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AN AUGMENTED IIM FOR HELMHOLTZ/POISSON

EQUATIONS ON IRREGULAR DOMAINS IN COMPLEX SPACE

SIDONG M. ZHANG AND ZHILIN LI

Abstract. In this paper, an augmented immersed interface method has been developed for

Helmholtz/Poisson equations on irregular domains in complex space. One of motivations of this

paper is for simulations of wave scattering in different geometries. This paper is the first immersed

interface method in complex space. The new method utilizes a combination of methodologies in-

cluding the immersed interface method, a fast Fourier transform, augmented strategies, least

squares interpolations, and the generalized minimal residual method (GMRES) for a Schur com-

plement system, all in complex space. The new method is second order accurate in the L∞ norm

and requires O(N log(N)) operations. Numerical examples are provided for a variety of real or

complex wave numbers.

Key words. Helmholtz equation, complex space, irregular domain, augmented immerse interface

method, fast Poisson solver in complex space.

1. Introduction

In this paper, we consider two-dimensional Helmholtz equations in complex space

on irregular domains,

∂2u

∂x2
+

∂2u

∂y2
+ ku = f(x, y), (x, y) ∈ Ω ⊂ R2,

u(x, y)
∣

∣

∣

∂Ω
= u0(x, y),

u(x, y) : Ω → C; f(x, y) : Ω → C; k ∈ C,

(1)

see Fig. 1 for an illustration, where the domain Ω is a half circle with two parts of

the boundary ∂Ω1 and ∂Ω2. One particular application is numerical simulations of

wave scattering when k ≥ 0 on an uneven surface, see for example, [2, 10] and the

references therein. In reality of the electromagnetic field models, the domains are

discontinuous media with general interfaces and different complex wave numbers

which represents both electric and magnetic charges. The irregularity in the domain

presents extra challenges for researchers and engineers do develop fast and accurate

numerical methods.

One difficulty with the problem is to deal with complex numbers. An intuitive

approach is to separate the problem as the real and imaginary parts. If we define

u = v + iw, k = k1 + k2i, f = f1 + if2, where i =
√
−1 is the imaginary unit, then
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the original partial differential equation (PDE) becomes a system of PDEs

∂2v

∂x2
+

∂2v

∂y2
+ k1v − k2w = f1(x, y),(2)

∂2w

∂x2
+

∂2w

∂y2
+ k2v + k1w = f2(x, y).(3)

It is not straightforward to such a system efficiently. A naive iterative method

between the two system will lead to slow convergence or divergence. While it is

possible to solve the coupled system of PDEs, it is more expensive than to solve it

directly using the original form in complex number space.

u = 0

∆u+ ku = f

Ω = Ω−

R
Ω+ = R \ Ω

∂Ω1

∂Ω2X1 X2

Γ

Figure 1. A diagram of the set-up of the problem. The Helmholtz

equation is defined inside the half circle that is embedded in a

rectangle R. We denote the domain inside R and outside of Ω as

Ω+ = R \ Ω. We also denote the original domain Ω as Ω− for

convenience. The part of boundary ∂Ω1 excluding the two points

X1 and X2 becomes an interface that is denoted as Γ.

Our strategy is to solve the problem directly using complex numbers based on

the augmented immersed interface method (AIIM) [4, 7]. The immersed interface

method [5] is based on Cartesian grid method similar to the immersed boundary

(IB) method [11, 12]. While there may be different methods in the literature, in

this paper, we present a fast second order accurate finite difference method based

on the immersed interface method (IIM) in complex number space.

In our approach, we use an imbedding technique to put the irregular domain Ω

into a rectangular domain R so that a uniform Cartesian mesh can be used, and

a fast Helmholtz/Poisson solver such as one that based on a discrete fast Fourier

transform (FFT) can be utilized. We also extend the source term f(x, y) to the

entire rectangular domain by zero. Then the irregular boundary will become in

interface. We set zero boundary condition at the auxiliary rectangular domain.

Thus the original problem can be treated as an interface problem if we know the

jump conditions in the solution and the flux. We set the jump in the solution as

an augmented variable [u] = Q and let [un] = [ ∂u
∂n

] = 0. The augmented variable

should be chosen such that the Dirichlet boundary condition is satisfied along ∂Ω.

