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ARBITRARY RESOLUTION VIDEO CODING USING
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Abstract. An arbitrary resolution video coding method based on compressive sampling is pro-
posed. In this method, a video is coded using compressive measurements. The compressive
measurements are made on videos of high resolution. The measurements may be used to recon-
struct the video at the same resolution as the original video, and any subset of the measurements

can be used to reconstruct video at lower resolution with a lower complexity. Video coding with
arbitrary solution has important application in mobile video transmission.
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1. Introduction

In a video network, a video source may be transmitted to multiple clients with
different characteristics. The clients in the video network have different channel
capacities, different display resolutions, and different computing resources. For
example, a video source may be transmitted through the network to a high per-
formance computer with a high resolution monitor in a residential home, and at
the same time, to a mobile device with a low resolution screen and with a battery
powered CPU. It is therefore desirable for a video source to be encoded in such
a way that the same encoded video stream can be transmitted, and be usable by
all clients, of different characteristics, in the network. In other words, we want
to encode the video source once, but to transmit the same encoded video at dif-
ferent channel rates, and to decode it at different resolutions and with different
complexities.

The traditional video coding such as MPEG2 does not provide the scalability
desired for todays video network as described above. The lack of scalability exhibits
itself in at least two ways. First, an encoded video is not scalable with transmission
channel capacity. Because of its fixed bit rate, an encoded video stream is unusable
in a channel supporting a lower bit rate, and at the same time, suboptimal in a
channel with higher bit rate. This is the cause of the cliff effect encountered in
video broadcast or multicast. Second, the MPEG2 video is not scalable with de-
coder resolution or decoding complexity. An encoded video can be decoded only at
one resolution, with a fixed complexity (not considering post-processing such as re-
sizing, or enhancement, after decoding). This creates the need for multiple encoded
streams of the same video content to target decoders of different resolutions.

Efforts have been made to introduce scalability into video coding, noticeably
by the scalable video coding (SVC) of H.264 [1] and the wavelet transform of Mo-
tion JPEG 2000 [2]. Both methods encode video into ordered layers, or levels, of
streams, and the resolution, or quality, of the decoded video increases progressively
as higher layers, or levels, are added to the decoder. Hierarchical modulation [3] may
be used in conjunction with these scalable video codes to achieve more bandwidth
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efficiency. For example, the high priority of hierarchical modulation can be used to
carry lower layers of the encoded video, and the low priority of hierarchical modula-
tion can be used to carry the higher layers of the encoded video. These efforts have
provided some alleviation to the problems such as the cliff effect in video transmis-
sion using the traditional video coding, but challenges of mobile video broadcast
still remain. There has been an abundance of research activities in video coding
to provide scalability in decoding resolution, see [4]-[7]. A joint video coding and
transmission method was proposed in [8] to provide scalability with transmission
channel capacity. These activities are in response to the fact that the scalability
provided by H.264 or Motion JPEG 2000 is still not satisfactory. Specifically, the
ordered layer structure does not provide scalability at a fundamental level, because
a video encoded in these standards needs to be decoded at the lowest layer, and
progressively built up to higher layers. The loss of a lower layer in the transmission
makes the higher layers useless, even when they are received error-free. Therefore,
the ordered layer structure is not scalable with the channel capacity [8].

Due to the proliferation of compressive sampling techniques [9],[19], video coding
using compressive measurements is rapidly emerging [10]-[11]. Compressive video
sensing offers the scalability desired in video network [12]-[13], and it is suitable
for wireless transmission [14]. When the measurements of a video are made by
a random (or pseudo-random) matrix, the video source information is distributed
among the measurements of equal significance, and there are no measurements that
are more important than others. The reconstruction of video requires a certain
number of measurements to be available, but it does not need the availability of
a particular subset of measurements. In this sense, a lost measurement due to
transmission can simply be replaced by any other measurement. Further, since a
video does not have a well defined sparsity, statistically, the more measurements
are used in reconstruction, the better the quality of the reconstructed video gets
[15]. If the measurements of the video are transmitted in broadcast or multicast, a
receiver in a channel with higher capacity can have more measurements available,
and hence a reconstructed video of higher quality, than a receiver in a channel with
a lower capacity. These properties illustrate that video coding using compressive
sampling is inherently scalable with the channel capacity, and it avoids the cliff
effect in broadcast and multicast.

