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TRANSIENT FEEDBACK AND ROBUST SIGNALING

GRADIENTS

AGHAVNI SIMONYAN AND FREDERIC Y. M. WAN1

Abstract. Robust development of biological organisms in the presence of genetic and epi-genetic
perturbations is important for time spans short relative to evolutionary time. Gradients of recep-
tor bound signaling morphogens are responsible for patterning formation and development. A
variety of inhibitors for reducing ectopic signaling activities are known to exist and their specific
role in down-regulating the undesirable ectopic activities reasonably well understood. However,
how a developing organism manages to adjust inhibition/stimulation in response to genetic and/or
environmental changes remains to be uncovered. The need to adjust for ectopic signaling activities
requires the presence of one or more feedback mechanisms to stimulate the needed adjustment.
As the ultimate effect of many inhibitors (including those of the nonreceptor type) is to reduce the
availability of signaling morphogens for binding with signaling receptors, a negative feedback on
signaling morphogen synthesis rate based on a root-mean-square measure of the spatial distribu-
tion of signaling concentration offers a simple approach to robusness and has been demonstrated
to be effective in a proof-of-concept implementation. In this paper, we complement the previ-
ous investigation of feedback in steady state by examining the effect of one or more feedback
adjustments during the transient phase of the biological development.
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1. Introduction

Robust development in the presence of genetic mutation and/or epigenetic per-
turbations is important for biological organisms. Gradients of receptor bound
signaling morphogens are known to be responsible for pattern formation and de-
velopment. The morphogen (aka ligands) Decapentaplegic (Dpp) in a Drosophila
wing imaginal disc, for example, is synthesized at a localized source and trans-
ported downstream by active or passive diffusion for binding with signaling re-
ceptors Thickvein (Tkv) to form a signaling spatial gradient. Graded differences
in receptor occupancy at different locations underlie the signaling differences that
ultimately lead cells down different paths of development [1, 2, 3, 4].

Genetic and epigenetic changes often alter the ligand synthesis rate resulting
in abnormal signaling. Experimental results by S. Zhou in A.D. Lander’s lab [4]
show that Dpp synthesis rate doubles when the ambient temperature is increased
by 6◦C. With such an increase in Dpp synthesis rate, the simple models developed
in [5, 6, 7] would predict signaling gradients qualitatively different from that at the
lower ambient temperature. Yet, little abnormality in the actual development of the
wild-type wing imaginal disc is seen under such a change of ambient temperature
(see also [8, 9]). In effect, patterning of the Drosophila wing is largely insensitive
to a significant increase in synthesis rate. In general, an important requirement
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for normal biological development is for the relevant signaling morphogen gradients
not easily altered by genetic or environmental fluctuations that cause significant
changes in the constitution of the developing organism. The development is said
to be robust when the output of the biological system is insensitive to variations in
input or system parameters.

A variety of agents for regulating signaling activities are known to exist and
their specific role in down– or up–regulating the abnormal activities reasonably
well understood. These include molecular entities (such as heparan sulfate proteo-
glycans [10]) that bind with signaling ligands but the resulting complexes do not
signal. Such non-signaling molecular entities are called nonreceptors ; their presence
has been observed to reduce the amount of morphogens available for binding with
signaling receptors. That nonreceptors down-regulate cell signaling has also been
confirmed theoretically in [11] and references therein. (For other possible mecha-
nisms for down-regulating signaling gradients, see discussion in [12] and references
cited there.) Just how a developing organism manages to up-regulate inhibition
(such as nonreceptor concentration) or activation (such as raising the binding rate)
in response to genetic and/or environmental changes remains to be uncovered.

Evidence exists that adjustments for abnormal signaling activities require one or
more feedback mechanisms to stimulate the needed level of correction. Feedback has
long been seen as a mechanism for responding to an enhanced signaling gradient and
stimulating up-regulation of inhibitors of morphogen signaling to achieve robustness
(see [13, 14, 15, 16] for examples). Specific feedback loops identified in the literature
include:

• BMP-2 causes significant up-regulation of Sox9 and the BMP antagonist
Noggin expression [14, 17].

• High levels of Wingless signaling induce Notum expression and Notum mod-
ifies the heparan sulfate proteoglycans Dally-like and Dally that contribute
to shaping Wingless gradient [18].

Just how a specific feedback is induced by ectopic signaling morphogen concentra-
tion has been an area of current research (see also [19, 20, 21] and references cited
there).

In [12], we initiated a different approach to the role of feedback in ensuring robust
signaling gradients. The overall goal of the project is to investigate the effectiveness
of feedback mechanisms other than a negative feedback of the Hill’s function type
on signaling receptor synthesis (which is known to be ineffective [19, 20, 21]). With
the ultimate effect of many inhibitors (of the nonreceptor type) being a reduction
of the availability for signaling morphogens for binding with signaling receptors, we
embarked in [12] a proof-of-concept examination of a new spatially uniform nonlocal
feedback process (distinctly different from the conventional (spatially nonuniform)
Hill function feedback) on the morphogen synthesis rate. This negative feedback
is based on a root-mean-square measure of the spatial distribution of signaling
concentration offers a simple approach to robustness and has been demonstrated
to be effective in [12] for a signaling gradient in steady state. In this paper, we
examine the corresponding transient problem with repeated feedback adjustments
taking effect during the transient phase of the development.

2. Signaling Gradients and Pattern Formation

2.1. The Initial-Boundary Value Problem for the Basic Model. The ba-
sic process of biological developments is reasonably well understood by biologists.
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Signaling protein molecules, collectively known as morphogens or ligands, are syn-
thesized, possibly at some localized source, and bound reversibly to associated
signaling receptors. Through endocytosis, the morphogen-receptor complexes, or
signaling gradient for brevity, signal and degrade. The gradient of signaling mor-
phogen concentration induces differential cell fates resulting in nonuniform patterns
and functions. A simple example is the Decapentaplegic (Dpp) morphogen involved
in the development of the structure of the Drosophila wing imaginal disc. With
Dpp synthesized in a narrow region straddling the border between the anterior and
posterior compartment of the wing imaginal disc and relatively uniform along the
direction of that boundary, we may focus on a one-dimensional model for the Dpp
gradient formation in the extracellular space of the posterior compartment first
introduced and analyzed in [5, 6, 7]. The idealization of activities in the wing
imaginal disc leading to this basic model and its applicability as well as insight to
other morphogen gradient systems with similar characteristics have already been
described in these references and references cited there. Here, we give only the di-
mensionless form of the initial-boundary value problem (IBVP) for this basic model
consisting of the three differential equations

(1)
∂a

∂t
=

∂2a

∂x2
− h0ar + f0b− gLa+ vL(x, t),

(2)
∂b

∂t
= h0ar − (f0 + g0)b,

∂r

∂t
= vR(x, t) − h0ar + f0b− gRr,

for the dimensionless concentrations, a, b and r, of free morphogen (e.g., Dpp in
the Drosophila wing disc), bound morphogen (or the ligand-receptor complex) and
unoccupied receptors (e.g., Tkv for Dpp in Drosophila wing disc), respectively. All
three concentrations are normalized by the steady state receptor concentration R0

prior to the onset of the normalized ligand synthesis vL(x, t). In this investiga-
tion, receptors are synthesized by a time independent synthesis rate (normalized as
vR(x)) long before the onset of ligand production. The dimensionless space and
time variables x and t are normalized by Xmax (the span of the wing imaginal disc
in the distal direction from the boundary of the anterior and posterior compartment
in the case of the wing imaginal disc) and the time constant X2

max/D with D being
the diffusion coefficient for the diffusive ligand molecules, respectively. The vari-
ous rate constants {konR0, koff , kL, kdeg, kR} for binding, dissociation, free ligand
degradation, bound ligand degradation and unoccupied receptor degradation are
also normalized by the same time constant,

(3) {h0, f0, gL, g0, gR} =
X2

max

D
{konR0, koff , kL, kdeg, kR}.

where R0 being the steady state receptor concentration prior to the onset of ligand
synthesis. For typical biological organism, g0 is typically smaller than gR for an
adequate accumulation of signaling receptor-ligand complexes toward the formation
of a signaling morphogen gradient and patterning. On the other hand, the free
ligand degradation rate is usually negligibly low and is set to zero in most gradient
models.

