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AN IMMERSED BOUNDARY METHOD FOR DIATOM

SEDIMENTATION

YU-HAU TSENG, PING HUANG, AND HUAXIONG HUANG

Abstract. We propose a mathematical model and immersed boundary method for the growth
and breakup of diatom chains. Diatom chains are treated as zero thickness open curves thanks to
their small aspect ratio. The growth of the chain is modelled by adding small pieces of diatoms
at the two end points while the breakup is done by removing a small piece in the middle of the
chain. Numerical experiments are carried out to investigate the effects of growth and breakup
on the sedimentation rate of diatom chains. Simulations of multiple diatom chains show that
sedimentation rate is highly dependent on diatoms’ spatial distribution. The results can be used
to explain the observations that diatoms often form chain-like structures in natural habitats.
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1. Introduction

In many taxonomic groups, colony formation among planktonic organisms sus-
pended in water is very common. The colonial structures are formed in many ways
and many colonies take the form of chains [14]. Diatom is one of the most important
species among those phytoplankton [1]-[3]. It is found that diatoms are capable of
existing as independent units and also join together to form long chains as well [3].
Since diatoms are denser than water and they normally sink under gravity, any
strategy that helps to create a condition to reduce the sedimentation speed will be
evolutionary advantageous.

In [9], diatom chains are modelled as nearly inextensible two-dimensional fibres
with large bending resistance. Sedimentation of diatoms are studied using the im-
mersed boundary method. It was found that the speed of sedimentation is affected
by the length as well as the orientation [8] for an isolated fibre or a group of fibres
with relative large separation distance. On the other hand, when the separation
distance is small, sedimentation speed is greatly enhanced, due to hydrodynamic
interaction. It was also found that orientation of these fibres becomes less a factor
under a shear flow. While these findings are informative, it is not clear what deter-
mines the separation distance among diatoms in an environment where planktons
could grow. In this paper, we develop an immersed boundary method to investigate
the dynamical process of diatom growth and sedimentation, where the separation
distance among diatoms is a not a pre-determined parameter.

The main feature of our immersed boundary method is that the length of the
immersed structure is under active control. First of all, the diatom chain element
is nearly inextensible without growth, which is approximated by a nonlinear strain-
hardening spring. Secondly, the growth of diatoms is modelled by adding extra
element to the diatom chain. Finally, when the chain breaks, a repulsive force
among diatom chains is imposed to modelled the thick setae structures found in
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some diatom species [13]. Otherwise, diatoms are allowed to move freely under
gravity and the surrounding flow fields.

In Section 2, an immersed boundary formulation of Navier-Stokes equations and
interfacial forces are described. A model for diatom growth and breakup is proposed
in Section 3. In Section 4, we present simulations to demonstrate the effectiveness
of our method. We finish our paper by a short conclusion in Section 5.

2. Mathematical model

A simple mathematical model of diatom sedimentation consists of dynamics of
fluid, gravitational force, and deformation of diatoms. The corresponding immersed
boundary formulation [10, 12, 16] is shown as follows.
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where Reynolds number Re represents the ratio of fluid inertia to viscous stress,
capillary number Ca and Bn respectively describe the strength of interfacial ten-
sion and bending stiffness. The bending stiffness is simply a constant during di-
atoms sedimentation, while the interfacial tension is described as a nonlinear strain-
hardening spring of the form σ =

(

σl + σn∆Sα
2
)

∆Sα, where σl and σn are respec-
tively linear and nonlinear constants controlling inextensible strength, and ∆Sα

is the difference of stretching factor. The Froude number Fr is the ratio of fluid
inertia to gravitational force, and dimensionless number β = ∆ρD is the relative
density difference scaled by the diatom diameter (relative to its length). The di-
atom chain is parameterized as a function X(t, α). Equations (3)-(5) distribute
interfacial forces (on Σ) to body forces (on Ω) through Dirac delta function, while
Equation (6) shows that the interfaces are carried by the fluid flow with interfacial
velocity U which is interpolated using bulk fluid velocity u.

3. Growth and breakup

Growth and breakup mechanisms play essential roles in life cycle of diatoms [5, 7].
Both affect the sedimentation speed such that diatoms can adapt the change of en-
vironments [2, 4]. Physically, growth mainly involves in the distribution of nutrition
in sea water [2, 6, 15], which can be represented by the concept of concentration
(weight per volume). Mathematically, the nutrition concentration can be simplified
as c(t,x), a function of time and space. The corresponding numerical methods to
handle concentration issues can be found in [10, 11].

