
is sufficiently small compared to the free space wavelength of the fields. They con-
sider the 2D ring-type resonators, and the rings must have high conductivity as the
inverse of the characteristic length of the microstructure. For a microstructured
composite material satisfying the relations

D = εE, B = µH,

they obtain the homogenized coefficients ε∗ and µ∗ on the macroscopic level:

Dav = ε∗Eav, Bav = µ∗Hav.

The homogenized Maxwell system is

curl Eav − jωµ∗h0
e = 0, curl h0

e − jωε∗Eav = 0,

where Eav is a 2D vector, scalar h0
e represents the exterior value of the magnetic

field, and the two curl operators are in the 2D meaning. We like to remark that the
homogenization of microresonators is different from the standard homogenization
of composites, since here H and B fields (also E and D fields) are averaged over
different parts of a unit cell.

In [49], Bouchitté and Schweizer presented a rigorous derivation of the effective
properties of a metamaterial containing split rings. More specifically, they consider
the Maxwell system

curl Eη = jωµ0Hη, curl Hη = −jωεηε0Eη,
with relative permittivity εη = 1 + j kη2 in

∑
η and εη = 1 in R3\

∑
η. The domain∑

η is occupied by the split rings with diameters of order η, the distances between
ring centers are η, the circular cross section of each ring has radius in the order of
η, and the upper part of each ring has a slit of size O(η2). They proved that the
homogenized system is

curl Eav = jωµ0µ
∗Hav, curl Hav = −jωε0ε∗Eav,

where µ∗ = ε∗ = 1 in R3\
∑
η, while µ∗ = µeff (ω) and ε∗ = εeff , i.e., the effective

permittivity εeff is real, positive and frequency independent, while the effective
permeability µeff (ω) is frequency dependent and its eigenvalues can have negative
or positive real parts.

In [50], Lamacz and Schweizer generalized the results of [13] to a more compli-
cated ring geometry, which satisfies the conditions: many (order η3), small (order
η), thin (order η2), and highly conductive (order η3) metallic objects.

In [51], Chen and Lipton constructed metamaterials made from subwavelength
periodic nonmagnetic coated cylinders immersed in a nonmagnetic host. The coated
cylinders are parallel to the z axis and made from a frequency independent high
dielectric core and a frequency dependent dielectric plasmonic coating. The effective
medium parameters are derived as leading order terms of an explicit multiscale
expansion for the solution of Maxwells equations.

We like to remark that although many homogenization techniques have been
proposed for metamaterials over the last decade (e.g., [52, 53, 54, 55, 56, 57]),
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unfortunately, rigorous mathematical analysis are still restrict to geometries that
are much simpler [50, p.1462] than nested split rings or fish-net designs.

5. Metamaterial applications

Here we mention some interesting potential applications of metamaterials to
inspire mathematicians to pursue some mathematical studies in these subjects.

The refocusing property of metamaterial slabs can generate focusing spots in
biological tissue as required in microwave hyperthermia treatment. Moreover, the
heating spot in tissue can be adjusted easily by moving the heating source around,
which overcomes the complex deployment and control system as required in the
conventional array applicator. Study [58] claims that use of metamaterial lenses
can result in higher power deposition and thus can achieve more effective microwave
hyperthermia in cancerous tissue.

Biosensors play a very important role in many areas such as food safety, disease
diagnostics, environmental monitoring, and investigation of biological phenomena.
In recent years, many researchers proposed various metamaterial-based sensors, the
main principle behind this is that the refractive index is rapidly changed by adsorp-
tion and desorption of analyte particles. Alu et al. [59] proposed a dielectric sensing
method by using ε near zero narrow waveguide channels. By using metamaterial
lens, Shreiber et al. [60] developed a novel microwave nondestructive evaluation
sensor to detect material defects at the wavelength level. Thin-film sensor with
metamaterials was proposed by Labidi et al. [61]. Xu et al. [62] reported a flex-
ible metamaterial based photonic device operating in the visible-IR regime, and
they claimed that this device has potential applications in high sensitivity strain,
biological and chemical sensing.

Metamaterials provide a new path forward for the construction of absorbers.
The first experimental demonstration of a metamaterial perfect absorbers (MPA)
was in 2008 [63], and the structure consists of two metamaterial resonators which
can absorb all incident radiation within a single unit cell layer. The experiments
demonstrated a peak absorbance greater than 88% at 11.5 GHz. This seminal work
in the microwave regime inspired many continuous works in other frequency regimes
with high absorptivity. In 2010, Liu et al. [64] demonstrated a spatially dependent
metamaterial perfect absorber operating in the THz regime. The experimental
absorption of 97% was achieved at 6.0µm wavelength, and matched well with nu-
merical full-wave simulations carried out by using the commercial program CST
Microwave Studio 2009. In 2011, Aydin et al. [65] demonstrated an ultrathin (260
nm) plasmonic super absorber consisting of a metal-insulator-metal stack with a
nanostructured top silver film composed of crossed trapezoidal arrays. Their super
absorber yields broadband and polarization-independent resonant light absorption
over the entire visible spectrum (400–700 nm) with an average measured absorption
of 0.71 and simulated absorption of 0.85.

