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A POSTERIORI ERROR ESTIMATES OF FINITE VOLUME

ELEMENT METHOD FOR SECOND-ORDER QUASILINEAR

ELLIPTIC PROBLEMS

CHUNJIA BI AND CHENG WANG∗

Abstract. In this paper, we consider the a posteriori error estimates of the finite volume element
method for the general second-order quasilinear elliptic problems over a convex polygonal domain
in the plane, propose a residual-based error estimator and derive the global upper and local
lower bounds on the approximation error in the H1-norm. Moreover, for some special quasilinear
elliptic problems, we propose a residual-based a posteriori error estimator and derive the global
upper bound on the error in the L2-norm. Numerical experiments are also provided to verify our
theoretical results.
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1. Introduction

The finite volume element method (FVEM, also called finite volume method
or covolume method in some literature) is a class of important numerical tools for
solving differential equations, especially for those arising from physical conservation
laws including mass, momentum, and energy. Because this method possesses local
physical conservation property, which is crucial in many applications, it is popular
in computational fluid mechanics. In the past several decades, many researchers
have studied this method extensively and obtained some important results. We
refer to monograph [30] for the general presentation of this method, and to [3, 10,
11, 12, 13, 14, 15, 16, 17, 18, 22, 23, 26, 27, 28, 29, 31, 32, 35, 36, 38, 39, 40, 41, 42]
and references therein for details.

In this paper, we study the a posteriori error estimates of the finite volume
element method for the second-order quasilinear elliptic boundary value problems

{
Lu = −∇ · F (x,∇u) + g(x, u,∇u) = 0, in Ω,

u = 0, on ∂Ω,
(1)

where Ω is a convex polygonal domain in R
2 with the boundary ∂Ω. We assume

that F (x, z) : Ω×R
2 → R

2 and g(x, y, z) : Ω×R
1×R

2 → R
1 are smooth functions

and that (1) has a solution u ∈ H1
0 (Ω) ∩W 2,r(Ω) for some r > 2. The smoothness

requirements on those functions will be given in detail later.
There are some important numerical results available for (1). We refer the reader

to [20, 33, 37] for the finite element method and to [25] for the hp-discontinuous
Galerkin methods.
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Until now, the finite volume element method for the linear elliptic problems has
been well understood. However, there are very few works related to the nonlinear
elliptic problems. To the best of our knowledge, the authors of [5, 6, 14, 29] studied
the finite volume element method and developed some a priori error estimates only
for the following quasilinear elliptic problems

−∇ · (λ(u)∇u) = f(x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω,(2)

where λ is a smooth scalar function. Recently, Bi and Ginting [8] considered the
finite volume element method for (1), proved the existence and uniqueness of the
finite volume element solutions under the assumption u ∈ W 2,r(Ω), r > 2, where r
may be close to 2, and derived the a priori error estimates in the H1-, L2-, W 1,∞-
and L∞-norms.

Compared with the relatively mature a posteriori error estimates of the finite
element method, the a posteriori error analysis of the finite volume element method
is still under development, and until now only a few results have been obtained. We
mention [12, 28] for the linear elliptic problems. However, for the nonlinear elliptic
problems, there are only [4] and [7] available. The authors of [4, 7] established
the residual-based a posteriori error estimates of the finite volume element method,
respectively, for (2) and

−∇ · (A(u)∇u) = f(x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω,(3)

where A(u) is a smooth and bounded uniformly positive definite matrix.
As a subsequent work of [8], in this paper, we study the a posteriori error esti-

mates of the finite volume element method for (1) and propose a natural and com-
putationally easy residual-based H1-norm a posteriori error estimator. Under two
assumptions that u ∈ W 2,r(Ω), r > 2, and the mesh parameter is sufficiently small,
we derive the global upper bound and local lower bounds on the error. Moreover,
for some special problems (1) which satisfy DzzF = 0 and Dzzg = 0, we propose
a residual-based L2-norm a posteriori error estimator and derive the global upper
bound on the error. We point out that the two assumptions above are reasonable,
which guarantee the existence of the finite volume element approximations of (1),
see [8] for details.

In the present work, for the sake of simplicity, we focus our attention on the
quasilinear problems on a polygonal domain, which is the same as those in [20,
33, 37]. Smooth boundaries are important for many nonlinear problems as even
theoretical results are not always available on polygonal domains. However, the
proper treatment of the curved boundary is somewhat technical (see [21] for details)
and we don’t wish to clutter our presentation.