In this paper, we propose a framework for video coding using compressive mea-
surements in which an encoded video is scalable both with the channel capacity and
with decoding resolution and decoding complexity. Under the framework, a high
resolution video is encoded using compressive measurements. The measurements
are made once on the high resolution video. Any subset of the measurements can be
used to reconstruct a video of same resolution as the oringal, or a lower resolution.
The implication of this is very powerful in wireless transmission. The measurements
from the high resolution video are transmitted in wireless broadcast/multicast net-
work. A client in a good channel can correctly receive enough measurements to
reconstruct a video of the original resolution with acceptable quality. A client in a
poor channel may only correctly receive a subset with measurements fewer than re-
quired to reconstruct an acceptable video at high resolution, but the client may still
use the correctly received measurements to reconstruct a video of a lower resolu-
tion, with an acceptable quality. The ability of arbitrary resolution reconstruction
makes this video coding suitable for transmission in all channels.

Furthermore, a client in the network may be a handheld device with a small
display and powered by a battery. It is undesirable for such a device to reconstruct
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a video of the original size, and then resize it to a lower resolution for display, due to
limit of power supply and computing resources. It is much more preferred that the
device performs only the necessary processing to reconstruct a video of the lower
resolution needed by the display with a reduced complexity.

Under this framework, a uniform encoding/multiscale decoding scheme is devel-
oped that provides low complexity reconstruction of video. The complexity and
storage of decoding is proportional to the desired video resolution instead of the
original resolution. In this scheme, the measurement matrices are constructed in
a special way using the Kronecker products, which simplifies the reconstruction
model, and reduces computation time. A multiscale compressive sampling scheme
was also proposed in [16] to perform motion estimate and motion compensation dur-
ing reconstruction. The paper is organized as follows. The framework for arbitrary
resolution video coding is introduced in Section 2. The uniform encoding/multiscale
decoding scheme is developed in Section 3. Numerical results will be presented in
Section 4.

2. ARBITRARY RESOLUTION VIDEO CODING FRAMEWORK

In this section, the framework is developed in which a video source is first divided
into video cubes. Then compressive measurements of the cubes are made. The
reconstruction of a video cube is performed by solving a minimization problem.
Various models and regularizations based on ℓ1 and total variation (TV) [17] can
fit into this framework. A TV-DCT method, minimizing the two dimensional total
variation of the time domain discrete cosine transform, will be used due to its
superior performance compared to other regularizations for video reconstruction
[18]. The arbitrary resolution decoding is fulfilled by using an expansion matrix.

2.1. Video coding using compressive sampling. A source video consists of a
number of frames of size P ×Q, where P and Q are the numbers of horizontal and
vertical pixels in a frame, respectively. To encode it, the source video is divided into
non-intersecting cubes. Each video cube consists of r frames of size p× q. For the
simplicity of discussions, every frame of a video cube is assumed to be taken from
the same spatial region in its respective frame of the source video, although the
framework still applies if each frame of video cube is taken from a different spatial
region in its respective frame of source video, which could be done, for example, by
using a motion estimate. Encoding is performed cube by cube on all video cubes
making up the source video.

Let x ∈ ℜn be the vector obtained from a scan of the pixels of a video cube, i.e.,
x is a 1-D representation of the 3-D video cube, where n = p× q× r is the length of
the vector x. Normally, the pixels in a video cube, especially when the frames of the
cube are chosen by a motion estimate scheme, are highly correlated, and therefore,
vector x is sparse (having a small number of nonzero components) in some basis.
This means that x can be well represented by using compressive measurements [9].
Let A be an m× n measurement matrix, then the m compressive measurements of
x form the vector y ∈ ℜm defined by

(1) y = Ax.

The measurements are considered to be the encoded values of the video cube. The
encoding process is illustrated in Figure 1.

The measurement matrix A should be incoherent with the sparsity basis of the
video cube, but in general, a random matrix can result in good performance [9].
In this paper, a permutated Walsh-Hadamard matrix will be used. This class of
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Figure 1. Video encoding using compressive measurements.

matrices can be easily implemented on hardware and they result in satisfactory
recoverability.