With the definition of concentration, the growth rate is intuitively a concen-
tration dependent function, vg(c(t,X)). Here, an interpolation process to obtain
the effective concentration c(t,X) on interfaces is essential. Moreover, the average
growth rate of a single diatom and corresponding growth of a diatom chain L(t) in
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a time period t are defined separately as

v̄g(t) =
1

|Σ|

∫

Σ

vg(c(t,X))ds, Lg(t) =

∫ t

0

v̄g(t
′)dt′.(7)

Bending energy builds up inside diatom chains as they grow, due to the deformation
caused by the fluid flow. A realistic model for the breakup of a diatom chain
should release the bending energy gradually, perhaps due to the weakening of the
stiffness. In this paper, we focus on how breakup of the chains affects overall
diatom sedimentation rate. Therefore, we use a simple approach by removing a
small segment after the chain reaches a critical length, which results in a sudden
release of bending energy at the moment of breakups.

When a diatom chain breaks up, most species of diatoms have setae surrounding
the bodies, which prevents entangling of the chains and ensure a minimum distance
among them. Here, we introduce a potential function φ to mimic seta mechanism

φ(X,X ′) =

{

ǫ
(

r−l −R−l
M

)

, r ≤ RM

0, r > RM
(8)

where ǫ is the strength of the repulsive force, r = |X −X ′| is the distance between
addresses of markers X and X ′, and RM is the cutoff distance. The corresponding
repulsive force is given by

fr =

∫

Σ

F r δ (x−X) ds, F r = −∇φ.(9)

Numerical treatments for the growth and breakup of chains can be complicated
and challenging. For simplicity, we focus on the effects of growth speed and breakup
option, and assume that there is abundant of nutrition and v̄g is a constant. Let
∆t be the time step size, and ∆s (typically around 0.5h, h is the mesh spacing of
Eulerian coordinates) be the initially uniform mesh spacing of Lagrangian coordi-
nates. The growth of a chain at each time step is simply ∆L = v̄g∆t. A marker
point is added in the tangential direction of each tip whenever

∑

k ∆L > ∆s, where
k is the counter of time steps. Furthermore, we denote L0 as the original length
of a chain with M0 pieces of ∆s and the breakup is done by directly removing a
small piece of a chain when it grows up to mL0 + 2(m− 1)∆s and breaks up into
m chains with length L0 for each piece.

To compute repulsive forces, distance searching between a pair of markers among
diatom chains can be time consuming. To reduce computation cost, an effective
distance RM = 2h is used. Instead of searching marker by marker among the
diatom chains, we take the advantage of indices searching process in IB method,
which uses a cell-to-cell checking process. For instance, the mth marker of chain n,
Xm,n, belongs to its mother cell (i, j) which encloses at least one coordinate (m,n)
(each cell may enclose either no marker or more than one marker). Searching any
index other than n in cell (i, j) and its vicinity cells gives the potential of marker
Xm,n and simultaneously counts part of potential for close-by markers (other than
chain n).

4. Numerical simulations

In this section, numerical studies on sedimentation speed of diatom chains will
be shown in terms of chain orientation, growth speed, and breakup option. Corre-
sponding numerical setup is based on [9], the characteristic length is 10−3 m, and
the characteristic velocity is 2 × 10−5 m/s. Water density and viscosity are 1000
kg/m3 and 0.001 Pa.s, respectively. The density of diatoms is 1100 kg/m3 of chain
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diameter 10−5 mm, and its bending rigidity is 10−13 Nm. A computational domain
Ω = [−1, 1] × [−3.2, 0] is considered for all tests, except the study of domain size
issue. For simplicity, we impose periodic boundary condition in x-direction and
Neumann boundary conditions (zero shear) at y = −3.2 and y = 0. The mesh
spacing h of Eulerian coordinates is 0.02, while the time spacing ∆t = 0.1h is small
enough for numerical stability in all cases.

4.1. Single chain growth and breakup. As we know, a single chain sedimen-
tation speed correlates to both orientation and length of a chain, and the average
sinking velocity of a group of diatom chains is significantly larger than a single
chain [9]. Figure 1(a) shows evolution of sedimentation speed of a single chain
(length L0) with orientation variation, the performance matches the conclusion in
[8, 9] well, i.e., the larger the orientation angle (within 0 for horizontal to π/2 for
vertical orientations) the greater the sedimentation speed.
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Figure 1. Sedimentation speed of a single chain. (a) A chain of
length L0 under variation of orientation angles θ = 0 (dot), π/4
(dash), and π/2 (solid). (b) A chain grows up to length 2L0 with
chain growth rate v̄g = 4 under variation of orientation angles
θ = 0 (dot), π/4 (dash), and π/2 (solid). (c) A chain grows up
to 2L0 (dash) and 4L0 (solid) under the same growth rate v̄g = 4
and orientation angle θ = 0. (d) A chain grows up to 2L0 (dash)
and 4L0 (solid) under the same growth rate v̄g = 4 and orientation
angle θ = π/4. (e) Effect of chain growth rates v̄g = 4 (dash)
and v̄g = 8 (solid): 2L0 growth with orientation angle θ = 0 and
θ = π/2. (f) Effect of chain growth rates v̄g = 4 (dash) and v̄g = 8
(solid): 4L0 growth with orientation angles θ = 0 and θ = π/2.