The organization of this paper is as follows. In section 2, we introduce some
notation, formulate the finite volume element method for (1), and give some lemmas
used in the subsequent analysis. In section 3, we propose a residual-based H1-norm
a posteriori error estimator of the finite volume element method for (1) and derive
the global upper bound and local lower bounds on the error. In section 4, for
some special problems (1) which satisfy DzzF = 0 and Dzzg = 0, such as Bratu’s
equation and some nonlinear eigenvalue equations, we propose a residual-based L2-
norm a posteriori error estimator and derive the global upper bound on the error.
In section 5, we provide two numerical experiments that confirm our theoretical
findings in this paper. Finally, in Section 6, we summarize the main results of this
paper and draw some conclusions.
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Throughout this paper, C, with or without subscripts, denotes a generic positive
constant independent of the mesh parameter and may be dependent on the exact
solution of (1) and different at its different occurrences.

2. Preliminaries

2.1. Quasi-linear elliptic problems. For integer m ≥ 0 and real number 1 ≤
p ≤ ∞, we employ the standard notation for the Sobolev spaces Wm,p(Ω), with the
norm || · ||m,p,Ω and the seminorm | · |m,p,Ω [9, 19]. In order to simplify the notation,
we denote Wm,2(Ω) by Hm(Ω) and skip the index p = 2 and Ω whenever possible,
i.e., we will use ||u||m,p,Ω = ||u||m,p, ||u||m,2,Ω = ||u||m and ||u||0 = ||u||. The
same convention is used for the seminorms as well. In addition, the space H1

0 (Ω)
is defined, as usual, by H1

0 (Ω) = {v ∈ H1(Ω)|v = 0 on ∂Ω}. In what follows, (·, ·)
denotes the L2(Ω) inner product.

We assume that the functions Fi(x, z), i = 1, 2 and g(x, y, z) are twice continu-
ously differentiable with all the derivatives through second order being bounded,
i.e., there exists a constant β > 0 such that

|DFi|+ |D2Fi|+ |Dg|+ |D2g| ≤ β, i = 1, 2.(4)

Further, for any ω ∈ W 1,∞(Ω), we denote

a(ω) = DzF (x,∇ω) ∈ R
2×2,(5)

c(ω) = Dzg(x, ω,∇ω) ∈ R
2, d(ω) = Dyg(x, ω,∇ω) ∈ R

1.(6)

The linearized operator L′ at ω (namely the Fréchet derivative of L at ω) is then
given by

L′(ω)v = −∇ · (a(ω)∇v) + c(ω) · ∇v + d(ω)v.

As in [37], the basic assumptions are, first of all, for the solution u of (1),

(7) α0|ξ|2 ≤ ξT a(u)ξ, ∀ξ ∈ R
2, x ∈ Ω,

for some constant α0 > 0, and secondly L′(u) : H1
0 (Ω) → H−1(Ω) is an isomor-

phism. As a result of these assumptions, u must be an isolated solution of (1).
A simple sufficient condition for the assumption that L′(u) is an isomorphism is
d(u) ≥ 0, see [37] for details.

Problems (1) arise in several areas of applications. Keeping in mind the as-
sumption u ∈ W 2,r(Ω), r > 2, from the Sobolev embedding inequality ||u||1,∞ ≤
C||u||2,r ≤ C1, we know that the following quasi-linear elliptic problems can be
treated with the technique presented in this paper.

1. The equation of prescribed mean curvature:

F (x,∇u) =
(
1 + |∇u|2

)− 1
2 ∇u, g(x, u,∇u) = g(x).

2. The subsonic flow of an irrotational, ideal, compressible gas:

F (x,∇u) =

[
1− γ − 1

2
|∇u|2

]1/(γ−1)

∇u, g(x, u,∇u) = g(x), γ > 1.

3. Bratu’s equation:

F (x,∇u) = ∇u, g(x, u,∇u) = λeu, λ > 0.

4. A nonlinear eigenvalue problem:

F (x,∇u) = ∇u, g(x, u,∇u) = λu− uκ, λ > 0, κ ≥ 2.
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2.2. Finite volume element method. For the polygonal domain Ω, we consider
a conforming triangulation Th consisting of closed triangle element K such that
Ω = ∪K∈Th

K, where h = maxK∈Th
{hK} and hK is the diameter of the triangle K.