The augmented variable has co-dimension one compared with that of the solution.
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If we can solve the augmented variable in an efficient way, then we can get the

solution to the original problem using one fast Poisson/Helmholtz solver. In this

sense, the augmented approach presented here is similar to a boundary integral

approach in which the source strength is solved through an integral equation. In

our method, while we introduce an augmented variable along the boundary, no

Green function is needed. We use the GMRES method to solve the augmented

variable without explicitly form the coefficient matrix. Each GMRES iteration

involves two main steps: one is to solve the Helmholtz equation on the rectangular

domain with a known augmented variable in the complex number space; the second

step is to use a least square interpolation scheme to compute the residual of the

boundary condition.

This is the first time that the IIM has been developed for problems in complex

space. We have also developed a fast Poisson/Helmholtz solver, and a GMRES

solver in complex space to solve the resulting linear system of equations from the

finite difference discretization, and the Schur complement system of equations, re-

spectively. Our strategy is the same as the augmented immersed interface method

(AIIM) for irregular domains, see for example, [7] except that we need to implement

the AIIM in complex space.

The rest of paper is organized as follows. In the next section. We explain

the problem set up and discretization process. In Section 3, we explain our fast

Poisson/Helmholtz solver suing the ZFFT transformation. In Section 4, we present

some numerical results followed by the conclusion and acknowledgment section.

2. Outline of the algorithm

We use an embedding technique to embed the irregular domain into a large

rectangle so that a fast Poisson solver based the fast Fourier transform (FFT) can

be utilized. We embed the domain Ω into a rectangle R : {(x, y), a ≤ x ≤ b; c ≤
y ≤ d}; and extend the PDE and the source term to the rectangle R:

(4) ∆u+ ku =

{

f(x, y) if (x, y) ∈ Ω−,

0 if (x, y) ∈ Ω+.

Across the interior boundary ∂Ω1, now is denoted as the interface Γ, the jump

conditions are defined as

[u]Γ = Q,(5)

[un]Γ = 0,(6)

where [uΓ] is the jump of the solution of u from Ω+ to Ω− defined as

[u] (X) = lim
x→X,x∈Ω+

u(x)− lim
x→X,x∈Ω−

u(x), x = (x, y), X = (X,Y ),
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and so on, un = ∂u
∂n

is the normal derivative along the normal direction of the

boundary ∂Ω1 pointing outward. Thus, the Helmholtz equation (1) becomes

∆u+ ku =

{

f(x, y) if (x, y) ∈ Ω−,

0 if (x, y) ∈ Ω+,
(7)

[u]Γ = Q, [un]Γ = 0,(8)

u(x, y)|∂Ω = u0(x, y), u(x, y)∂R = u1(x, y),(9)

where ∂Ω = ∂Ω1 ∪ ∂Ω2. Along the bottom of boundary ∂R outside of the domain

Ω, we use a simple smooth extension from u0(Xi, 0) to zero at the two bottom

boundaries of R, i = 1, 2; and set u1(x, y) = 0 along the rest of boundary of

R. Note that the jump conditions are defined in the interior of R excluding two

pointsX1 andX2 where the Dirichlet boundary conditions are defined in prior. The

problem is enlarged by introducing additional augmented boundary variable Q, but

it is worth doing so since we can utilize a fast Poisson on a rectangular domain R.

The idea is that: given a discrete Q, we can solve the Helmholtz equation using

a fast solver; the augmented variable then is updated using the GMRES iteration

unless the boundary condition u(x, y)|∂Ω = u0(x, y) is satisfied.

Let xi = a+ihx, i = 0, 1, · · · ,m, hx = (b−a)/m; and yj = c+jhy, j = 0, 1, · · · , n,
hy = (d− c)/n be a grid. We use a discrete real level set function ϕij to implicitly

define the interior boundary Γ = {(x, y), ϕ(x, y) = 0}. Often ϕ(x, y) ∈ C2(R) is

chosen as the signed distance function for which ‖∇ϕ‖ = 1. With the level set

function, we classify the grid points in R as regular and irregular. At each grid, we

define

ϕmin
ij = min

{

ϕi−1,j , ϕij , ϕi+1,j , ϕi,j−1, ϕi,j+1

}

,(10)

ϕmax
ij = max

{

ϕi−1,j , ϕij , ϕi+1,j , ϕi,j−1, ϕi,j+1

}

.(11)

If ϕmin
ij ϕmax

ij > 0 which means that the level set function does not change sign,

then the grid point (xi, yj) is a regular one; Otherwise the grid point is an irregular

one.