Instead of assigning fixed fiber lengths initially, here, we set diatom growth
rate v̄g, and examine sedimentation speed of a single chain with orientation angles
θ = 0, π/4, and π/2. When the length of a diatom reaches 2L0, the resulting
sedimentation speed in Figure 1(b) is consistent to Figure 1(a). Figure 1(c) displays
sedimentation speeds of different growth length with the same orientation angle
θ = 0, and we see a greater sinking velocity for a longer chain. Similar tendency
occurs when the orientation angle is changed to θ = π/4, see Figure 1(d). Next,
we examine the effect of growth speed on sinking velocity. In Figure 1(e), a chain
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grows up to 2L0, and the top group lines and bottom group lines respectively have
θ = 0 and θ = π/2. Both dash lines have v̄g = 4, while solid lines have v̄g = 8.
Similarly, cases of a chain growing up to 4L0 are performed in Figure 1(f). Notice
that the oscillation of velocity profile in each case occurs at chain growth moment,
an extra small piece of diatom is suddenly added such that the chain sinking velocity
is rapidly increased, meanwhile, the fluid feels this extra piece of moving obstacle
and viscous stress drags this rapid movement back to form one of valleys in an
oscillatory velocity profile.

In the following, we consider the breakup mechanism during chain growth pro-
cess. Figure 2(a) shows three cases of evolution of sedimentation speed. A hor-
izontal chain with growth speed v̄g = 4 and without breakup which grows up to
2L0 is shown as the dash line, while the solid line represents a case under the same
conditions except breaking up into two pieces. As shown by the solid line, a positive
overshot appears right after breaking, this is due to the release of bending energy.
During chain sedimentation, deformation of chain represents a stored bending en-
ergy in a chain, however, breakup action divides equally the bending energy such
that each portion of the energy suddenly becomes strong to a shorter chain (around
L0) and induces opposite effect to sedimentation. Similar phenomenon is observed
when the growth rate increases to v̄g = 8, see dash-dot line, here, a peak shows up
earlier and then acts in the same way as solid line. Figures 2(d) and (e) display the
vorticity profile of solid line before and after breakup moment, respectively. Two
vortices surround each tip of the chain before breakup, while four more vortices are
produced at the breakup gap due to the access of fluid across the chain.
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Figure 2. (a) A horizontal chain with 2L0 growth: v̄g = 4 without
breakup (dash), v̄g = 4 breakup (solid), and v̄g = 8 breakup (dash-
dot). (b) A horizontal chain with 4L0 growth: v̄g = 4 without
breakup (dash), v̄g = 4 breakup (solid), and v̄g = 8 breakup (dash-
dot). (c) A vertical chain with 2L0 growth in v̄g = 4: without
breakup (dash), and breakup (solid). (d) Vorticity contour of solid
line in (a) before breakup. (e) Vorticity contour of solid line in
(a) after breakup. (f) Vorticity contour of solid line in (b) before
breakup. (g) Vorticity contour of solid line in (b) after breakup. (h)
Vorticity contour of solid line in (c) before breakup. (i) Vorticity
contour of solid line in (c) after breakup.
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Similarly, sedimentation speeds of a chain with 4L0 growth are shown in 2(b),
and the corresponding vorticity contours of solid line case before and after breakup
are separately illustrated in figures 2(f) and (g). Intuitively, there are more bending
energy storing in a chain of length 4L0, and we observe large deformation of the
chain before breakup, see (f). After breakup, larger bending energy creates a higher
peak in evolution of sinking velocity (solid line in 2(b)) than in 2(a), and vortices
are produced at breakup gaps, see (g). A case with growth rate v̄g = 8 schedules
an earlier peak moment which is shown as dash-dot line, and enhances the sinking
velocity a little bit than the solid line. In 2(c), a vertical chain with growth speed
v̄g = 4 is settled to grows up to 2L0, dash line shows evolution of the sinking velocity
without breakup mechanism, while the solid line performs the result with breakup
consideration. The corresponding vorticity contour profiles can be found in 2(h)
and (i). Notice that a peak with positive velocity does not exist at the breakup
moment due to the lack of chain deformation (vertical orientation is parallel to the
sedimentation direction).