2.2. Video reconstruction. Each video cube can be reconstructed from the mea-
surements y by solving the following constraint minimization problem:

(2) min
x

Φ(x) subject to y = Ax,

or in practice, the unconstraint problem

(3) min
x

Φ(x) +
µ

2
∥Ax− y∥22 ,

where Φ(x) represents the choice of regularization term and µ is the penalty pa-
rameter. The general theory on recoverability of a sparse signal from compressive
measurements using a random matrix can be found, for example, in [9]. If the
vector x is sparse, Φ(x) can be chosen to be the ℓ1-norm of x [9]. However, when x
is the vector made up of the pixels of a video cube, it is not obvious in which basis
x is sparse, and further, in which basis, x has the most sparseness.

Total variation has been widely, and successfully, used as the regularization in
image processing [15], [17]. As described in [18], we will use the spatial total
variation of time domain DCT coefficients of the original cube as the regularization
term, i.e.,

(4) Φ(x) = TV s(DCTt(x)).

In (4), TV s(z) is the 2D spatial total variation of the cube z defined as

(5) TV s(z) =
∑
i,j,k

√
(zi+1jk − zijk)

2
+ (zij+1k − zijk)

2
,

for isotropic total variation, or

(6) TV s(z) =
∑
i,j,k

|zi+1jk − zijk|+ |zij+1k − zijk|,

for anisotropic total variation.
Also in (4), DCTt(x) represents the pixelwise discrete cosine transform (DCT)

of the video cube x in the temporal direction, and it is a cube in which each frame
consists of DCT coefficients of a particular frequency. The minimization problem
(3) is therefore to minimize the spatial total variation of the frequency components
in time.

The minimization problem (3) is solved by the alternating minimization and
augmented Lagrangian methods [18],[20]. The alternating minimization method
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was first introduced to solve image deconvolution problem [21], which has a close
relationship to (2) and (3).

2.3. Arbitrary resolution decoding. An advantage of using a random matrix,
such as a permutated Walsh-Hadamard matrix, as the measurement matrix is that
the measurements of the video are equally important, so that the quality of the
reconstructed video only depends on the number of measurements available, inde-
pendent of the availability of a particular measurement. It is this property that
makes the coding inherently scalable. There is still more to be desired. Suppose
the measurements of subsection 2.1 are transmitted, and, due to a low channel
capacity, only very few measurements are correctly received at the decoder. The
number of received measurements may be too small to reconstruct a video of the
original resolution with an acceptable quality. It is possible to use the received
measurements to reconstruct a video of the original resolution, and then resize it to
a lower resolution, but the quality of the downsized video is inherently limited by
that of the reconstructed video, although the smaller size of the downsized video
may make some undesirable artifacts less obvious. Therefore, an alternative method
is proposed in the following in which a video of lower resolution is reconstructed
directly using the few measurements that are correctly received.

Assume a video cube of n pixels is k-sparse in certain basis, then the video cube
can be reconstructed reliably with m measurements [9] if m satisfies

(7) m ≥ c · k · log(n)

where c is some constant. It is reasonable to assume that the sparsity of a video
is non-increasing as its resolution is lowered. Therefore, for a video cube of lower
resolution, its number of pixels being nL , and its sparsity being kL , it is reasonable
to assume

(8) kL · log(nL) < k · log(n).

Equations (7) and (8) suggest that a lower resolution video has a better recov-
erability if the number of received measurements fails to satisfy condition (7) for
the video of the original resolution. In other words, when there are too few mea-
surements available to reconstruct a video with an acceptable quality, it is possible
to use them to reconstruct a video of lower resolution with an acceptable quality.
This analysis is confirmed by simulations to be given in a later section.

With the vector of measurements, y, for a source video cube given by (1), a
lower resolution video cube can be reconstructed by using an expansion matrix.
Formally, let E be an n×nL matrix with full rank, where nL is the number of pixels
in the video cube of lower resolution, and nL < n. Let xL ∈ ℜnL be the vector
representing the video cube of the lower resolution. Then, xL can be computed
from the following minimization problem modified from (3):

(9) min
xL

Φ(xL) +
µ

2
∥A · ExL − y∥22 .

The expansion matrix E can be constructed by using any known resizing method.
For example, matrix E can be constructed by using the DCT transform. Let Tn

be the n× n matrix representing the DCT transform of size n , and In×nL
be the

n× nL matrix obtained from an nL × nL identify matrix by inserting n− nL rows
of zeros. Then an expansion matrix is given by

(10) E = TT
n In×nLTnL .
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Another example is to derive matrix E from a reduction matrix R , obtained
from a video down-converting method. Let R be an nL × n matrix representing
the process of lowpass filtering and down-sampling, for example, by taking pixel
averages, or using a poly-phase filter. It is also possible to construct the reduction
matrix R from a 2D spatial DCT or wavelet transform of the frames of the video
cube by using only the low frequency components. A well constructed reduction
matrix R has the full rank, and therefore, the expansion matrix E can be obtained
from the one-sided inverse of the reduction matrix R, as

(11) E = RT (RRT )−1.