At an irregular grid point xij = (xi, yj) where ϕij ≥ 0 (or ϕij ≤ 0), we numeri-

cally compute the orthogonal projection x∗
ij , corresponding to one of (Xk, Yk)’s on

the interface

x∗
ij = xij + λ

(

pT∇ϕ(xij)
)

+
1

2
λ2pTH(xij)p,(12)

where p = ∇ϕ(xij) is the gradient of ϕ(x, y), and H(xij) is the Hessian matrix of

ϕ(x, y) evaluated at xij . The scale λ is the solution of the quadratic equation such

that ϕ(x∗
ij) = 0, see [7] for the detail. Given a discrete quantity along the interface,

we can interpolate the quantity at the discrete points to get its value, the first and

second order surface derivatives anywhere along the interface. We refer the readers

to Section 11.1.5 in [7] for the details.

The set of orthogonal projections (Xk, Yk), k = 1, 2, · · · , Nb of all irregular grid

points on the interface from a particular side, say Ω− = Ω side, forms a discretiza-

tion of the interface Γ. We refer the reader to Section 1.6.4 in [7] about how to find
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approximate orthogonal projections. Then the discrete augmented variable Qk of

the continuous one Q is defined at those orthogonal projections.

At a point of the interface (X,Y ), the local coordinate system in the normal and

tangential directions is defined as (see Figure 2 for an illustration),

(13)

{

ξ = (x−X) cos θ + (y − Y ) sin θ,

η = −(x−X) sin θ + (y − Y ) cos θ,

where θ is the angle between the x-axis and the normal direction, pointing to

the Ω+ sub-domain. Under such new coordinates system, the interface can be

parameterized as

(14) ξ = χ(η) with χ(0) = 0, χ′(0) = 0.

The curvature of the interface at (X,Y ) is χ′′(0).

θ

ξ

η

(xi, yj)

(Xk, Yk)

Figure 2. A diagram of an irregular grid point (xi, yj), its orthog-

onal projections on the interface (Xk, Yk), and the local coordinates

at (Xk, Yk) in the normal and tangential directions.

If we know the jump in the solution [u] = w and the normal derivative [un] = Q,

then we can have the following jump relations at a point (X,Y ) on the interface

which is necessary to derive the accurate finite difference method.

(15)

[u] = w, [uη] = w′, [uξ] = Q,

[uηη] = −qχ′′ + w′′, [uξη] = w′χ′′ +Q′,

[uξξ] = Qχ′′ − w′′ + [f ] ,

where w′, Q′ and w′′ are the first and second order surface derivatives of w and

Q on the interface, which are all evaluated at (ξ, η) = (0, 0). Here we skip the

derivation which is similar to those derived in equation (3.5) in Section 3.1 in [5, 7]

assuming that [u] = w and [βun] = v are given with β = 1. Note also that we can

express the jump conditions in terms of u+, u+
η , and u+

ξ .
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Once we have the jump relations in the local coordinates, we can get back the

jump relations in the x- and y- directions according to (9.47) in [7]

(16)

[ux] = [uξ] cos θ − [uη] sin θ,

[uy] = [uξ] sin θ + [uη] cos θ,

[uxx] = [uξξ] cos
2 θ − 2[uξη] cos θ sin θ + [uηη] sin

2 θ,

[uyy] = [uξξ] sin
2 θ + 2[uξη] cos θ sin θ + [uηη] cos

2 θ.