4.2. Multiple chain growth and breakup. As described in the previous sec-
tion, a nonlinear spring model is used to approximate the nearly inextensibility of
diatoms. Numerical tests are carried out to investigate the effects of stiffness coeffi-
cient and evolutions of relative error of diatom length are given in Figure 3. In the
tests, the linear component is fixed as σl = 1. We compare the effects of nonlinear
spring coefficient on total extension using a horizontally placed diatom with rest
length 4L0. We find that nonlinear strain is negligible until σn ≥ 1000. In all cases,
the relative extension stays within 1%, as shown in Figure 3(a). A subplot inserted
in the plot shows a 30% length reduction without imposing the spring force. Similar
results are obtained for a vertical diatom performs, cf. Figure 3(b), where a 16%
reduction of length occurs without the spring force. Figure 3(c) illustrates that
a linear spring maintains inextensibility better for a stiff diatom than for a softer
diatom in Fig. 4.

Next, we present the simulations of a system with multiple diatom chains. We
examine the average sinking velocity for several cases: (I) without growth and
breakup options (dot line), (II) grows up-to twice of original length without breakup
(dash line), and (III) breakup after growing up-to twice of initial length (solid line).

Figure 4(a) shows evolution of sedimentation speeds of a 4-chain group. For com-
parison purpose, the sedimentation rate for an individual chain in the 4-chain group
(dash line) and a vertical single chain (solid line) are plotted in the subplot. The
vorticity contour before the breaking up of the chains is illustrated in (d), while (e)
shows the vorticity after the breakup. Similar patterns of 8-chain group are shown
in Figures 4(b), (f), and (g). Results for 16-chain group are given in Figures 4(c),
(h), and (i). In Figures 4(a)-(c). We observe that the average sedimentation speed
of a group of chains is proportional to the number of chains. In each figure, a group
with growth chains has a greater sedimentation speed than a group without growth,
while breakup of the chains enhances the sinking rate further.

In Figure 5(a), we examine sedimentation speed of 16-chain group under different
dimensionless bending rigidity: b = 1.0 (dot line), b = 0.1 (dash line), and b =
0.01 (solid line). As expected, softer diatoms sinks faster as deformation reduces
resistance from the surrounding fluid. Two snapshots of vorticity contours before
and after breakup are shown in Figures 5(b) and (c), both showing significant
deformation in diatoms.

An important issue from application point of view is the effect of diatom density
on sedimentation rate. A related computational issue is the effect of the boundary
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Figure 3. Evolution of relative error (%) of total length with fixed
linear spring constant σl = 1: (a) A horizontal placed diatom of
length 4L0 with extra nonlinear spring constraints, σn = 0 (dash),
and σn = 1000 (solid). For comparison purpose, the result for
the same diatom without the spring force is also included as the
subplot; (b) A vertical diatom of length 4L0 with extra nonlinear
spring constraints, σn = 0 (dash), and σn = 1000 (solid); (c)
Linear spring for diatom rigidities b = 0.01 (dot), b = 0.1 (dash),
and b = 1.0 (solid); (d) Relative extension for the 4-chain group
in Figure 4(a), without growth and breakup (dot), growth only
(dash), and breakup after growth (solid); (e) Relative extension
for the 8-chain group in Figure 4(b), without growth and breakup
(dot), growth only (dash), and breakup after growth (solid); (d)
Relative extension for the 16-chain group in Figure 4(c), without
growth and breakup (dot), growth only (dash), and breakup after
growth (solid).

condition. For sedimentation problem, when viscous dissipation is sufficiently large,
a terminal sinking speed is reached. On the other hand, when viscous dissipation is
not sufficient to balance the potential energy, falling objects will accelerate. In our
setup (with periodic boundary condition in the horizontal direction), the density
of diatoms is determined by two parameters: the number of diatom chains in the
periodic box and the length of the period. In Figure 4, we have investigated the
effect of diatom numbers (density) among other things. And it was clear that steady
sedimentation only occurs for the four-chain (low density) case.