Equations (1) and (9) constitute a video coding in which one encoding fits all
channels and all display resolutions. This is illustrated in Figure 2(a).

Figure 2. Video encoding, transmission and reconstruction.

In Figure 2(a), the source video is encoded using a random measurement matrix.
The encoded video is transmitted in a broadcast system, and the correctly received
measurements are used to reconstruct video of a desired resolution by using an
appropriate expansion matrix E. More precisely, decoder i (i = 1, 2, 3) with channel
capacity Ci may use an expansion matrix Ei to reconstruct a video of certain
resolution by substituting E = Ei in (9). An alternate, but unfavorable, encoding
and transmission scheme is shown in Figure 2(b). In Figure 2(b), to transmit the
source video to decoder i (i = 1, 2, 3) with channel capacity Ci, the source video
is first down-sized to a resolution suitable for the display of the decoder by using
a reduction matrix Ri. The down-sized video is encoded using a random matrix
Ai. The compressive measurements are transmitted and the correctly received
measurements are used to reconstruct the video of the same resolution as the down-
sized video by substituting A = Ai in (3). Clearly, the system in Figure 2(a) is more
preferable. In the following, we will explore more the relationship of the systems in
Figure 2(a) and Figure 2(b).
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Figure 3. Coherence of expansion and reduction matrices.

Under the conditions as illustrated in Figure 3, the systems in Figure 2 are
equivalent. Consider one branch (one channel and one decoder) in each of Figure
2(a) and Figure 2(b). If the down-sized video in Figure 2(b) can be expanded to the
source video in Figure 2(a), as illustrated in Figure 3, then the reconstructed videos
from Figure 2(a) and Figure 2(b) are identical provided that enough measurements
are available at the decoders. More precisely, if the source video, the expansion
matrix and the reduction matrix satisfy the following coherence condition,

(12) x = ERx,

then equations (1) and (9) are equivalent to making measurements

(13) y = A′(Rx), A′ = A · E
and reconstructing xL by solving

(14) min
xL

Φ(xL) +
µ

2
∥A′xL − y∥22 .

Equations (1) and (9) correspond to the top row of Figure 3, which in turn
represent a branch of Figure 2(a), and equations (13) and (14) correspond to the
bottom row of Figure 3, which in turn represent a branch of Figure 2(b).

Clearly, the solutions to (9) and (14) are the same, provided the theory of the
compressive sampling applies, i.e., if there are enough measurements from the mea-
surement matrix A′ = A · E to recover the lower resolution video xL = Rx.

Both (9) and (14) can be solved by the algorithm modified from TVAL3, which
is an efficient TV minimization solver based on the alternating minimization and
augmented Lagrangian methods for image reconstruction and denoising [20]. The
detailed descriptions can be found in [18],[20].

3. UNIFORM ENCODING/MULTISCALE DECODING

The implementation of the framework described in section 2.3 may result in
a very high complexity because of the evaluation of AExL. Unless the matrices
are constructed with some special structures, either the complexity of AExL is
proportional to that of the original resolution if the computation is performed as
A(ExL), or a large memory (to store the matrix AE ) and a generic matrix-vector
multiplication are required if the computation is performed as (AE)xL. Therefore,
it is highly desirable to simplify the computation of AExL for the mobile video
application due to the limited resources available at decoders. In this section, an
efficient scheme is proposed in which the sensing matrix is constructed with a special
structure for encoding video uniformly and decoding at many lower resolutions.