With ligand synthesized only in the narrow production region (−Xmin, 0), we
normalize the synthesis rate VL by setting vL(x, t) = (VL/R0)/(D/X2

max) to get

(4) vL(x, t) = ev̄LH(−x) =
eV̄L/R0

D/X2
max

H(−x) =

{

ev̄L (−xm ≤ x < 0)
0 (0 < x ≤ 1)
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where V̄L is the uniform (wild-type) synthesis rate in the narrow production region,
xm = Xmin/Xmax. The constant e is an enhancement factor ; it is normally 1
but may take on other values due to environmental changes. For our purpose, it
suffices to consider receptor synthesis to be at a uniform rate V̄R in both time and
space (throughout the spatial domain) with

(5) vR(x, t) = vR(x) = v̄R =
V̄R/R0

D/X2
max

.

Prior to the onset of ligand synthesis, unoccupied receptors should be in a steady
state concentration determined by the second equation in (2) to be

(6) R0 =
V̄R

kR
=

v̄R
gR

R0

with

(7) v̄R =
V̄R/R0

D/X2
0

=
kR

D/X2
0

= gR.

The three differential equations are augmented by the following (normalized)
boundary conditions

(8) x = −xm :
∂a

∂x
= 0, x = 1 : a = 0,

all for t > 0. For the wing imaginal disc, the no flux condition at the compartment
border is a consequence of assumed symmetry of the two compartments of the
wing disc. The kill end condition at the edge, X = Xmax, reflects the assumption
of an absorbing end (which we may occasionally take to be infinitely far away to
avoid making such an assumption). Until morphogens being generated at t = 0, the
biological system is in quiescence so that we have the (normalized) initial conditions

(9) t = 0 : a = b = 0, r = 1

keeping in mind v̄R = gR.
The initial-boundary value problem (IBVP) defined by (1), (2), (8) and (9) has

been analyzed mathematically and computationally in [6, 12] and elsewhere. The
model is generally applicable to other morphogen gradient systems with similar
characteristics, at least for some insight to the qualitative behavior of such gradi-
ents.

2.2. A Steady State Particular Solution. With both ligand and receptor syn-
theses vL(x, t) = ev̄LH(−x) and vR(x, t) = v̄R independent of time for the basic
model, it has been shown in [6] that a unique time independent particular solution
of the IBVP exists with

(10) {āe(x), b̄e(x), r̄e(x)} = lim
t→∞

{a(x, t), b(x, t), r(x, t)},

that is linearly stable with respect to a small perturbation from the steady state.
The subscript e in these steady state quantities indicates the level of synthesis rate
enhancement (ectopicity) with e = 1 corresponding to normal development and
e > 1 corresponding to ectopic signaling gradients.

The steady state solution may be determined by the well-posed two-point bound-
ary value problem (BVP) for āe(x):

(11) ā′′e − g0āe
α0 + ζ0āe

− gLāe + ev̄LH(−x) = 0,

(12) ā′e(−xm) = 0, āe(1) = 0.
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with

(13) b̄e(x) =
āe(x)

α0 + ζ0āe(x)
, r̄e(x) =

α0

α0 + ζ0āe(x)

where

(14) α0 =
f0 + g0

h0
, ζ0 =

kdeg
kR

=
g0
gR

,

keeping in mind v̄R = gR (see (7)).

2.3. A State of Low Receptor Occupancy. The morphogen system is said to
be in a state of low receptor occupancy (LRO) if

(15) max
−xm≤x≤1

ζ0ae ≪ α0.

For such a system, we may neglect terms involving ζ0āe in (11)-(13) to get an
approximate set of solutions {Āe(x), B̄e(x), R̄e(x)} to be determined by

(16) Ā′′
e − µ2

LĀe + ev̄LH(−x) = 0, µ2
L =

g0
α0

+ gL

(17) Ā′
e(−xm) = 0, Āe(1) = 0.

The exact solution for Āe(x) is
(18)

Āe(x) =

{

eν̄L
µ2
L

{1− cosh(µL)
cosh(µL(1+xm)) cosh(µL(x+ xm))} (−xm ≤ x ≤ 0)

eν̄L
µ2
L

sinh(µLxm)
cosh(µL(1+xm)) sinh(µL(1− x)) (0 ≤ x ≤ 1)

,

with

(19) b̄e(x) ≃ B̄e(x) =
Āe(x)

α0
, r̄e(x) ≃ R̄e(x) = 1.

As indicated in a previous section, g0 is typically smaller than gR so that ζ0 < 1.
In that case, a state of LRO requires ae ≪ α0 with α0 = O(g0/h0) ≪ 1 (so that
degradation of signaling ligand complexes is not more rapid than their formation).
It follows from (18) that ν̄L is necessarily small compared to unity for a gradient
system to be in a state of low receptor occupancy.

Remark 1. For µL ≫ 1, the expression for Āe(x) in the signaling range of 0 ≤
x < 1 is effectively a boundary layer adjacent to x = −xm, steep near x = −xm and
dropping sharply to ν̄L/µ

2
L (which is rather small) away from x = −xm. Thus,

even if a morphogen system is in a steady state of low occupancy, its signaling
gradient may not be biologically useful for patterning if the condition µ2

L = O(1) is
not met.

3. Robustness of Signaling Gradient

3.1. Ectopic Gradients. Normal development of wing imaginal disc and other
biological organisms may be altered by an enhanced morphogen synthesis rate stim-
ulated by genetic or epigenetic changes. As mentioned earlier, Dpp synthesis rate
in Drosophila imaginal disc doubles when the ambient temperature is increased
by 6◦C. At a state of low receptor occupancy (LRO), a significant increase in
morphogen synthesis rate is seen from the results given in (18)-(19) to increase pro-
portionately the magnitude of the steady state signaling morphogen concentration
and hence changing the cell fate at each spatial location. Without the restriction
of LRO, the steady state free and signaling morphogen gradients are expected to
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be an increasing function of synthesis rate (but not necessarily proportionately and
now also with some gradient shape distortion) as shown below.

Proposition 2. āe(x; e) is a non-decreasing function of e and increasing at least
for some segment(s) of the solution domain [−xm, 1].

Let w(x, e) = ∂āe/∂e. Upon differentiating partially the BVP for āe(x, e) with
respect to e, we obtain

w′′ − α0g0w

(α0 + ζ0āe)
2 − gLw + vLH(−x) = 0,

w′(−xm, e) = 0, w(1, e) = 0

It is straightforward to verify that wℓ(x, e) = 0 is a lower solution (but not an exact
solution) of the BVP for w(x, e) and wu(x, e) = vL{(xm(1 − x) + (1 − x2)/2} is
an upper solution (and again not an exact solution). The monotone method of
[22, 23, 24] assures us that w(x, e) exists with

0 = wℓ(x, e) ≤ w(x, e) ≤ wu(x, e).

and w(x, e) is not identically zero (since wℓ(x, e) = 0 is not the solution of the BVP
for w(x, e)).

Corollary 3. b̄e(x, e) is a non-decreasing function of e and increasing in some
segment(s) of [−xm, 1].

Proof. Upon differentiating b̄e(x, e) partially with respect to e, we obtain

∂b̄e
∂e

=
∂

∂e

[

āe(x)

α0 + ζ0āe(x)

]

=
α0g0w

(α0 + ζ0āe)
2 ≥ 0

and not identically zero in some segment of [−xm, 1]. �

3.2. A Robustness Index. To calibrate the ectopicity of the enhanced signaling
for e > 1, we introduced a robustness index Rb(t) to measure the deviations of
ectopic signaling gradient (from the wild-type gradient, i.e., e = 1) after ligand
synthesis rate enhancement (e > 1). Let b1(x, t) be the normalized signaling
morphogen concentration for a normal (e = 1) ligand synthesis rate vL(x, t) =
v̄LH(−x) (after normalization). Let be(x, t) be the same quantity for an enhanced
(ectopic) synthesis rate ev̄LH(−x) . A rather natural global measure of signaling
gradient robustness is the following signal robustness index Rb corresponding to the
root mean square of the difference between be(x, t) and b1(x, t) over the solution
domain:

(20) Rb(t) =
1

bh − bℓ

√

1

xℓ − xh

∫ xℓ

xh

[be(x, t) − b1(x, t)]2dx

where 0 ≤ bℓ(t) < bh(t) ≤ b(−xm, t) and −xm ≤ xh < xℓ ≤ 1. The quantities xℓ,
xh, bℓ and bh may be chosen away from the extremities to minimize the exaggerated
effects of outliers.