In 2000, Pendry [5] made a theoretical proposal of using metamaterials to build
the superlens which overcome the so-called ”diffraction limit” in optics: whenever
an object is imaged by an optical system, fine features (i.e., those smaller than half
the wavelength of the light) are permanently lost in the image. The key feature
needed in a superlens is its ability to enhance the evanescent waves, resulting in
a sharper image. Since 2000, superlenses have been realized in both microwave
and optical frequencies with different designs. In 2005, the optical superlensing
effect was observed using a thin slab of silver (a ε-negative material), that could
effectively image 60-nm features (λ/6), well below the diffraction limit [66, 67].
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The sub-diffraction-limited image was recorded by optical lithography at 365 nm
wavelength. Using optical phonon resonance enhancement, a SiC superlens at mid-
infrared frequency demonstrated a λ/20 resolution in terms of wavelength [68].

Cherenkov radiation (CR) is emitted when the charged particles move faster
than the speed of light in a material. The CR was experimentally observed in the
normal media by Cherenkov back in 1934. In his 1968 seminar paper, Veselago [2]
made the statement that a double negative metamaterial could induce reversal of
CR. Until 2003, Lu et al. [69] firstly verified Veselago’s view in both dispersive and
dissipative metamaterials. The reversed CR provides a potential application for
Cherenkov detectors, since the detection sensitivity can be greatly improved due to
the natural separation between the detectors for the particle and the detectors for
the reversed CR in metamaterials. Many continuous works on using metamaterials
to improve the Cherenkov detectors have appeared later. For example, Averkov et
al. [70] investigated the case that an electron bunch moving in a vacuum above an
isotropic metamaterial produced the reversed CR. Duan et al. studied the CR in a
waveguide filled with anisotropic metamaterials [71], and in a waveguide filled with
anisotropic metamaterials [72].

6. Numerical modelling of metamaterials

Due to many interesting potential applications of metamaterials, numerical mod-
elling plays a very important role in the study of metamaterials and applications
by providing a cheap justification of the expensive physical experiments or as a
replacement for some experiments that cannot be even carried out under current
situation.

Since the proposal of Yee scheme back in 1966 [73], the so-called finite-difference
time-domain (FDTD) method has been one of the most useful electromagnetic
modeling tools because of its simplicity and versatility. Since the discovery of
metamaterials in 2000, the FDTD method has been one of the dominate simulation
tools in modelling of metamaterials (see [74] and references therein). Due to our
own research interest and the shortcoming of FDTD method for solving problems
on complex geometric domains, here we mainly focus on the finite element methods
[75].

To model metamaterials, two popular dispersive media models are often used.
One is the lossy Drude model, whose permittivity and permeability in frequency
domain are described by

(5) ε(ω) = ε0(1−
ω2
pe

ω(ω − jΓe)
), µ(ω) = µ0(1−

ω2
pm

ω(ω − jΓm)
),

where ωpe and ωpm are the electric and magnetic plasma frequencies, Γe and Γm
are the electric and magnetic damping frequencies, and ω is the incident wave
frequency.

Using a time-harmonic variation of exp(jωt), we can obtain the governing equa-
tions for modeling the wave propagation in metamaterials described by the Drude
model (5):

ε0
∂E

∂t
= ∇×H − J ,(6)

µ0
∂H

∂t
= −∇×E −K,(7)
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1

ε0ω2
pe

∂J

∂t
+

Γe
ε0ω2

pe

J = E,(8)

1

µ0ω2
pm

∂K

∂t
+

Γm
µ0ω2

pm

K = H,(9)

where J and K are the induced electric and magnetic currents, respectively.
Another popular model used for modeling wave propagation in metamaterials is

described by the so-called Lorentz model, which in frequency domain is given by

(10) ε(ω) = ε0(1−
ω2
pe

ω2 − ω2
e0 − jΓeω

), µ(ω) = µ0(1−
ω2
pm

ω2 − ω2
m0 − jΓmω

),

where ωpe, ωpm,Γe and Γm have the same meaning as the Drude model. Further-
more, ωe0 and ωm0 are the electric and magnetic resonance frequencies, respectively.