We construct a measurement matrix A from the Kronecker product of small sens-
ing matrices and structured permutation matrices. First, a predetermined number
of decoding resolutions is specified. Each resolution will be called a level. Then, the
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measurement matrix A is constructed for the specified number of decoding levels.
The video is encoded by the compressive measurements of video cubes using the
matrix A. The same measurements may be used to reconstruct a video of any one
of the resolutions up to the lowest level specified. For this reason, the proposed
method is named uniform encoding and multiscale decoding, because video of mul-
tiple resolutions can be reconstructed from the same encoded data. Specifically, A
is constructed step by step as follows: 1. Specify the encoding level k , which deter-
mines the lowest resolution a video can be reconstructed from the encoded video.
In other words, specify k so that the encoded video of the resolution p × q can be
decoded to one of the resolutions (p/2l)× (q/2l), l = 0, ..., k. For the convenience of
description, we always assume the dimensions p/2l and q/2l are integers. 2. Con-
struct a series of permutation matrices Pn

1 , P
n
2 , ..., P

n
k , named block-wise vectorized

permutations

(15) Pn
i = P

n/4
i−1 ⊗ I4 for 1 < i ≤ k,

where P s
i ∈ ℜs×s and I4 represents the 4 × 4 identity matrix. Initially, P s

1 is the
vectorized permutation based on 2×2 blocks. For example, P 16

1 is the permutation
matrix that works in the way illustrated in Figure 4.

Figure 4. Definition of permutation matrix.

In other words, let u = [1, 2, 3, 4, 5, 6, 7, 8, ..., 13, 14, 15, 16]T be the column vector
formed by concatenating the columns of the matrix on the left hand side of Figure
4. Then P 16

1 u = [1, 2, 5, 6, 3, 4, 7, 8, ..., 11, 12, 15, 16]T . In general, for a matrix U
of a dimension with n entries, u is the column vector formed by concatenating the
columns of the matrix U , and Pn

1 u is the column vector formed by first dividing
the matrix U into blocks of four elements ( 2 × 2 blocks), and then concatenating
the columns of each 2 × 2 block followed by concatenating all these 2 × 2 blocks
column by column.

From this point on, we will omit the superscript of P s
i for simplicity. Its size

can be determined by properly forming matrix products. 3. Select a series of small

sensing matrices A0 ∈ ℜm0×(n/4k) and Ai ∈ ℜmi×4 for 1 ≤ i ≤ k, which satisfy

(16)
k∏

i=0

mi = m and 4 ≥ m1 ≥ . . . ≥ mk ≥ 1.

The choice of m0,m1, . . . ,mk is not unique, but we should choose m0 equal to
n/4k or as large as possible to guarantee the recoverability at the relatively low
resolution.

4. Let

(17) Qk = PkPk−1 · · ·P1
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(18) A = (A0 ⊗A1 ⊗ · · · ⊗Ak)Qk,

which gives the measurement matrix for uniform encoding/multiscale decoding
scheme.

This structured measurement matrix can lead to a significant reduction of de-
coding complexity. Some notations will be introduced before getting into details.

Level l(l ≤ k) decoding refers to the resolution of the reconstructed video cube

being (p/2l) × (q/2l) and Ul ∈ ℜ(p/2l)×(q/2l)×r denotes the level l resolution ap-
proximation of a video cube U . In other words, Ul is the video having a resolution
of (p/2l)× (q/2l) reconstructed from the compressive measurements of the original
video cube U of the resolution p× q. Vectors x and xl represent the vectorizations
of U and Ul, respectively, by concatenating the pixels of video cubes column by
column, and then, frame by frame. Furthermore, 1s×t represents an s × t matrix
whose entries are 1 everywhere. The second dimension of subscript t can be omitted
if t = 1. B◦j denotes the j-degree power of Kronecker product, i.e.,

(19) B◦j = B ⊗ · · · ⊗B︸ ︷︷ ︸
j

.

One way to approximate U is using

(20) U ≈ Ul ⊗ 12l×2l ,

which is equivalent to

(21) Pl · · ·P1x ≈ xl ⊗ 14l = xl ⊗ 1◦l4 .

Therefore, we can define the expansion matrix E as follows:

(22) Exl = PT
1 · · ·PT

l (xl ⊗ 1◦l4 ).

Then, we have

(23) AExl = A(PT
1 · · ·PT

l (xl ⊗ 1◦l4 )).

Combining (23) with (17) and (18), we can derive

(24)

AExl = (A0 ⊗A1 ⊗ · · · ⊗Ak)
·Qk(P

T
1 · · ·PT

l (xl ⊗ 1◦l4 ))
= (A0 ⊗A1 ⊗ · · · ⊗Ak)

· Pk · · ·Pl+1(xl ⊗ 1◦l4 )
= (A0 ⊗A1 ⊗ · · · ⊗Ak)((Pk−l ⊗ I◦l4 )

· · · (P1 ⊗ I◦l4 )(xl ⊗ 1◦l4 ))
= (A0 ⊗A1 ⊗ · · · ⊗Ak) · ((Pk−l · · ·P1xl)

⊗ (I◦l4 · · · I◦l4 1◦l4 ))
= ((A0 ⊗ · · · ⊗Ak−l)⊗Ak−l+1 · · · ⊗Ak)

· ((Pk−l · · ·P1xl)⊗ 1◦l4 )
= ((A0 ⊗ · · · ⊗Ak−l)Pk−l · · ·P1xl)

⊗ (Ak−l+114) · · · ⊗ (Ak14).