For a system in steady state with

(21) b̄1(x) = lim
t→∞

b1(x, t), b̄e(x) = lim
t→∞

be(x, t),

the robustness index Rb(t) tends to a constant R̄b:

(22) R̄b = lim
t→∞

Rb(t) =
1

b̄h − b̄ℓ

√

1

xℓ − xh

∫ xℓ

xh

[b̄e(x) − b̄1(x)]2dx
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To be concrete, we have taken in previous investigation (such as [12]) xh = 0 so
that b̄h = b̄1(0) for a representative magnitude as a measure of the extent of the
root-mean-square deviation. For the other end, we have taken xℓ = 1 so that
b̄ℓ = b̄1(1) = 0. In that case, (22) simplifies to

(23) R̄b =
1

b̄1(0)

√

∫ 1

0

[b̄e(x) − b̄1(x)]2dx

In subsequent development, we may occasionally omit the subscript ”1” for the spe-
cial case of normal gradients (when e = 1) so that they are denoted by

{

ā(x), b̄(x), r̄(x)
}

instead of
{

ā1(x), b̄1(x), r̄1(x)
}

.
It should be noted that the robustness index Rb(t) is not the only possible

calibration of ectopicity of the signaling gradient. At least one other measure has
been discussed in [9, 21] and elsewhere. Even for the present investigation, it would
be simpler to replace the time dependent bh(xh, t)− bℓ(xℓ, t) by b̄h(xh)− b̄ℓ(xℓ) or
some representative magnitude for the signaling gradient even for the transient
phase.

3.3. Approximate Solution for Low Receptor Occupancy. For a morphogen
system in a state of LRO (before and after ligand synthesis rate enhancement) so
that g0ae/gR ≪ α0, we have from (18)-(19) the following approximate steady state
expression for the signaling gradients of the normal (wild type) and (environmen-
tally or genetically) perturbed system:
(24)

b̄e(x) ∼ ev̄L
α0µ2

L

sinh(µLxm) sinh(µL(1− x))

cosh(µL(1 + xm))
=

v̄L
α0µ2

L

B̄e(x) =
v̄L

α0µ2
L

[

eB̄1(x)
]

,

for 0 ≤ x ≤ 1 where µ2
L = gL + g0/α0 with µ2

L ≃ h0 + gL whenever f0 ≪ g0 (as it
is for Dpp in Drosophila wing imaginal disc).

For xh = 0 , we have from (18) and (19)

(25) b̄h = b̄1(0) ≃
v̄L

α0µ2
L

sinh(µLxm) sinh(µLℓM )

cosh(µL(ℓM + xm))
=

v̄L
α0µ2

L

B̄1(0),

for LRO systems. By taking xℓ = 1 and b̄ℓ = b̄(1) = 0 and with e = 2 for the
enhanced synthesis rate, R̄b, in the absence of any feedback, was found in [12] to
be approximately given by

R̄b ≃ r̄b =
1

sinh(µL)

√

∫ 1

0

[sinh(µL(1 − x))]2dx

=
1

sinh(µL)

√

1

2

(

sinh(2µL)

2µL

− 1

)

≡ γ.(26)

Numerical solutions for the steady state BVP and the corresponding robustness
index R̄b have been obtained for several sets of parameter values in [12] to assess
the level of robustness of the corresponding Dpp gradients. We mentioned here only
the results pertaining to the first example with the organism characterized by the
parameter values shown in Table 1 there and reproduced below for later references.

We know from [6] that this system meets the condition for a state of LRO and
is further confirmed to be so by comparison of the exact numerical solution with
that of the linearized model.
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Table 1

Xmax = 0.01 cm, Xmin = 0.001 cm, konR0 = 0.01/ sec ./µM,

kdeg = 2× 10−4/ sec ., kR = 0.001/ sec ., koff = 10−6/ sec ., kL = 0,

D = 10−7 cm2/ sec ., V̄L = 0.002 µM/ sec ., V̄R = 0.04 µM/ sec .

c R̄k R̄k+1 b̄1(0) b̃(0; R̄k) b̃(0; R̄k+1) b̃(0; 0)
0 0.39380 0.39380 0.05798 0.11533 0.11533 0.11533
1 0.24096 0.24099 0.05798 0.09327 0.09306 0.11533
2 0.18290 0.18296 0.05798 0.08451 0.08469 0.11533
4 0.11114 0.11163 0.05798 0.07422 0.07431 0.11533

4. Feedback on Ligand Synthesis Rate

4.1. A Non-local Feedback with Delay. With signaling gradient up-regulated
by an elevation of ambient temperature, some feedback mechanism is needed to
adjust for the developing organism to stimulate an appropriate level of inhibition.
Down-regulation of (ectopic) signaling activities is known to be possible in different
ways. Whether it is through more nonreceptors or higher degradation rate of free
or bound ligands, the net effect is equivalent to a lower concentration of free ligand
available for binding with signaling receptors. In a proof-of-concept investigation
of a new approach to feedback initiated in [12], the effect of a negative feedback
stimulated by a higher than normal signaling ligand concentration was taken to be
simply a reduction of the ligand synthesis rate VL. To implement this approach,
we took the normalized synthesis rate vL(x, t) to include a negative feedback factor
using the signaling robustness index Rb(t) as an instrument for down-regulating
the synthesis rate:

(27) vL(x, t) = κ(t; τ)v̄LH(−x) ≡ ev̄LH(−x)

1 + c [Rb(t− τ)]
n

where the amplification factor e is as previously introduced in (1) and where c and
n are two parameters to be chosen for appropriate feedback strength similar to
those for a Hill’s function. Two features of the feedback process in (27) should be
noted. First, with c = n = 1, the feedback mechanism reduces the synthesis rate
by a fraction that depends on the root-mean-square deviation over an appropriate
spatial span (e.g., the distal span of the posterior compartment of the wing imaginal
disc of the Drosophila). Second, the feedback may not be instantaneous as a delay
of τ unit of dimensionless time is allowed for the feedback to become effective.

With τ > 0 (and vR(x, t) = v̄R uniformly throughout the entire distal-proximal
span of the wing imaginal disc), the IBVP for the three normalized concentration
may be computed as we would for the problem without feedback except that the
ligand synthesis rate now changes with time. In particular, for the period [0, τ ],
the problem is identical to the one without feedback. For the interval [kτ, (k+1)τ ]
and with t = kτ + η, 0 ≤ η ≤ τ , the synthesis rate is modified to

(28) vL(x, t) =
ev̄LH(−x)

1 + c [Rb((k − 1)τ + η)]
n (0 ≤ η ≤ τ)

with all concentrations continuous at the junctions between the time intervals.

4.2. Time Independent Steady State with Feedback. It is known from [6]
that the extracellular model system without feedback has a unique steady state
that is linearly stable with respect to small perturbations from the steady state. It
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was shown in [12] that a monotone decreasing steady state solution also exists and
is unique for our model with feedback on the ligand synthesis rate taken in the form
of (28). Suppose {a(x, t), b(x, t), r(x, t)} of (1) - (9) tend to the time independent

states {ãe(x), b̃e(x), r̃e(x)} and therewith Rb(t) → R̃b (see (20) and (22)). In that

case, we have vL(x, t) of (28) tends to eκ̄(R̃b)v̄LH(−x) where

(29) κ̄(R̃b) = lim
t→∞

κ(t; τ) =
1

1 + c
(

R̃b

)n .

Note that we have used κ̄(R̃b) for κ(t; τ) in the steady state case since the amplitude

factor κ(t; τ) is no longer time dependent and is only a function of R̃b (and of course
of n and c in both cases).