For a given augmented variable Q in the discrete form {Qi} = Q, the finite

difference solution is the solution of the following linear system of equations,

(17)

Ui−1,j − 2Ui,j + Ui+1,j

h2
x

+
Ui,j−1 − 2Ui,j + Ui,j+1

h2
y

+ kUi,j

=

{

fij if xij is regular,

fij + Sij if xij is irregular,

where Sij ∈ C are correction terms at irregular grid points to offset the discontinu-

ities in the jump of the solution and the normal derivative. For example, assume

the interface cuts the grid line y(x) = yj in the interval (xi−1, xi+1), say at (x∗
ij , yj),

with x∗
ij = xi + αx

ij h, 0 ≤ |αx
ij | < 1. Without lost of generality, we assume that

(xi, yj) ∈ Ω−. We discretize the uxx to get

u−
xx(xi, yj) ≈

Ui−1,j − 2Ui,j + Ui+1,j − Cx
ij

h2
,(18)

where the correction term Cx
ij is

Cx
ij = [u] + [ux]

(

1− |αx
ij |
)

h+ [uxx]
(1− |αx

ij |)2h2

2
.(19)

Similarly, we can discretize uyy if the interface cut through (yj−1, yj−1). We refer

the reader to [7] about how to determine the correction terms. The only difference

here is that we use the complex number space. In the matrix vector form, the

discretization can be written as

(20) A11U+A12Q = F

for some sparse matrices A11 and A12. Note that A11 is the discrete Helmholtz in

the complex space. Note also that to get the vector A−1
11 F requires one call to a

fast Helmholtz solver in complex space. We will explain our fast Helmholtz solver

in the next section.

The augmented variable Q, or Q in discrete form, should be chosen so that

the solution u satisfy the boundary condition. At every approximate orthogonal

projections of all irregular grid points on the interface, we use the same least squares

interpolation described in Section 4 in [6] to interpolate the boundary condition

u(x, y)|Γ = u0(x, y).

At one orthogonal projection Xk = (Xk, Yk) corresponding to an irregular grid

point (xi, yj), the second order accurate least squares interpolation scheme approx-

imating u(x, y)|Γ = u0(x, y) can be written as
∑

|xij−Xk|≤δh

γijUij + Lk (W,Q) = 0(21)
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where δh is a parameter of 2h ∼ 3h, Lk stands for a linear relation of its augmenters,

the discrete form of w(X) and q(X). The consistency condition requires that
∑

|xij−Xk|≤δh

γij = 1.(22)

Note that the interpolation coefficients should depend on the index k as well, we

omit it for simplicity of notations. In the matrix-vector form, the interpolation can

be written as

(23) A21U+A22Q = F2.

If we combine (20) and (23), we can get the Schur complement system for Q which

has co-dimension one as that of U,

(24)
(

A22 −A21A
−1
11 A12

)

Q = F2 −A21A
−1
11 ,F.

or

SQ = Fs, S =
(

A22 −A21A
−1
11 A12

)

, Fs = F2 −A21A
−1
11 .

Note that the matrix S is anNb byNb matrix, andQ ∈ CNb which has co-dimension

one compared with that of U . In implementation, we do not form those matrices

explicitly since we use the GMRES method in the complex number space to solve

the Schur complement system. Each GMRES iteration requires one call to the

fast Helmholtz solver; and the interpolation scheme to compute the residual of the

boundary condition. If we define the residual vector as

(25) R(Q) =
(

A22 −A21A
−1
11 A12

)

Q− Fs = Ub(Q)− u0(X),

where Ub(Q) is the vector from the interpolation of the solution from grid points

xij to the interface Xk, u0(X) is the boundary condition at those Xk’s, then the

right hand side vector of the Schur complement is

R(0) =
(

A22 −A21A
−1
11 A12

)

0− Fs = −Fs = u0(X)−Ub(0).

The matrix-vector multiplication of SQ needed for the GMRES iteration given Q

is obtained by first solving the interface problem given Q to get U(Q), then the

interpolation scheme to get the solution at Ub(Q).

SQ = R(Q)−R(0) = Ub(Q)− Ub(0).

We refer the readers to [7] for the details.

3. ZFFT methods for solving two dimensional Poisson/Helmholtz Equa-

tion in Rectangular Domains

The ZFFT is referred to the Fast Fourier transform (FFT) in complex space.

The Fast Fourier transform (FFT) method for solving a two dimensional Poisson

equation was first introduced by Cooley and Tukey [3] in 1965. It was focused on

squared domains with uniformed meshes. In 1984, Swarztrauber further developed

the fast Poisson/Helmholtz solvers based on FFT for rectangular domains [14]. The

fast Poisson solver based on FFT has the optimal operation count that only requires

O(N logN)(N = mn) operations.