Let Lj
k = (A0 ⊗ · · · ⊗ Ak−l)Pk−l · · ·P1 and aj = Aj14 for j ≤ k. Then the mini-

mization problem (9) is equivalent to the following level l decoding model:

(25) min
x

Φ(xl) +
µ

2

∥∥(Ll
kxl)⊗ ak−l+1 ⊗ · · · ⊗ ak − y

∥∥2
2
.

The low resolution video cube xl can be obtained by solving the minimization
problem (25).



214 H. JIANG, C. LI, P. WILFORD, AND Y. ZHANG

TVAL3 has been proven as an efficient solver for 2D TV minimization problem
and can be extended to handle higher dimensional problems [18]. We choose to ex-
tend TVAL3 algorithm to solve (25) for decoding. The complexity of this algorithm
is dominated by two matrix-vector multiplications at each iteration, which is pro-

portional to the size of Ll
k. As a matter of fact, Ll

k ∈ ℜ
(
k−l∏
i=0

mi)×(n/4l)
corresponds

to the desired resolution (p/2l) × (q/2l) instead of the original resolution p × q.
Therfore, the uniform encoding/multiscale decoding scheme is able to provide low
complexity and decoding time is scalable with the resolution of the reconstructed
video.

4. SIMULATION

The coding method described in section 3 is implemented in simulations using
an encoding matrix that is capable of providing three levels of decoded resolu-
tion. Those small sensing matrices for the construction of A are extracted from
the permutated Walsh-Hadamard matrices. Results for three standard video test
sequences will be presented, and they are Container, Hall and News. All three
source video sequences are of CIF resolution (352× 288 pixels/frame) at 30 frames
per second (fsp).

For each source video, the same measurement matrix as described in section 3
is used to encode the video. Each video cube consists of 8 entire frames of size
352× 288. That is, the number of pixels in a source video cube is

n = 352× 288× 8 = 811008.

For each source video, decoding of three resolutions are performed: the original
CIF resolution (352×288), the QCIF resolution (176×144 ) and the QQCIF resolu-
tion (88×72 ). A different amount of measurements are used in the reconstructions
of video with a different resolution. Let m be the number of measurements used in
the reconstruction. For all three source video sequences, m = 0.35 · n (35% mea-
surements) is used for the CIF reconstructions, m = 0.09 · n (9% measurements) is
used for the QCIF reconstructions and m = 0.01 ·n (1% measurements) is used for
the QQCIF reconstructions. Figures 4-6 show the typical results.

The complexity of the reconstruction is scalable with the resolution of the de-
coded pictures. This is evident from the CPU time it takes to decode the video
of different resolutions. When the average time it takes to decode a video of CIF
resolution is normalized to 1, the average time it takes to decode a video of QCIF
resolution is .22, and the average time it takes to decoder a video of QQCIF is
.046. Next, the accuracy in the reconstructions will be measured by using PSNR
in the reconstructed video. In order to measure the PSNR, a reconstructed video
must be compared with an original video of the same resolution. To accomplish
this, a reference video is first resized to a higher resolution to be used as the source
video. Then the source video is encoded and decoded. The decoded video has the
same resolution as the reference video. Finally, the PSNR of the decoded video as
compared to the reference video is measured and reported. Three methods are used
in the simulations and the PSNR of the decoded video from the three methods will
be reported. These methods are illustrated in Figure 8.

Figure 8. Three methods used for PSNR calculation: (a) uniform encoding/multiscale
decoding (UEMD) of this paper, (b) conventional compressive sampling reconstruc-
tion followed by resizing to lower resolution and (c) the 3D DCT method followed
by resizing to lower resolution.
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Figure 5. Frame 4 of Container video clip: (a) original CIF frame,
(b) the reconstructed CIF frame using 35% of measurements, (c)
the reconstructed QCIF frame with 9% of measurements and (d)
the reconstructed QQCIF frame with 1% of measurements.