The effect of domain size and boundary conditions on the sedimentation is illus-
trated in Figure 6. In Figure 6(a), evolution of sedimentation speed of a 16-chain
group is shown in dot line as a reference (also see solid line of Figure 4(c) in detail).
Dash line shows a result of replacing Neumann boundary condition in y-direction
by periodic boundary condition, and the difference between this case and the one
with Neumann condition in the y-direction is small. Keeping Neumann boundary
condition and increasing the domain size in the y-direction results in a slower sed-
imentation acceleration, as shown by the dash-dot line. Acceleration is reduced
further (as shown by the solid line) when the domain size in the y-direction is
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Figure 4. Comparison of sedimentation speed under growth and
breakup effects. (a) Four chains group: without growth and
breakup (dot), growth only (dash), and breakup after growth
(solid). (b) Eight chains group: without growth and breakup
(dot), growth only (dash), and breakup after growth (solid). (c)
Sixteen chains group: without growth and breakup (dot), growth
only (dash), and breakup after growth (solid). (d) Vorticity con-
tour of solid line in (a) before breakup. (e) Vorticity contour of
solid line in (a) at t = 0.025. (f) Vorticity contour of solid line
in (b) before breakup. (g) Vorticity contour of solid line in (b) at
t = 0.025. (h) Vorticity contour of solid line in (c) before breakup.
(i) Vorticity contour of solid line in (c) at t = 0.025.
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Figure 5. (a) Comparison of sedimentation speed of 16-chain
group under different bending rigidity: b = 1.0 (dot), b = 0.1
(dash), and b = 0.01 (solid). (b) Vorticity contour of 16-chain
group with b = 0.01 before breakup. (c) Vorticity contour of 16-
chain group with b = 0.01 at t = 0.023.

increased by four-fold. This indicates that the size in the y-direction is not the
dominant factor even though it has an effect in the sedimentation behaviour.

Figure 6(b) demonstrates the effect of domain size in the x-direction on sedimen-
tation speed. Results for Lx = 3 (dash line), Lx = 4 (dash-dot line), and Lx = 6.0
(solid line) show that steady sedimentation has established for these cases. The
corresponding vorticity contour at t = 0.025 are presented in (c)-(e), respectively.
Clearly, larger domain sizes in the x-direction (indicating lower diatom density due
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to the periodicity in the x-direction) weaken hydrodynamic interaction (and in-
crease viscous dissipation). For comparison purposes, in Figure 6(b), we have also
shown the case for Lx = 2 (dot, also shown by the sold line in Figure 4(c)), and the
corresponding vorticity contour at t = 0.025 can be found in Figure 4(i). The re-
sults suggest that for Lx ≥ 3, viscous dissipation is sufficiently strong for the group
of diatoms to reach steady sedimentation while this is not the case for Lx = 2.
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Figure 6. (a) Evolution of 16-chain sedimentation speed in do-
main of different conditions in y-direction: Neumann boundary
condition with Ly = 3.2 (dot), periodic boundary condition with
Ly = 3.2 (dash), Neumann boundary condition with Ly = 6.4
(dash-dot), and Neumann boundary condition with Ly = 12.8
(solid). (b) Evolution of 16-chain sedimentation speed in domain
of different periodic widths: Lx = 2.0 (dot), 3.0 (dash), 4.0 (dash-
dot), and 6.0 (solid). (c) Vorticity contour of Lx = 3.0 case at
t = 0.025. (d) Vorticity contour of Lx = 4.0 case at t = 0.025. (e)
Vorticity contour of Lx = 6.0 case at t = 0.025.

5. Conclusion

In this paper, we presented an immersed boundary method for studying plankton
(diatom) sedimentation with growth and breakup mechanisms. In reality, diatom
growth rate is a nutrition (concentration) dependent function. In order to simplify
our model and maintain computational efficiency, we assume the rate to be a con-
stant, much greater than the actual value. Once diatom growth rate is determined,
the instantaneous total growth of a chain is evaluated by an average rate within a
time period. Computationally, we take advantage of the IB method framework and
the growth of a chain is handled by adding additional markers at the two ends of the
chain, while the breakup mechanism is modelled by removing a small piece of the
chain. An efficient cell-cell searching algorithm replaces a regular marker-marker
searching to calculate potential of each marker.

Our simulations show that diatom growth increases sedimentation speed, which
is proportional to diatom length, while the growth rate has minor effects on diatom
sedimentation. Both diatom growth and breakup enhance the average sedimenta-
tion speed, and the sinking rate is proportional to the number of diatoms in the
chain. In addition, our results show that diatoms with smaller bending rigidities
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sink faster, which are at a disadvantage compared to the ones with a larger bending
rigidity.

Even though we focused on diatom sedimentation in this paper, the method
developed here could be used for studying other problems as well. For example,
it can be modified to investigate the effect of fibre aggregation on sedimentation
by reversing the breakup process, or the dynamics of fibres with local interactions,
either under gravity or driven by other forces.
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