We assume that Th is shape regular [9, 19], that is, there exists a positive constant
C such that |hK | ≤ CρK , ∀K ∈ Th, where ρK is the diameter of the largest ball
contained in K. We denote by E0

h, Nh and N0
h the sets of all interior edges, all

vertices and all interior vertices of Th, respectively.
In order to formulate the finite volume element method for solving (1), we

first introduce a dual mesh T ∗
h based on Th whose elements are called the con-

trol volumes. In this paper, we construct the control volume in the same way as in
[5, 6, 14, 22, 26, 30]. Let QK be the barycenter of an element K ∈ Th. We connect
QK with line segments to the midpoints of the edges of K, thus partitioning K into
three quadrilaterals Kp, q ∈ Nh(K), where Nh(K) is the set of the vertices of K.
Then with each vertex p ∈ Nh we associate a control volume K∗

p , which consists of
the union of the subregions Kp, sharing the vertex p. Finally, we obtain a group of
control volumes covering the domain Ω, which is called the dual mesh T ∗

h of Th. We
call the control volume mesh T ∗

h regular or quasi-uniform, if there exists a positive
constant C > 0 such that

C−1h2 ≤ meas(K∗
p ) ≤ Ch2, ∀K∗

p ∈ T ∗
h .

The barycenter-type dual partition can be introduced for any triangulation Th and
leads to relatively simple calculations. In addition, if the triangulation Th is quasi-
uniform, then the dual partition T ∗

h is also quasi-uniform.
We define the standard linear finite element space Sh as

Sh = {vh ∈ C(Ω) : vh|K is linear for all K ∈ Th and vh|∂Ω = 0},

and its dual volume element space S∗
h by

S∗
h = {vh ∈ L2(Ω) : vh|K∗

p
is constant for all K∗

p ∈ T ∗
h and vh|K∗

p
= 0, ∀p ∈ ∂Ω}.

Let I∗h : C(Ω) ∩ H1
0 (Ω) → S∗

h be the piecewise constant interpolation operator
defined by

I∗hvh =
∑

p∈N0
h

vh(p)χK∗
p
,

where χK∗
p
is the characteristic function of the control volume K∗

p .

The finite volume element solution of (1) is based upon the conservation property

−
∫

∂K∗
p

F (x,∇u) · nds+
∫

K∗
p

g(x, u,∇u)dx = 0,

which is obtained from integrating (1) over the control volume K∗
p and applying

Green’s formula. Here and elsewhere n is the outer-normal vector of the associated
integration domain. The finite volume element method is to find uh ∈ Sh satisfying

−
∫

∂K∗
p

F (x,∇uh) · nds+
∫

K∗
p

g(x, uh,∇uh)dx = 0, ∀K∗
p ∈ T ∗

h .(8)

For the purpose of analysis, we express (8) in a variational formulation with the
help of the interpolation operator I∗h. This is done by multiplying (8) by vh(p) and
sum over all p ∈ N0

h . Now we have the formulation as to find uh ∈ Sh such that

ah(uh, I
∗
hvh) = 0, ∀vh ∈ Sh,(9)
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where for every uh, vh ∈ Sh,

ah(uh, I
∗
hvh) = −

∑

p∈N0
h

vh(p)

∫

∂K∗
p

F (x,∇uh) · nds+
∑

p∈N0
h

vh(p)

∫

K∗
p

g(x, uh,∇uh)dx.

At this stage, we list several lemmas that are used in the subsequent analysis.
Lemma 2.1. ([13, 35]) For K ∈ Th and E an edge of K, each vh ∈ Sh satisfies

the following:
∫

K

(vh − I∗hvh)dx = 0 and

∫

E

(vh − I∗hvh)ds = 0,

||vh − I∗hvh||0,q,K ≤ ChK |vh|1,q,K and ||vh − I∗hvh||0,q,E ≤ Ch
1− 1

q

K |vh|1,q,K ,

where 1 ≤ q ≤ ∞.
The following lemma gives the existence and uniqueness of finite volume element

solution of (9), which is proved in [8].
Lemma 2.2.([8]) For sufficiently small h, the finite volume element equation

(9) has a solution uh satisfying

||u− uh||1,∞ ≤ Ch1− 2
r | lnh|(1 + |u|2,r).(10)

Furthermore there exists a constant ̺ > 0 such that uh is the only solution satisfying
||u− uh||1,∞ ≤ ̺.