Transforming (10) into time domain, we obtain the governing equations for mod-
eling the wave propagation in metamaterials described by the Lorentz model (10):

ε0
∂E

∂t
+
∂P

∂t
−∇×H = 0,(11)

µ0
∂H

∂t
+
∂M

∂t
+∇×E = 0,(12)

1

ε0ω2
pe

∂2P

∂t2
+

Γe
ε0ω2

pe

∂P

∂t
+

ω2
e0

ε0ω2
pe

P −E = 0,(13)

1

µ0ω2
pm

∂2M

∂t2
+

Γm
µ0ω2

pm

∂M

∂t
+

ω2
m0

µ0ω2
pm

M −H = 0,(14)

where P and M are the induced electric and magnetic polarizations, respectively.
In the last ten years, the author and his collaborators have developed various

finite element methods (FEMs) for solving the above models, For example, [76, 77]
developed a fully-discrete FEM solving (6)-(9) by edge elements directly. We like
to point out that we can solve for J and K from (8) and (9) in terms of E and H
respectively, then substitute into (6)-(7), which leads to integral-differential type
Maxwell’s equations. Some FEMs have been developed for solving these integral-
differential equations [78, 79, 80]. Considering some advantages of the discontinuous
Galerkin (DG) methods (e.g., much simpler in programming nodal basis functions
than edge elements), we also explored some DG methods for solving the Drude
model [81, 82, 83]. Compared to the Drude model, there are much fewer FEMs
developed for solving the Lorentz model [84, 85]. Recently, we also carried out
the superconvergence investigation of edge elements on rectangular elements [86],
cubic elements [87], triangular elements [88], and tetrahedral elements [89]. We like
to mention that the superconvergence analysis of higher order edge elements on
triangular and tetrahedral elements are still open.

In the last few years, we also started working on simulation of metamaterial
cloaks by FEMs. We like to mention that the cloaking models are much more
complicated than the Maxwell’s equations in metamaterials described by the Drude
model or the Lorentz model above, since the permittivity and permeability in cloak-
ing are not only dispersive but also highly anisotropic. Initially we used the mul-
tiphysics commercial finite element package COMSOL to solve some famous cloak
models [90]. After we feel comfortable about the physics of metamaterial cloaking,
we developed our own codes to solve those cloak models using adaptive FEMs for
steady-state problems [91, 92], and edge elements for time-domain cloaking models
[93, 94]. Very recently, we also used COMSOL to simulate the total transmission
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(equivalent to cloaking) and total reflection phenomena happened in the zero-index
metamaterials [95, 96].

In addition to our own works on numerical modeling of metamaterials mentioned
above and numerous FDTD papers published on metamaterials (too many to be
cited here), Li, Liang and Lin [97] proposed an interesting energy conserved splitting
FDTD scheme for solving the Drude model (6)-(9). The scheme is unconditionally
stable, and converges first order in time and second order in space.

Chung and Ciarlet [98] proposed a staggered discontinuous Galerkin method
for wave propagation in media with dielectrics and metamaterials by solving the
problem:

div(µ−1∇u) + ω2εu = f in Ω ⊂ Rd, d = 1, 2, 3,

u = 0 on ∂Ω.

A posteriori error estimator is derived by Nicaise and Venel [99] for transmission
problems with sign changing coefficients:

−div(a∇u) = f in Ω ⊂ R2,

u = 0 on ∂Ω,

where a ≥ ε0 in Ω+ and a ≤ −ε0 in Ω−. Here Ω+ and Ω− are the two subdomains
of Ω such that Ω = Ω+ ∪ Ω− and Ω+ ∩ Ω− = ∅. Both lower and upper bounds are
obtained.

Very recently, Yang and Wang [100] proposed a spectral element method for
solving circular and elliptic cylindrical cloaks in the frequency domain. Bren-
ner, Gedicke and Sung [101] used the Hodge decomposition approach to solve 2D
time-harmonic Maxwell’s equations with anisotropic electric permittivity and sign-
changing magnetic permeability. Numerical results are presented for experiments
that involve metamaterials and electromagnetic cloaking.

Generally speaking, there are not many papers published in regards of developing
and analyzing numerical methods for solving Maxwell’s equations in metamaterials.
Hopefully in the near future, many excellent numerical methods proposed for solving
Maxwell’s equations in simple media (e.g., papers [102, 103, 104, 105, 106, 107], and
books [108, 109, 110]) can be extended to metamaterials.

7. Summary

The literature on metamaterials and its potential applications in various areas
such as cloaking, subwavelength imaging, and transformation optics has grown
enormously in the last decade. Due to our limited knowledge, here we only touched
on a very limited number of papers and subjects. Many interesting subjects such
as acoustic metamaterials (e.g.,[111, 112, 113]) and hyperbolic metamaterials [114]
are untouched. Interested readers can consult numerous books published in this
area (e.g., [115, 116, 117, 118, 119]).
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