The new BVP for the steady state free ligand concentration in the presence of
feedback was shown in [12] to be :

(30) ã′′e − g0ãe
α0 + ζ0ãe

− gLãe + eκ̄(R̃b)v̄LH(−x) = 0,

(31) ã′e(−xm) = 0, ãe(1) = 0.

where κ̄(R̃b) is given by (29) with R̃b calculated from ãe(x):

(32) R̃b =
1

b̄h

√

∫ 1

0

[b̃e(x; R̃b)− b̄1(x)]2dx.

where

(33) b̃e(x; R̃b) =
ãe(x; R̃b)

α0 + ζ0ãe(x; R̃b)
, b̄1(x) =

ā1(x)

α0 + ζ0ā1(x)
.

with c = 0 in (30) for the calculation of the wild-type ā1(x) and b̄1(x).
The solution of the BVP (30) - (31) is much less straightforward since the forcing

term now involves an integral of a complicated expression of the unknown ãe(x; R̄b).
Methods of solution for this more complex BVP (including the LRO case) have
already been discussed in [12] and some numerical results were obtained by an
iterative algorithm there and summarized in Table 1 of this paper for n = 1 and c
=1, 2 and 4 to demonstrate the efficacy of our approach. For subsequent references,
we mention here only the exact solution for the LRO case, denoted by a0(x; r̄b), for
its dependence on the LRO approximation r̄b of the exact robustness index R̄b:
(34)

ã0(x; r̃b) =

{

eκ̄(r̃b)ν̄L
µ2
L

{1− cosh(µLℓm)
cosh(µL(1+xm)) cosh(µL(x+ xm))} (−xm ≤ x ≤ 0)

eκ̄(r̃b)ν̄L
µ2
L

sinh(µLxm)
cosh(µL(1+xm)) sinh(µL(1− x)) (0 ≤ x ≤ 1)

,

where µ2
L is as given by (16) and where R̄b in the expression (29) for κ̄ is now

replaced by the corresponding approximate expression r̃b

(35) r̃b =
1

b̄h

√

∫ 1

0

[b̃0(x; r̃b)− b̄0(x)]2dx

using the low receptor occupancy approximate solution b̃0(x; r̃b) for b̃(x; R̃b):

b̃(x; R̃b) ≃
ã0(x; r̃b)

α0
= b̃0(x; r̃b),(36)

α0b̃(0; R̃b) ≃ ã(0; R̃b) ≃ ã0(0; r̃b) =
eκ̄(r̃b)ν̄L

µ2
L

sinh(µLxm)

cosh(µL(1 + xm))
sinh(µL).(37)
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For µL ≫ 1, the expression for ã0(x; r̄b) in the signaling range of 0 ≤ x < 1 is
asymptotically

ã0(x; r̄b) ∼
eκ̄(r̄b)ν̄L

µ2
L

e−µLx (0 ≤ x < 1)

so that the gradient is effectively a boundary layer adjacent to x = 0, steep near
x = 0 and dropping sharply to near zero away from x = 0.

For n = 1, the expressions (33) for the enhanced and wild-type normalized

signaling morphogen gradients, b̃(x; R̄b) and b̄1(x), in the range relevant for cell
signaling are to be used, respectively, in the expression (35) as was done in (26) to
obtain for a low receptor occupancy system

(38) R̃b ≃ r̃b(c) = γ(µL)

[

2

1 + cr̃b
− 1

]

with

(39) γ(µL) =
1√

2 sinh(µL)

√

(

sinh(2µL)

2µL

− 1

)

.

For c = 0 (corresponding the case of no feedback), we have immediately
[

R̃b

]

c=0
≃ r̃b(0) = γ(µL)

For the example in the discussion following (26), we have γ(µL) = 0.3938..... while

accurate numerical solutions of the previous section give R̃b = 0.39380...
For 0 < c < ∞, the relation (38) may be written as the quadratic equation

(40) cr̃2b + (1 + cγ)r̃b − γ = 0

for r̄b with one positive solution

(41) R̃b ≃ r̃b =
1

2c

[

−(1 + cγ) +
√

(1 + cγ)2 + 4γ
]

> 0.

For the problem specified by the parameter values in Table 1 and c = 1, such a
feedback process gives

(42)
[

R̃b

]

c=1
≃ r̃b(1) = 0.2410...

(which is nearly identical to the average 0.2410... of the 8th and 9th iterates found

earlier for R̃b(c = 1)).

5. Feedback in Transient Phase.

Generally, a feedback mechanism would not become effective until the enhanced
signaling reaches a noticeable level of ectopicity. Typically, this occurs during
the transient phase of the development (and not when the system is already in
a quasi-steady state). It is also possible that there is a delay in sensing the
excessive signaling and the actual initiation of the response with the delay time
short compared to the time to quasi-steady state. For systems capable of repeated
feedbacks, their impact prior to steady state may be cumulative toward eventual
patterning and development. It is important then to investigate feedback effective
during the transient phase of the signaling morphogen gradient formation.

In principle, the developing organism may adjust continuously with continuous
feedback but is unlikely to function with such sensitivity or efficiency. It is more
likely to make feedback adjustments at a few instants or perhaps only once at some
threshold ectopicity. As a proof-of-concept investigation, we consider two models
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of a feedback adjustment after each time interval τ , both for the special case of
n = 1, to illustrate the method of solution for this class of problems.

Let tk = kτ, k = 0, 1, 2, 3, ... and suppose feedback adjustments are made only at
t1, t2, t3, t4, ..... and not in between these instants in time. We designate the time
interval [tk, tk+1) as period k. For both models, an additional feedback adjustment

is made during period k on the enhanced ligand synthesis rate vL(x, t) ≡ v
(k−1)
e (x, t)

of the previous time interval. The adjustment is by a factor (1 + cRb(t̄k))
−1 for

some constant c and some instant t̄k (keeping n = 1 for this first effort).
In this section, we investigate the first model in which feedback adjustment for

period k is made at the start time tk of that time interval on the basis of the
robustness index Rb at that moment so that t̄k = tk. In that case, we have for
period k

vL(x, t) ≡ v(k)e (x, t) =
v
(k−1)
e (x, t)

1 + cRb(tk)
≡ eκkv̄LH(−x).

We now examine the evolution of the signaling gradient with time in successive
time intervals [tk, tk+1).

5.1. The Interval [0, t1). In this initial interval corresponding to k = 0, the
enhanced ligand synthesis rate with (our nonlocal spatially uniform) feedback is

(43) vL =
ev̄LH(−x)

1 + cRb(t0)
= ev̄LH(−x) ≡ v(0)e (x, t) (0 ≤ t ≤ t1 = τ)

since

Rb(t0) =
1

b̄h

∫ 1

0

[be(x, t0)− b1(x, t0)]
2dx

=
1

b̄h

∫ 1

0

[b(0)e (x, 0)− b1(x, 0)]
2dx = 0

given be(x, 0) = b1(x, 0) = 0 by the initial conditions To emphasize that the result
applies only to the initial time interval [0, t1), we adopt the notation

Rb(t0) ≡ R
(0)
b (0) = 0.

It follows that feedback is not effective in this interval. In that case, the syn-
thesis rate of the ectopic IBVP (1), (2), (8) and (9) in this time interval, vL =

v
(0)
e (x, t) = ev̄LH(−x) with the subscript e corresponding the magnitude of ec-
topicity, is the same as the problem without feedback. The solution, to be denoted

by a
(0)
e (x, t), b

(0)
e (x, t) and r

(0)
e (x, t) (including the wild type corresponding to e = 1

in (43)) can be obtained by numerical methods with the initial conditions (9) at
t = 0 (as we have done previously in [6] for problems without feedback).

5.2. The Interval [t1, t2). In this next interval τ = t1 ≤ t < t2 = 2τ correspond-
ing to k = 1, the enhanced ligand synthesis rate with feedback is

vL =
ev̄LH(−x)

1 + cRb(t1)
≡ v(1)e (x, t) (τ ≤ t < τ).

with

Rb(t1) =
1

b̄h

∫ 1

0

[be(x, t1)− b1(x, t1)]
2dx

=
1

b̄h

∫ 1

0

[b(0)e (x, τ) − b1(x, τ)]
2dx ≡ R

(1)
b (t1)
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since, by continuity, be(x, t1) is the same at the junction t1 of the two adjacent

intervals. b
(1)
e (x, τ) = b

(0)
e (x, τ) by continuity. With b

(0)
e (x, τ) already known from

the solution of the IBVP for the previous interval, the modified synthesis rate for
the ectopic IBVP in this time interval,

(44) vL = v(1)e (x, t) =
ev̄LH(−x)

1 + cR
(1)
b (t1)

= eκ1v̄LH(−x) (t1 ≤ t < t2),

is a known function. The solution of the IBVP in [t1, t2), denoted by
{

a
(1)
e , b

(1)
e , r

(1)
e

}

,

can be obtained by numerical methods with the continuity condition
{

a(1)e (x, t1), b(1)e (x, t1), r(1)e (x, t1)
}

=
{

a(0)e (x, t1), b(0)e (x, t1), r(0)e (x, t1)
}

as the initial conditions and with the quantities on the right already known from
the solution for the previous interval.

Note that feedback on the synthesis rate is now effective for the interval [t1, t2).
As such the solution of the IBVP (1), (2), (8) and (9) for the ectopic problem
in this time interval is generally different from the corresponding solution without
feedback, i.e., the special case c = 0. Anticipating the subsequent development,
we adopt the notation κ0 = 1 so that we may write

κ1 =
κ0

1 + cR
(1)
b (t1)

.