Figure 6. Frame 4 of Hall video clip: (a) original CIF frame, (b)
the reconstructed CIF frame using 35% of measurements, (c) the
reconstructed QCIF frame with 9% of measurements and (d) the
reconstructed QQCIF frame with 1% of measurements.

In Figure 8, a reference video xR is converted to the source video x by an ex-
pansion matrix E , i.e., x = ExR . The same expansion is used for all methods.
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Figure 7. Frame 4 of News video clip: (a) original CIF frame,
(b) the reconstructed CIF frame using 35% of measurements, (c)
the reconstructed QCIF frame with 9% of measurements and (d)
the reconstructed QQCIF frame with 1% of measurements.

Figure 8. Three methods used for PSNR calculation: (a) uniform
encoding/multiscale decoding (UEMD) of this paper, (b) conven-
tional compressive sampling reconstruction followed by resizing to
lower resolution and (c) the 3D DCT method followed by resizing
to lower resolution.

Specifically, the source video x is obtained from the reference video xR by duplicat-
ing the pixels of xR . The source video is then encoded, transmitted and decoded
by three different methods. The first method is the method of this paper (UEMD)
as shown in Figure 8(a). The lower resolution decoded video xL is obtained directly
as part of reconstruction from correctly received measurements y by solving (3.11).
The second, shown in Figure 8(b), is a conventional compressive sampling recon-
struction. The measurement matrix A is a permutated Walsh-Hadmard matrix.



ARBITRARY RESOLUTION VIDEO CODING USING COMPRESSIVE SENSING 217

The correctly received measurements y are used to reconstruct a video x′ of the
same resolution as the source video by solving (2.3). Then the reconstructed video
is resized to the lower resolution xL by taking the average of the pixels of x′ . The
last, shown in Figure 8(c), is the 3D DCT method. The source video x is encoded
by 3D DCT transform on a video cube. The DCT coefficients are transmitted. The
correctly received y are the largest coefficients of DCT transform. In other words,
the coefficients are sorted in descending order according to their amplitudes. For
example, if 10% coefficients are received, it is assumed that the first 10% of the
sorted coefficients (the largest 10% in amplitudes) are received correctly. This, of
course, places a huge advantage to the DCT method, because in the compressive
sampling methods of Figure 8(a) and Figure 8(b), the correctly received measure-
ments are randomly chosen. In all methods, the PSNR is calculated by comparing
xL with the reference video xR. The PSNR values as a function of the percentage
of measurements received for the video clip Hall are shown in Figure 9 and Figure
10.

Figure 9. PSNR for video clip Hall: source video x is CIF
(352x288) and the decoded video xL is QCIF (176x144).

In Figure 9, the source video clip Hall of CIF resolution is encoded and transmit-
ted as previously described. The decoded video has QCIF resolution. The decoded
video has half as many pixels as the source video in both horizontal and vertical
directions. The QCIF reference video is obtained by taking averages of two ad-
jacent pixels in both horizontal and vertical directions. The dashed blue curve is
the PSNR for the method of this paper (UEMD) and the red curve with crosses is
the PSNR for the conventional compressive sampling reconstruction, and the green
curve with squares is the PSNR for the 3D DCT method.

In Figure 10, the reference video is also Hall of QCIF resolution. The source
video of 4CIF resolution is obtained from the CIF video by repeating the pixels of
the CIF video. The decoded video has QCIF resolution. The decoded video has
1/4 as many pixels as the source video in both horizontal and vertical directions.
The dashed blue curve is the PSNR for the method of this paper (UEMD) and
the red curve with crosses is the PSNR for the conventional compressive sampling
reconstruction, and the green curve with squares is the PSNR for the 3D DCT
method. The results in Figure 9 and Figure 10 show that the method proposed in
this paper has better accuracy than the methods in which a video of the original
resolution is reconstructed and then resized to a lower resolution.
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Figure 10. PSNR for video clip Hall: source video x is 4CIF
(704x576) and the decoded video xL is QCIF (176x144).

5. Conclusion

The video coding framework of this paper provides full scalability for both chan-
nel capacity and display resolutions. The complexity and running time of new
method is also scalable based on different desired resolutions. Simulation results
demonstrate that the uniform encoding/multiscale decoding scheme has a better
performance than the traditional reconstruction followed by resizing. The property
that one encoding fits all resolutions has importation application in mobile video
communications.