It is well known that the condition number of the resulting linear system of

equation for the Poisson equation is O(mn), and even bigger for Helmholtz equation
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when k ≥ 0. Thus for reasonable accuracy, double precision is needed. It is not

so easy to find available fast Poisson/Helmholtz solver based on FFT in double

precision for complex numbers. Below we explain our fast Poisson/Helmholtz solver

based on FFT.

For simplicity, we assume that hx = hy = h. For general situations, we refer the

readers to [15]. The ZFFT method is used to solve the liner system of equations

(26)
Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j−1 − 4Ui,j

h2
+ kUi,j = fij ,

i = 1, · · · ,m; j = 1, · · · , n in complex space, here fij has different meaning com-

pared the f(x, y) in (1). In the matrix-vector form, we can re-write the system

above as,

(27) TmU + UTn + h2kU = h2F,

where

(28)

Tm =

















−2 1 0 · · · 0

1 −2 1 · · · 0

0 1 −2 · · · 0
...

...
...

. . .
...

0 0 0 · · · −2

















m×m

Tn =

















−2 1 0 · · · 0

1 −2 1 · · · 0

0 1 −2 · · · 0
...

...
...

. . .
...

0 0 0 · · · −2

















n×n

By the discrete Fourier transform, Tr = V −1
r DrVr, r = m,n, we have

(29) V −1
m DmVmU + UV −1

n DnVn + h2kU = h2F,

where Vr = (s
(r)
i.j )r,r, s

(r)
i.j = sin( 2πij

2(r+1) ), and

(30) Dr =













λ
(r)
1 0 · · · 0

0 λ
(r)
2 · · · 0

...
...

. . .
...

0 0 · · · λ
(r)
r













, λ
(r)
i = −4 sin2(

iπ

2(r + 1)
), i, j = 1, · · · , r.

Note that V has another nice property,

(31) V −1
r =

2

r + 1
Vr.

Multiplying Vm from left and V −1
n from right to both sides of the (29), we have

(32) DmVmUV −1
n + VmUV −1

n Dn + h2kVmUV −1
n = h2VmFV −1

n .

We define

(33) U = VmUV −1
n = (uij)m,n; and F = h2VmFV −1

n = (f ij)m,n,

and substitute (33) into (32) to get

(34) DmU + UDn + h2kU = F .

Since Dm and Dn in (34) are diagonal, we solve (34) for U which yields,

(35) U i,j =
F i,j

λ
(m)
i + λ

(n)
j + h2k

, i = 1, · · · ,m; j = 1, · · · , n.
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Applying the discrete inverse Fourier transform, we get

(36) U = V −1
m UVn.

Since m is different from n, we need to construct two different sets of discrete

Fourier transform in (33) and (36). When the FFT solver is needed repeatedly, like

in our application in solving the Helmholtz equation on irregular domains, we store

those coefficients and re-use them rather re-constructing them every time.

3.1. Algorithm Summary. Here is the outline of the fast Fourier transform

(FFT) in complex space.

Step 1. Perform the discrete Fourier transform on F to get

(37) F = h2VmFV −1
n =

2h2

n+ 1
VmFVn.

Step 2. Compute the intermediate solution U :

(38) ui,j =
fi,j

λ
(m)
i + λ

(n)
j + h2k

, i = 1, · · · ,m; j = 1, · · · , n,

where λ
(m)
i = −4 sin2( iπ

2(m+1) ) and λ
(n)
j = −4 sin2( jπ

2(n+1) ).

Step 3. Perform the inverse discrete Fourier transform on U to get

(39) U = V −1
m UVn =

2

m+ 1
VmUVn.

3.2. Efficiency Analysis. We can see that the cost of Step 2 above is about

3 × m × n operations; and Step 1 and Step 3 seem to require a triple matrix

multiplication. If we did use a straightforward matrix multiplication, then the cost

would be m2n +mn2 flops, which is O(m3) assuming m ∼ n. However, the triple

matrix multiplication actually represents the discrete Fourier transform. Thus,

with the FFT, the computation cost of each column of a m× n matrix is reduced

to (m2 log2 m), see [1], and the cost of each row of a m×n matrix is log2(n×3n/2).

Therefore, the total computing cost for a m× n matrix is O(mn log(mn)).