5.3. The Interval [t2, t3). In the next interval 2τ = t2 ≤ t < t3 = 3τ correspond-
ing to k = 2, the enhanced ligand synthesis rate with feedback is

vL =
v
(1)
e (x, t)

1 + cRb(t2)
≡ v(2)e (x, t).

Similar to the previous interval, Rb(t2) for the new interval is completely determined
from the solution of the previous interval at the junction t2 between the two adjacent
intervals:

Rb(t2) =
1

b̄h

∫ 1

0

[b(1)e (x, t2)− b1(x, t2)]
2dx ≡ R

(2)
b (t2).

The corresponding solution of the IBVP (1), (2), (8) and (9), to be denoted

by
{

a
(2)
e , b

(2)
e , r

(2)
e

}

, may be obtained by numerical methods starting from the con-

tinuity conditions at t2:

(45) {a(2)e (x, t2), b(2)e (x, t2), r
(2)
e (x, t2)} = {a(1)e (x, t2), b(1)e (x, t2), r

(1)
e (x, t2)}.

with the quantities on the right already obtained in the discussion of the previous
interval. The synthesis rate for the ectopic IBVP with feedback in this time interval
may be written as

(46) vL = v(2)e (x, t) = ev̄Lκ2H(−x) (t2 ≤ t < t3)

with

(47) κ2 =
κ1

1 + cR
(2)
b (t2)

=
κ0

[

1 + cR
(2)
b (t2)

] [

1 + cR
(1)
b (t1)

] .
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5.4. The Interval [tk, tk+1). k ≥ 3 :. In a general interval kτ = tk ≤ t < tk+1 =
(k + 1)τ for k ≥ 3, the enhanced ligand synthesis rate with feedback is
(48)

vL =
v
(k−1)
e (x, t)

1 + cRb(tk)
=

ev̄Lκk−1H(−x)
[

1 + cR
(k)
b (tk)

] = ev̄LκkH(−x) ≡ v(k)e (x, t) (tk−1 ≤ t− τ < tk)

with

(49) R
(k)
b (tk) =

1

b̄h

∫ 1

0

[b(k−1)
e (x, tk)− b1(x, tk)]

2dx.

Hence, the feedback adjusted synthesis rate of the ectopic IBVP in the interval
tk ≤ t < tk+1 is

(50) vL = v(k)e (x, t) = ev̄LκkH(−x) (tk ≤ t < tk+1)

with

(51) κk(t1, ...., tk) =
1

k

Π
j=1

[

1 + cR
(j)
b (tj)

]

given κ0 = 1. In the expression (51), the robustness indices {R(j)
b (tj)} are calcu-

lated from the formula (49) (with k replaced by j ) sequentially with increasing j
starting from j = 1.

The corresponding solution of the IBVP (1), (2), (8) and (9), denoted by
{

a
(k)
e , b

(k)
e , r

(k)
e

}

, may be obtained by numerical methods starting from the conti-

nuity conditions at tk:

{a(k)e (x, tk), b(k)e (x, tk), r
(k)
e (x, tk)} = {a(k−1)

e (x, tk), b(k−1)
e (x, tk), r

(k−1)
e (x, tk)}.

5.5. Numerical Results. With κk decreasing with k, R
(k)
b also decreases with k;

the iterative algorithm above is expected to converge. To compare the effectiveness
of cumulative repeated feedback adjustments during the transient phase with that
of steady state theory obtained in [12] (see also Table 1 of this paper) we apply
the present approach to Example 1 examined in [12]. With the system parameter
values given in Table 1 earlier, we take c = 1 (along with n = 1 as specified earlier)
and τ = 4 in units of (D/X2

max)
−1 with the system reaching steady state around

5τ = 20 .
Note that the top curve in the Figure 1 is essentially the quasi-steady state be

(for e = 2) without feedback and with the signaling gradient reaching steady state

around t = 20. The expected role of any feedback adjustment is to bring b
(5)
e (x, 20)

as close as possible to the the bottom steady state wild-type signaling gradient curve
in that figure (e = 1 and no feedback). After the feedback adjustments become
effective (starting with k = 2), the cumulative effect of the repeated adjustments
continues to reduce the signaling gradient in successive time intervals, leading to a

gradient b
(5)
e (x, 20) very close to the wild-type gradient prior to synthesis rate being

enhanced from e = 1 to e = 2.
Even more important is the shape of the wild-type gradient being maintained

by the feedback adjusted ectopic gradient. More specifically, the spatially uniform
nonlocal feedback mechanism does not suffer the same fate besetting the Hill’s
function type feedback mechanism applied to the signaling receptor synthesis rate
first found in [19].
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Figure 1. Various Signaling Gradients (some with feedback ad-
justment). (1) Wild-type b1(x, 20) with (e = 1 and c = 0) at the
bottom. (2) Ectopic be(x, 20)(with e = 2 and c = 0) at the top.
(3) In between from top down are be(x, tk) at t = t2, t3, t4, t1 and
t5 = 20.

Figure 2. Negative feedback of Hills function type on receptor
synthesis rate. (1) Wild-type signaling gradient (e = 1, no feed-
back) - bottom dashed curve. (2) Ectopic signaling gradient (e
= 2 without feedback) - top dashed curve. (3) Ectopic signaling
gradient (e = 2) with negative feedback on receptor synthesis.

Table 2. Comparison of Rb(x, tk).

Transient (c=1) Steady State
No Delay (k) With Delay (k) From [12] (c)
0.24937 (1) 0.24937 (1) 0.39379 (0)
0.26524 (2) 0.36501 (2) 0.24051 (1)
0.18738 (3) 0.31731 (3) 0.18296 (2)
0.10145 (4) 0.18769 (4) ........
0.03769 (5) 0.05747 (5) 0.11163 (4)

In the first column of Table 2, we report robustness index values at different
instants in time for the feedback mechanism described above. Except for an in-

crease in R
(2)
b (x, t2) over R

(1)
b (x, t1) (because there is no feedback adjustment for

the interval [0, 4)), modifications of the synthesis stimulated by feedback repeatedly
reduce the robustness index to below the acceptable robustness threshold value of
0.2 by t = 12 and well below that threshold by t = 20 (effectively in steady state).
We contrast these results to the steady state approach taken in [12] where the same
nonlocal spatially uniform feedback mechanism becomes effective when the system
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reaches its steady state. The results using that approach obtained in [12] and
reproduced in the third column of Table 2 show that Rb(x,∞) is well above 0.2 for
c = 1 (the same value of c used for all cases in the first column).

6. Transient Feedback with Delay

In this section, we investigate the second model when the effect of feedback
through the robustness index Rb(t̄) is recorded at the start of the time interval
tk but reacting with a delayed time τ so that t̄k = tk − τ = tk−1:

vL(x, t) ≡ v(k)e (x, t) =
v
(k−1)
e (x, t)

1 + cRb(tk−1)
≡ ev̄LdkH(−x)

We now examine the evolution of the signaling gradient with time in successive
time intervals [tk, tk+1).

6.1. The Interval [0, t1). In the initial interval (0 = t0 ≤ t < t1 = τ) correspond-
ing to k = 0, the enhanced ligand synthesis rate with (our spatially uniform)
feedback is

(52) vL =
ev̄LH(−x)

1 + cRb(t0 − τ)
=

ev̄LH(−x)

1 + cRb(−τ)
= ev̄LH(−x) ≡ v(0)e (x, t)

(again with the subscript e corresponding the magnitude of ectopicity) since be(x, t) =
b1(x, t) = 0 for t prior to the onset of morphogen synthesis so that

Rb(−τ) =
1

b̄h

∫ 1

0

[be(x,−τ) − b1(x,−τ)]2dx = 0.

With

Rb(t0 − τ) ≡ R
(0)
b (−τ) = 0

so that feedback is not effective given the delay, the synthesis rate of the ectopic
IBVP (1), (2), (8) and (9) in this time interval is the same as that without feedback.

The solution, to be denoted by a
(0)
e (x, t), b

(0)
e (x, t) and r

(0)
e (x, t) (including the wild

type corresponding to e = 1 in (43)) can be obtained by numerical methods with
the initial conditions (9) at t = 0.

6.2. The Interval [t1, t2). In this next interval τ = t1 ≤ t < t2 = 2τ correspond-
ing to k = 1, the enhanced ligand synthesis rate with feedback is

vL =
v
(1)
e (x, t)

1 + cRb(t1 − τ)
=

ev̄LH(−x)

1 + cRb(0)
≡ v(1)e (x, t) (0 ≤ t− τ < τ).