References

[1] H. Schwarz, D. Marpe, and T. Wiegand, Overview of the scalable video coding extension of
H.264/AVC, IEEE Trans. Circuits and Systems for Video Tech., vol. 17, no. 9, pp. 1103-1120,
Sept. 2007.

[2] D.S. Taubman and M.W. Marcellin, JPEG 2000 Image Compression Fundamentals, Stan-
dards and Practice, Kluwer Academic Publishers, The Netherlands 2001.

[3] H. Jiang and P. Wilford, A Hierarchical Modulation for Upgrading Digital Broadcast Systems,
IEEE Ttrans. Broadcasting, vol. 51, no. 2, pp.223-229, June 2005.

[4] J. Vass and X. Zhuang, Multiresolution-multicast video distribution over the Internet, 2000
IEEE Wireless Communications and Networking Conference, pp. 1457 - 1461, Sep 2000.

[5] C. Li 1, H. Xiong, J. Zou, T. Chen, A Unified QoS Optimization for Scalable Video Multirate
Multicast over Hybrid Coded Network, 2010 IEEE International Conference on Communica-

tions (ICC), pp. 23-27, May 2010.
[6] C. Mairal and M. Agueh, Smooth and Scalable Wireless JPEG 2000 Images and Video

Streaming with Dynamic Bandwidth Estimation, 2010 Second International Conferences on

Advances in Multimedia (MMEDIA), pp 174 - 179, 2010.
[7] J. Xu, X. Shen, J.W. Mark, and J. Cai, Adaptive transmission of multilayered video over

wireless fading channels, IEEE Trans. on Wireless Communications, vol 6, no 6 pp. 2305-2314,
June 2007.

[8] S. Jakubczak, H. Rahul and D. Katabi, SoftCast: One video to serve all wireless receivers,
Computer Science and Artificial Intelligence Laboratory Technical Report, MIT-CSAIL-TR-
2009-005, MIT, Feb, 2009.

[9] E. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruc-

tion from highly incomplete frequency information, IEEE Trans. on Information Theory, vol
52, no 2, pp. 489-509, Feb 2006.

[10] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R.
Baraniuk, Compressive imaging for video representation and coding, Proc. Picture Coding

Symposium (PCS), Beijing, China, April 2006.



ARBITRARY RESOLUTION VIDEO CODING USING COMPRESSIVE SENSING 219

[11] V. Stankovic, L. Stankovic, and S. Cheng, Compressive video sampling, European Signal
Processing Conf. (EUSIPCO), Lausanne, Switzerland, August 2008.

[12] T. Do, Y. Chen, D. Nguyen, N. Nguyen, L. Gan and T. Tran, Distributed compressed video
sensing, 16th IEEE International Conference on Image Processing (ICIP), pp. 1393 - 1396,
2009.

[13] J. Prades-Nebot, Y. Ma and T. Huang, Distributed Video Coding using Compressive Sam-

pling 2009 Picture Coding Symposium, PCS 2009, pp 1-4, 2009.
[14] S. Pudlewski and T. Melodia, On the Performance of Compressive Video Streaming for Wire-

less Multimedia Sensor Networks, 2010 IEEE International Conference on Communications
(ICC), 2010.

[15] J. Romberg, Imaging via compressive sampling, IEEE Signal Processing Magazine, vol 25,
no 2, pp. 14 - 20, March 2008.

[16] J.Y. Park and M.B. Wakin, A Multiscale Framework for Compressive Sensing of Video,
Picture Coding Symposium (PCS), Chicago, Illinois, May 2009.

[17] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms,
Physica D, pp. 259 - 268, 1992.

[18] C. Li, H. Jiang, and P. Wilford and Y. Zhang, A new compressive video sensing framework
for mobile communications, in preparation.

[19] D Donoho, Compressed sensing, IEEE Transactions on Information Theory, vol. 52, no. 4,
pp. 1289 - 1306, 2006.

[20] C. Li, An Efficient Algorithm for Total Variation Regularization with Applications to the

Single Pixel Camera and Compressive Sensing, Mater Thesis, Computational and Applied
Mathematics, Rice University, 2009.

[21] Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization algorithm for
total variation image reconstruction, SIAM J. Imag. Sci., vol. 1, no. 4, pp. 248 - 272, 2008.

Bell Labs Alcatel-Lucent 700 Mountain Ave Murray Hill, NJ 07974

E-mail : hong.jiang@alcatel-lucent.com