4. Numerical Examples

We have performed a number of numerical experiments using the proposed Aug-

mented Immersed Interfaced Method in complex space (AIIMC). The results con-

firmed that the AIIMC is second order accurate for Helmholtz/Poisson equations in

complex space on irregular domains. We present some numerical example with the

same analytic solution but with three different geometries (boundary) and various

wave number k. More examples can be found in [15]. One of the boundaries is the

half circle whose level set function is

ϕ(x, y) =
√

x2 + y2 − 0.5, y ≥ 0.

The second one is the half oval whose level set function is

ϕ(x, y) =
x2

a20
+

y2

b20
− 1, y ≥ 0.
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The third one is the half flower petal whose level function is

ϕ(x, y) = min {ϕ1(x, y), ϕ2(x, y)} ,

where

ϕ1(x, y) =
x2

a20
+

y2

b20
− 1, ϕ2(x, y) =

x2

b20
+

y2

a20
− 1, y ≥ 0,

see Fig. 3 for all the geometries. In computation, we set a0 = 0.5 and b0 = 0.25.
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Figure 3. Irregular domains with a half circle boundary (upper

left), a half oval boundary (upper right), and a half flower petal

boundary (the bottom plot). For the middle and right figures, we

set a0 = 0.5 and b0 = 0.25.

Table 1. The grid refinement analysis for the half circle boundary.

k = 100i k = 100 k = 100 + 100i

Mesh Error Rate Error Rate Error Rate

32 1.9172309E-02 1.3101805E-01 2.8496815E-02

64 4.9807631E-03 1.94 2.1360192E-02 2.62 7.1232807E-03 2.00

128 1.3884691E-03 1.84 6.3771377E-03 1.74 1.9176186E-03 1.89

256 3.4969866E-04 1.99 1.4476327E-03 2.14 4.7597509E-04 2.01

512 8.8140329E-05 1.99 3.6014252E-04 2.01 1.1939369E-04 2.00

Convergence Order 1.94 2.09 1.97

k = 0 k = 10 + 10i k = 1 + 2i

Mesh Error Rate Error Rate Error Rate

32 4.2454093E-02 4.2454093E-02 4.7394051E-02

64 1.0469232E-02 2.02 1.0469232E-02 2.02 1.1685877E-02 2.02

128 2.6134649E-03 2.00 2.6134649E-03 2.00 2.9153959E-03 2.00

256 7.3696011E-04 1.83 7.3696011E-04 1.83 7.7192953E-04 1.92

512 1.8364497E-04 2.00 1.8364497E-04 2.00 1.9422000E-04 1.99

Convergence Order 1.95 1.95 1.98

We selected the true solution as u(x, y) = ex cos y, a genuine non-linear function.

The source term is determined from the true solution according to f(x, y) = uxx +
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Table 2. The grid refinement analysis for the half oval boundary.

k = 100i k = 100 k = 100 + 100i

Mesh Error Rate Error Rate Error Rate

32 1.3909343E-02 1.3494268E-02 2.1417184E-02

64 3.5219551E-03 1.98 3.4273603E-03 1.98 5.1010118E-03 2.07

128 1.1136624E-03 1.66 1.0692560E-03 1.68 1.5781984E-03 1.69

256 3.9142595E-04 1.51 2.7907968E-04 1.94 5.4499299E-04 1.54

512 9.8978365E-05 1.98 7.4918455E-05 1.90 1.3846264E-04 1.98

Convergence Order 1.74 1.86 1.78

k = 0 k = 10 + 10i k = 1 + 2i

Mesh Error Rate Error Rate Error Rate

32 4.2345275E-02 6.3370572E-02 4.9557268E-02

64 1.0527419E-02 2.01 1.6014427E-02 1.99 1.2323084E-02 2.01

128 2.6216757E-03 2.01 4.0061370E-03 2.00 3.0667723E-03 2.01

256 6.5430825E-04 2.00 9.9966997E-04 2.00 7.6546386E-04 2.00

512 1.6348735E-04 2.00 2.4947955E-04 2.00 1.9119254E-04 2.00

Convergence Order 2.00 2.00 2.00

Table 3. The grid refinement analysis for the flower petal boundary.