With

Rb(t1 − τ) =
1

b̄h

∫ 1

0

[be(x, 0)− b1(x, 0)]
2dx

=
1

b̄h

∫ 1

0

[b(0)e (x, 0)− b1(x, 0)]
2dx = 0,

given the initial conditions be(x, 0) = b1(x, 0) = 0, we have also

Rb(t1 − τ) ≡ R
(1)
b (0) = 0

in the interval t1 ≤ t < t2 . The synthesis rate for the ectopic IBVP in this time
interval is

vL = v(1)e (x, t) =
ev̄LH(−x)

1 + cR
(1)
b (0)

= ev̄LH(−x) (t1 ≤ t < t2).
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The solution, denoted by
{

a
(1)
e (x, t), b

(1)
e (x, t), r

(1)
e (x, t)

}

is the same as one with-

out feedback and can be obtained by the usual numerical methods with the conti-
nuity condition

{

a(1)e (x, t1), b(1)e (x, t1), r(1)e (x, t1)
}

=
{

a(0)e (x, t1), b(0)e (x, t1), r(0)e (x, t1)
}

as initial conditions. Note that the quantities on the right have already been
obtained for the previous interval.

With feedback on the synthesis rate not yet effective for the combined interval
[0, t2), the solution of the IBVP (1), (2), (8) and (9) for the ectopic problem in the
time interval t1 ≤ t < t2 is merely a continuation of that for the previous interval.

6.3. The Interval [t2, t3). In the next interval 2τ = t2 ≤ t < t3 = 3τ correspond-
ing to k = 2, the enhanced ligand synthesis rate with feedback is

vL =
v
(1)
e (x, t)

1 + cRb(t2 − τ)
=

ev̄LH(−x)

1 + cRb(τ)
≡ v(2)e (x, t)

with

Rb(t2 − τ) =
1

b̄h

∫ 1

0

[be(x, τ) − b1(x, τ)]
2dx

=
1

b̄h

∫ 1

0

[b(1)e (x, τ) − b1(x, τ)]
2dx = R

(2)
b (t1)

given b
(2)
e (x, t1) = b

(1)
e (x, t1) by continuity. For the interval t1 ≤ t̄ = t − τ < t2

and feedback adjustment effective only at t1, we have

Rb(t2 − τ) = R
(2)
b (t1)

and the feedback modified synthesis rate for the ectopic IBVP in this time interval
is

(53) vL = v(2)e (x, t) =
ev̄LH(−x)

1 + cR
(2)
b (t1)

≡ ev̄Ld2H(−x) (t2 ≤ t < t3)

with

(54) d2 =
1

1 + cR
(2)
b (t1)

.

With the feedback adjusted synthesis rate completely known for the interval t2 ≤
t < t3, the solution of the IBVP (1), (2), (8) and (9), denoted by

{

a
(2)
e , b

(2)
e , r

(2)
e

}

,

can be obtained by numerical methods starting from the continuity conditions at
t2:

(55) {a(2)e (x, t2), b(2)e (x, t2), r
(2)
e (x, t2)} = {a(1)e (x, t2), b(1)e (x, t2), r

(1)
e (x, t2)}.

with the quantities on the right already obtained for the previous interval.

Given vL = v
(2)
e (x, t) = ev̄Ld2(t1)H(−x) which is known but different from

v
(1)
e (x, t) = v

(0)
e (x, t) = ev̄LH(−x), feedback on the synthesis rate is effective in the

interval [t2, t3). As such the solution of the IBVP for the transient ligand concen-
tration for the ectopic problem is expected to be different from the corresponding
solution without feedback in this interval.
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6.4. The Interval [tk, tk+1). k ≥ 3. In period k, where kτ = tk ≤ t < tk+1 =
(k + 1)τ for k ≥ 3, the enhanced ligand synthesis rate with feedback is

(56) vL =
v
(k−1)
e (x, t)

1 + cRb(tk − τ)
=

ev̄Ldk−1H(−x)

[1 + cRb(tk−1)]
≡ v(k)e (x, t) (tk−1 ≤ t− τ < tk)

with

Rb(tk − τ) =
1

b̄h

∫ 1

0

[be(x, tk−1)− b1(x, tk−1)]
2dx

=
1

b̄h

∫ 1

0

[b(k−1)
e (x, tk−1)− b1(x, tk−1)]

2dx = R
(k)
b (tk−1)

Hence, the feedback adjusted synthesis rate of the ectopic IBVP in the interval
tk ≤ t < tk+1 is

(57) vL = v(k)e (x, t) = edkv̄LH(−x)

where d0 = d1 = 1 and

dk(t1, ...., tk−1) =
1

k

Π
j=2

[

1 + cR
(j)
b (tj−1)

]

(k ≥ 2).

The solution of the IBVP, denoted by
{

a
(k)
e , b

(k)
e , r

(k)
e

}

, can be obtained by nu-

merical methods starting with the continuity condition:

{a(k)e (x, tk), b
(k)
e (x, tk), r

(k)
e (x, tk)} = {a(k−1)

e (x, tk), b
(k−1)
e (x, tk), r

(k−1)
e (x, tk)}.

6.5. Numerical Results. To compare the cumulative effects from repeated (de-
layed) feedback adjustments during the transient phase with that of steady state
theory obtained in [12], we apply the present approach to the Example 1 examined
in [12]. With the system parameter values given in Table 1 earlier, we take c = 1
and τ = 4 in units of (D/X2

max)
−1 to obtain a similar set of solutions for delayed

feedback modified be(x, t) at tk = τ, 2τ, 3τ, 4τ and 5τ = 20 as well as be(x, t) with-
out feedback for e = 1 (wild-type) and e = 2 (ectopic gradient). The results are
shown in Figure 3.

As in Figure 1, the top curve in the figure is essentially the quasi-steady state
be (for e = 2) without feedback with the signaling gradient reaching steady state
around t = 20, with the onset of morphogen synthesis at t = 0. The expected

role of any feedback adjustment is to bring b
(5)
e (x, 20) as close as possible to the

the bottom steady state wild-type signaling gradient curve in that figure (e = 1
and no feedback). After the feedback adjustments become effective (starting with
k = 2), the cumulative effect of the repeated adjustments in this second model
continues to reduce the signaling gradient in successive time intervals, leading to a

gradient b
(5)
e (x, 20) very close to the wild-type gradient prior to synthesis rate being

enhanced from e = 1 to e = 2.
However, there are significant differences between the same nonlocal spatially

uniform feedback mechanism without and with delay. For example, the feedback
adjusted ectopic signaling gradient is seen to be slightly higher than the ectopic
gradient during the early transient phase of k = 1; but this relative position is
reversed for the same feedback mechanism without delay. The reason for the
difference is associated with the unmodified increase in the deviation of the ectopic
gradient from the wild-type for a second period so that feedback adjustment of the
development actually occurs one period later when the feedback implementation is
delayed by one period.
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Figure 3. Various Signaling Gradients (some with delayed feed-
back): (1) Wild-type with (e = 1 and c = 0) at the bottom. (2)
Ectopic (with e = 2 and c = 0) at the top. (3) In between from

top down are b
(k)
e (x, t) at tk = 2τ, 3τ, 4τ, 5τ = 20 and τ .

In the second column of Table 2, we report robustness index values at different
instants in time for the same feedback mechanism as in the previous section but now
with a delay in sensing the need for, and in implementing feedback adjustments.
Given that modification of the synthesis rate stimulated by feedback only begins
to be effective starting with period 2. There is then no effect of feedback in period
0 and period 1 leading to a larger Rb after the initial period. To reach the same
robustness index with the delayed feedback would require additional adjustments
well into the steady state phase or an increase in the value for c to 2 or higher.

7. Time Dependent LRO Problem

7.1. A Perturbation for the Transient Phase of a LRO State. From the
results for our illustrating example, we see that both the wild-type and ectopic
steady state behavior meet the requirements for a LRO state. For such cases, we
may take during the transient phase the following perturbation expansions in terms
of a small dimensionless parameter ε:

{ae, be, re} = {0, 0, 1}+
∑

i=1

{A(i)
e (x, t), B(i)

e (x, t), R(i)
e (x, t)}εi

with 0 < ε ≪ 1. (One possible choice of the small parameter ε is the dimension-
less ligand synthesis rate v̄L which is necessarily small for a state of low receptor
occupancy as delineated in a previous section.) Upon substituting these expan-
sions in to the IBVP (1), (2), (8) and (9), the leading terms of the expansions

{A(1)
e (x, t), B

(1)
e (x, t), 1} and the first order correction term R

(1)
e (x, t) for receptor

concentration are found to be determined by the simpler IBVP:

(58)
∂A

(1)
e

∂t
=

∂2A
(1)
e

∂x2
− (h0 + gL)A

(1)
e + f0B

(1)
e + vL(x, t),

(59)
∂B

(1)
e

∂t
= h0A

(1)
e − (f0 + g0)B

(1)
e ,

∂R
(1)
e

∂t
= −h0A

(1)
e + f0B

(1)
e − gRR

(1)
e ,

with

(60) x = −xm :
∂A

(1)
e

∂x
= 0, x = 1 : A(1)

e = 0,
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all for t > 0, and

(61) t = 0 : A(1)
e = B(1)

e = R(1)
e = 0 (0 ≤ x ≤ 1).

The two unknowns A
(1)
e (x, t) and B

(1)
e (x, t) may be solved separate with the so-

lution used in the second ODE of (59) and the initial condition R
(1)
e (x, 0) = 0 for the

determination ofR
(1)
e (x, t). The first approximation solution

{

A
(1)
e (x, t), B

(1)
e (x, t), 1

}

is designated as the low receptor occupancy solution for the problem.

7.2. Eigenfunction Expansions. For t in the interval [tk, tk+1), we have for the
model with delay

(62) vL(x, t) = eκkv̄LH(−x) ≡ v(k)e (x, t), κk =
1

k

Π
j=2

[

1 + cR
(j)
b (tj−1)

]

,

which is independent of time except for the constant κk characterizing the cumula-

tive effect of prior feedback. A particular solution of the linear IBVP for A
(1)
e (x, t)

and B
(1)
e (x, t) for that interval is the steady state LRO solution Āek(x) given in

(18) and

(63) B̄ek(x) =
Āek(x)

α0
,

with ev̄L replaced by eκkv̄L. It is worth pointing out that the particular solution
pair {Āek(x), B̄ek(x)}, though time independent for at least the initial period, gen-
erally changes from period to period since the synthesis rate vL is being adjusted
with a new robustness index from period to period. For that reason, we take the

LRO solution A
(1)
e (x, t) and B

(1)
e (x, t) in period k as a sum of the corresponding

particular solution and a transient counterpart

(64) A(1)
e (x, t) = Āek(x) + Âek(x, t), B(1)

e (x, t) = B̄ek(x) + B̂ek(x, t).

The complementary solutions Âe(x, t) and B̂e(x, t) are determined by the IBVP

∂Âek

∂t
=

∂2Âek

∂x2
− (h0 + gL) Âek + f0B̂ek,(65)

∂B̂ek

∂t
= h0Âek − (f0 + g0)B̂ek,(66)

subject to the boundary conditions

(67) x = −xm :
∂Âek

∂x
= 0, x = 1 : Âek = 0,

for tk ≤ t < tk+1 and initial conditions

(68)

{

Âek(x, tk) + Āek(x)

B̂ek(x, tk) + B̄ek(x)

}

=

{

Âek−1(x, tk) + Āe(k−1)(x)

B̂e(k−1)(x, tk) + B̄e(k−1)(x)

}

for 0 ≤ x ≤ 1.
Given the linearity of the governing PDE and auxiliary conditions, the comple-

mentary solution of this IBVP may be obtained by eigenfunction expansions

(69)

{

Âek(x, t)

B̂ek(x, t)

}

=

∞
∑

j=0

{

akj(t)
bkj(t)

}

φj(x)

with

(70) φj(x) = sin

(

λj

1− x

1 + xm

)

, λj =

(

j +
1

2

)

π.
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Upon substitution of (69) into (65)-(66), we obtain

d

dt

(

akj(t)
bkj(t)

)

= −C(λ2
j )

(

akj(t)
bkj(t)

)

(j = 0, 1, 2, ....)

where

C(λ2
j ) =

[

c11 c12
c21 c22

]

=

[

λ2
j + h0 + gL −f0

−h0 f0 + g0

]

.

The solution of the first order system for akj(t) and bkj(t) is

(71)

(

akj(t)
bkj(t)

)

=

(

a
(1)
kj e

−ω
(1)
kj

t + a
(2)
kj e

−ω
(2)
kj

t

b
(1)
kj e

−ω
(1)
kj

t + b
(2)
kj e

−ω
(2)
kj

t

)

where ω
(1)
kj and ω

(2)
kj are the two roots
(

ω
(1)
kj

ω
(2)
kj

)

=
1

2

{

Tr[C]±
√

(Tr[C])2 − 4Det[C]
}

of the quadratic equation for ωkj

det
[

ωkjI − C(λ2
j )
]

= ω2
kj + Tr[C]ωkj +Det[C] = 0.

The coefficients {a(1)kj , a
(2)
kj , b

(1)
kj , b

(2)
kj } are related by

b
(m)
kj =

h0a
(m)
kj

ω
(m)
kj + f0 + g0

with the two remaining unknowns a
(1)
kj and a

(2)
kj found from the two continuity con-

ditions (68) in the form
{

a
(1)
kj e

−ω
(1)
kj

tk + a
(2)
kj e

−ω
(2)
kj

tk

b
(1)
kj e

−ω
(1)
kj

tk + b
(2)
kj e

−ω
(2)
kj

tk

}

+

{

ākj
b̄kj

}

=







a
(1)
(k−1)je

−ω
(1)
kj

tk + a
(2)
(k−1)je

−ω
(2)
kj

tk

b
(1)
(k−1)je

−ω
(1)
kj

tk + b
(2)
(k−1)je

−ω
(2)
kj

tk







+

{

ā(k−1)j

b̄(k−1)j

}

where {ānj , b̄nj} are the coefficients of the eigenfunction expansions for the known
particular solutions Āek(x) and B̄ek(x), respectively,

∫ 1

−xm

[φj(x)]
2
dx

{

ānj
b̄nj

}

=

∫ 1

−xm

φj(x)

{

Āen(x)
B̄en(x)

}

dx.

and {a(1)(k−1)j , ...., b
(2)
(k−1)j} are known from the solution of period (k − 1), i.e.,

[tk−1, tk).
Given

(72) c11c22 − c12c21 = g0(λ
2
j + h0 + gL) + f0

(

λ2
j + gL

)

> 0

and

Tr[C])2 − 4Det[C] = (c11 + c22)
2 − 4(c11c22 − c12c21)

= (c11 − c22)
2 + 4c12c21 = (c11 − c22)

2 + f0h0 > 0,(73)

both ω
(1)
kj and ω

(2)
kj are real (by (73)) and positive (by (72)). It follows from (71)

that the transient components are dissipative and decay with time.
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Figure 4. Steady state signaling gradients from [12].

7.3. Numerical Results. The solution process above has been implemented to
obtain an approximate LRO solution for our problem in [25] where we have also
simplified the calculations by taking advantage of the fact that f0 ≪ g0. Given
that the example in Table 1 is of the LRO type, the eigenfunction solution of this
section provides a mean to validate the numerical solutions discussed in the previous
sections (but with the parameters in robustness index

(74) Rb(t) =
1

bh − bℓ

√

1

xℓ − xh

∫ xℓ

xh

[be(x, t) − b1(x, t)]2dx

(as defined in (20)) re-set to take advantage of the orthogonality of the eigenfunc-
tions). More specifically, we now take xh = −xm instead of 0 but keep xℓ = 1 to
get

(75) Rb(t) =
1

b̄h

√

1

1 + xm

∫ 1

−xm

[be(x, t)− b1(x, t)]2dx.

While we may make use of the correct value b̃e(−xm) for b̄h, it is just as appropriate
to continue to use b̄h = b̄1(0) as we have done herein.

8. Concluding Remarks

Robustness with respect to an ectopic signaling gradient resulting from genetic
or epigenetic perturbations requires one or more signaling inhibiting agents to be
stimulated (by the enhanced signaling morphogen concentration) and up-regulated
above their normal level. This means the existence of some kind of feedback process
in order to promote robustness. Feedback has long been seen as a mechanism for
maintaining stable developments and specific feedback loops have been identified in
the morphogen literature such as [13, 14, 15, 16, 18]. While the conventional Hill
function type negative feedback on receptor synthesis rate proves to be ineffective
for this purpose [19, 20, 21], we have shown in [12] that a nonlocal spatially uniform
feedback process based on a spanwise average of excess signaling can play such a
role.