k = 100i k = 100 k = 100 + 100i

Mesh Error Rate Error Rate Error Rate

32 1.7045674E-02 1.1645818E-01 2.6767626E-02

64 3.5129496E-03 2.28 4.1921111E-02 1.48 4.9592515E-03 2.43

128 1.1078943E-03 1.66 1.5779112E-02 1.41 1.5496942E-03 1.68

256 3.9008112E-04 1.51 3.1673795E-03 2.32 5.4311581E-04 1.51

512 9.8402477E-05 1.99 8.5726590E-04 1.88 1.3750733E-04 1.98

Convergence Order 1.80 1.79 1.84

k = 0 k = 10 + 10i k = 1 + 2i

Mesh Error Rate Error Rate Error Rate

32 5.2950678E-02 7.0444768E-02 5.9067049E-02

64 1.2893373E-02 2.04 2.1849600E-02 1.69 1.4873880E-02 1.99

128 4.8007356E-03 1.43 7.1862374E-03 1.60 5.2856641E-03 1.49

256 6.5230164E-04 2.88 1.0328548E-03 2.80 7.3415854E-04 2.85

512 4.5758565E-04 0.52 6.6852508E-04 0.62 5.0220057E-04 0.55

Convergence Order 1.80 1.78 1.81

Table 4. Efficiency analysis of the new augmented IIM for com-

plex space: The number of GMRES iterations without any precon-

ditioning. (a) the half circle boundary; (b) the half oval boundary;

(c) the flower petal boundary. Note that, the number of iterations

is almost independent of the meshes with a possible logN factor.

(a) the half circle boundary.

Mesh k = 100i k = 100 k = 100 + 100i k = 0 k = 10 + 10i k = 1 + 2i

32 9 14 10 8 8 9

64 9 12 9 7 7 8

128 9 12 10 8 8 9

256 9 12 10 9 9 8

512 9 12 10 9 9 9

(b) The half oval boundary.

Mesh k = 100i k = 100 k = 100 + 100i k = 0 k = 10 + 10i k = 1 + 2i

32 9 10 11 8 10 9

64 9 12 10 7 9 8

128 8 12 10 9 10 9

256 8 11 10 9 10 8

512 8 12 10 9 10 9

(c) The flower petal boundary.

Mesh k = 100i k = 100 k = 100 + 100i k = 0 k = 10 + 10i k = 1 + 2i

32 10 11 12 11 12 12

64 9 11 10 11 11 11

128 14 16 15 15 16 15

256 10 13 11 13 13 12

512 17 17 15 18 19 18
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uyy + ku. We check the convergence order of the method using the grid refinement

analysis. The errors are defined in the L∞ norm,

(40) En = max
(xi,yj)∈Ω−

|Uij − u(xi, yj)| ,

where Uij is the numerical solution, u(xi, yj) is the true solution, and n is the mesh

size with m/n being a constant. We double the mesh size for the grid refinement

analysis by doubling the mesh every time. Thus the convergence rate is

Rate = log2
‖En‖∞
‖E2n‖∞

.

In Table 1-3, we show the errors with different wave numbers, mesh sizes; and

boundaries. The first column is the mesh size m assuming m = 2n. The second,

fourth, and sixth columns are the infinity errors measuring at all grid points inside

the domain (ϕij ≤ 0. The third, fifth, and seventh columns are the convergence

order in the infinity norm. The numerical results clearly indicated second order

accuracy for the computed solution. In Table 4, we list number of iterations of

the GMRES method which is nearly independent of the mesh size and the wave

number except a factor perhaps of | log h|.

5. Conclusions and acknowledgement

This paper has extended the IIM and the augmented IIM for irregular domains

to two dimensional Helmholtz/Poisson equations in complex space.

In the process, we have achieved the following: (1). We have developing a new

two-dimensional fast Fourier transform in complex space to solve Helmholtz/Poisson

equations on rectangular domains. This method is second order accurate with re-

spect to the mesh size with O(N logN) operations. (2). We have extended and

analyzed the Immersed Interface Method for two-dimensional Helmholtz/Poisson

equations in complex number space with singularities. (3). We have extended the

augment IIM for the Helmholtz/Poisson equation on irregular domains to complex

space which involves a least squares interpolation, the Schur complement, and the

GMRES iteration.
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