In the proof of concept investigation [12], the feedback loop employed by-passed
the actual agent responsible for down-regulating the ectopic signaling and imple-
mented a negative feedback directly on the ligand synthesis rate (given the ultimate
effect of the inhibition is equivalent to a reduction of ligand for binding with signal-
ing receptors). In addition, the feedback is taken to be effective as the development
reaches a (quasi-) steady state. The present investigation complements the work
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in [12] by examining the same feedback mechanism but now allowing it to be ef-
fective during the transient phase of the development, possibly repeated until a
quasi-steady state of development is reached.

The transient phase feedback mechanism applied to the same example investi-
gated in [12] shows some significant differences from the feedback in steady state
process. The most obvious difference is that the new mechanism attains robust-
ness for c = 1 (and n = 1) with Rb well below 0.1 when the development reaches
quasi-steady state whether or not there is a delay in the feedback process. In fact,
Rb is already below the robustness threshold of 0.2 even during the transient phase
(see Table 2). In contrast, for the feedback in steady state approach with c = 1
and n = 1, the robustness index is > 0.24 which is well above the 0.2 threshold.
With n kept at 1, the latter mechanism would require c = 2 for R̄b to decrease to
0.183... but still > 0.1 with c = 4. This advantage of the transient feedback is not
surprising since the process allows for several adjustments before reaching steady
state while the feedback in steady state effectively allows for only one feedback
modification.

Another difference in comparing the graphs for b̄2(x) by feedback in steady state
with be(x, t) with nearly the same robustness index value by feedback in transient
shows that the latter more closely resembls the wild-type gradient. Below from
bottom to top in Figure 4 are the graphs of b̄1(x) (without feedback), steady state
feedback adjusted b̄2(x) and b̄2(x) without feedback obtained for [12]. While the
robustness index value R̄b = 0.18293... for the c = 2 case is below the acceptable
threshold, the middle curve in Figure 4 is only half way between b̄1(x) and b̄2(x).

In contrast, the corresponding b
(3)
e (x, t3) in Figure 1 with a robustness index value

of Rb(t3) = 0.18738... is considerably closer to the wild-type gradient. The
difference persists in a few other cases computed.

From these and other results, it is reasonable to conclude that feedback in tran-
sient is more favorable (than feedback in steady state) to robust development of a
biological organism that initiates (a spatially uniform nonlocal) feedback for adjust-
ing the level of inhibition as it experiences environmental or genetic perturbations.
Hence, it should be of primary interest as we begin to investigate feedback on the
actual inhibitors/activators for regulating ectopic signaling gradients. For an en-
hancement in ligand synthesis rate for example, down-regulation of the resulting
signaling gradient may be accomplished by a positive feedback to enhance synthesis
of non-receptors or receptor mediated degradation. It may also be accomplished
by a negative feedback to inhibit binding between ligands and their signaling re-
ceptors. While the effects of feedback in transient for these and other regulating
mechanisms are being examined in [25] and elsewhere, feedback in steady state will
also be investigated to provide a lower bound on what may be accomplished by the
particular inhibiting/activating agent (see [26] for example).
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A.1. Nonlocal Uniform Feedback on Receptor Synthesis. In Section 5, we
pointed out a number of important differences between the feedback adjusted ec-
topic signaling gradients resulting from the conventional Hill’s function approach
and our nonlocal uniform feedback mechanism. As one important difference, the
present approach keeps the shape (slope and curvature) of the adjusted ectopic gra-
dient similar and close to shape of the wild-type gradient while the Hill’s function
approach typically changes the gradient from convex to concave shape downstream
from the local source as shown in Figure 2. However, the feedback that modified
the ectopic gradient in Figure 2 was applied to the receptor synthesis rate (and not
the ligand synthesis rate). For a more appropriate comparison, we should inves-
tigate the shape of the corresponding gradient when the present nonlocal uniform
feedback mechanism is applied to the receptor synthesis rate as was done in [19] to
obtain Figure 2.

To this end, we consider here a related negative feedback of the spatially uniform
nonlocal type investigated herein on signaling receptor synthesis rate with vR(x, t)
in (2) given by

(A.1) vR =
v̄R

1 + c [Rb(t− τ)]
n ,

(instead of v̄R). We limit discussion here to the case of the effect of such a feedback
on the steady state behavior. With (10), (21) and (22), we have from (1), (2) and
(8) the following equations for the steady state behavior:

(A.2) ā′′e − h0āer̄e + f0b̄e − gLāe + ev̄LH(−x) = 0,

(A.3) 0 = h0āer̄e − (f0 + g0)b̄e, 0 = κ̄v̄R − h0āer̄e + f0b̄e − gRr̄e,

where a bar on top of a quantity designates steady state behavior. The subscript
”e” indicates the level of ectopicity corresponding to the values of the parameter e
in the morphogen synthesis rate term, and

(A.4) κ̄ =
1

1 + c
[

R̄b

]n ,

where R̄b is the robustness index in steady state. Note that the wild-type behavior
corresponds to e = 1 and R̄b = 0 (which can be achieved by setting c = 0).

The two equations in (A.3) may be solved for b̄ and r̄ in terms of ā to get

(A.5) b̄ =
κ̄ā

α0 + ζ0ā
, r̄ =

κ̄α0

α0 + ζ0ā
.

These expressions enable us to eliminate b̄ and r̄ from (1) to get a single second
order ODE for ā:

(A.6) ā′′ − κ̄ā

α0 + ζ0ā
− gLā+ ev̄LH(−x) = 0

The ODE (A.6) is augmented by the boundary conditions (8),

(A.7) ā′(−xm) = ā(1) = 0,

to form a two point BVP for ā.
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A.2. Method of Solution for ā. The notations used for the BVP for ā(x) is
deceiving. The parameter κ̄ that appears in the second term of (A.6) involves
an integral of some function of the unknown ā(x). As such the BVP is for an
integro-differential equation (rather than an ODE) for the unknown ā(x). While
a single pass algorithm is possible for this problem (see [12]), it is less complicated
to use the following rather natural iterative scheme:

(1) Make an initial guess R̄b0 for R̄b and solve the BVP problem for the resulting
ODE for ā(x) to get ā0(x) for that initial iterate for the robustness index.

(2) Use (32) in the form

(A.8) R̄b(k+1) =
1

b̄h

√

∫ 1

0

[b̄e(x; R̄bk)− b̄1(x)]2dx.

to determine the robustness index for the solution ā0(x). Denote the result
by R̄b1. In (A.8), b̄e(x; R̄bk) is given by (A.5) in terms of āe(x; R̄bk) which
is the solution of the BVP for the available robustness index R̄bk and b̄1(x)
the wild-type signaling gradient (corresponding to e = 1 and c = 0).

(3) Obtain the solution of the BVP for the new iterate R̄b1 to get a new solution
ā1(x) and repeat the process.

(4) In general, having āk(x), from R̄bk, use (A.8) to calculate a new iterate
for R̄b until the solution converges (with the issue of convergence discussed
previously in [12]).

Figure 5. Signaling Gradients with Nonlocal Uniform Feedback
on Receptor Synthesis: From top down, the curves are 1) b̄e(x) for
e = 2 without feedback (c = 0), 2) steady state feedback adjusted
LRO approximation (with e = 2, c = 4); 3) steady state feedback
adjusted numerical solution (with e = 2, c = 4), and 4) wild-type
signaling gradient b̄1(x) (with e = 1 and c = 0).

A.3. Numerical Results. For the example with parameter values given in Table
1, we have for the ectopic case with e = 2 and no feedback, a robustness index value
of 0.39380 (identical to that given earlier in Table 2 and considerably higher than
the acceptable threshold of 0.2). The corresponding robustness indices for feedback
adjusted ectopic gradients for several values of c are given in Table 3 below:

While it seems that robustness may be attained with sufficiently large c, more
relevant to the issue of feedback adjusted signaling gradient shape change of interest
here is seen from the graphs shown in Figure 5 of the corresponding signaling
gradients for c = 4. The third graph from the top in this figure is the numerical
solution for b̄e(x) corresponding to R̄b after 10 iterations. It remains convex while
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Table 3. R̄bk(x) for Steady State Feedback on Receptor Synthesis Rate.

c R̄bk k
0 0.39380 -
1 0.35733 5
2 0.32837 7
4 0.28615 10

the corresponding graph by the Hill’s function type feedback given in Figure 3 is
concave downstream from the local source.
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