The following error estimate in the H1-norm will be used in this paper.
Lemma 2.3. ([8]) Assume that u ∈ W 2,r(Ω), r > 2, and uh ∈ Sh are the

solutions of (1) and (9), respectively, that satisfy (10). Then, for sufficiently small
h, there exists a constant C independent of h such that

||u− uh||1 ≤ Ch|u|2.

Based on Lemma 2.3, we establish the stability of the finite volume element
solution uh in the W 1,∞-norm as follows.

Lemma 2.4. Let u ∈ W 2,r(Ω) ∩ H1
0 (Ω), r > 2, and uh ∈ Sh be the solution of

(1) and (9), respectively. Then, there exists a constant C independent of h such
that

||uh||1,∞ ≤ C||u||2,r.
Proof. Using the triangle inequality, we write

||uh||1,∞ ≤ ||uh − uI ||1,∞ + ||uI ||1,∞,(11)

where uI ∈ Sh is the interpolant of u. In view of the interpolation theory [19] and
the Sobolev imbedding theorem [9], ||u||1,∞ ≤ C||u||2,r, we have

||uI ||1,∞ ≤ ||u − uI ||1,∞ + ||u||1,∞
≤ C||u||2 + C||u||2,r ≤ C||u||2,r.(12)

Using the inverse inequality [9, 19], Lemma 2.3 and the interpolation theory, we get

||uh − uI ||1,∞ ≤ Ch−1||uh − uI ||1
≤ Ch−1(||uh − u||1 + ||u− uI ||1)(13)

≤ C||u||2.

Combining (11), (12) with (13) gives the desired result. �

The following error estimate in the W 1,∞-norm has been proven in [8].
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Lemma 2.5. ([8]) Assume that u ∈ W 2,r(Ω), r > 2, and uh ∈ Sh are the
solutions of (1) and (9), respectively. Then, for sufficiently small h, there exists a
constant C independent of h such that

||u− uh||1,∞ ≤ Ch1− 2
r | lnh| |u|2,r.

The following trace theorem, proved in [1], will be used in the subsequent anal-
ysis.

Lemma 2.6.([1]) Let E be an edge of K. For each ω ∈ H1(K), there exists a
constant C independent of hE such that

||ω||20,E ≤ C(h−1
E ||ω||20,K + hE ||∇ω||20,K).

3. H1-norm a posteriori error estimator

In this section, we present a residual-based H1-norm a posteriori error estimator
of the finite volume element method for (1) and obtain the computable upper bound
and local lower bounds on the error.

3.1. Global upper bound. As an auxiliary tool, we first introduce the weak
formulation of (1): Find u ∈ H1

0 (Ω) such that

a(u, v) = 0, ∀v ∈ H1
0 (Ω),(14)

where

a(u, v) = (F (x,∇u),∇v) + (g(x, u,∇u), v).(15)

As in [37], we define two parameters δ1 and δ2

δ1 =

{
0, if Fzz(x, z) ≡ 0, gzz(x, y, z) ≡ 0,
1, otherwise,

(16)

and

δ2 =

{
0, if δ1 = 0, gyz(x, y, z) ≡ 0,
1, otherwise.

For fixed ω, we also introduce the following bilinear form (induced by L′(ω))

a′(ω; v, ϕ) = (a(ω)∇v,∇ϕ) + (c(ω) · ∇v + d(ω)v, ϕ).(17)

With above notation, Xu proved the following Lemma 3.1 in [37], which will be
used in our a posteriori error analysis.

Lemma 3.1. ([37]) For any ω, ωh, v ∈ H1
0 (Ω),

a(ωh, v) = a(ω, v) + a′(ω, ωh − ω, v) +R(ω, ωh, v),(18)

where the remainder R, for a given constant M > 0 and the functions ω and ωh

satisfying ||ω||1,∞ + ||ωh||1,∞ ≤ M, satisfies the estimate

|R(ω, ωh, v)| ≤ C(||εh||20,4 + δ1||∇εh||20,4 + δ2||εh∇εh||)||∇v||,(19)

where εh = ω − ωh and the constant C depends on M .
Using the isomorphism of L′(u), we have the following sup condition of the

bilinear form a′(u; ·, ·), see also [32, 37], whose proof can be found in [2].
Lemma 3.2. Assume that u ∈ W 2,r(Ω), r > 2, is the solution of (1). For each

ω ∈ H1
0 (Ω), we have

||ω||1 ≤ C sup
v∈H1

0
(Ω)

a′(u;ω, v)

||v||1
.
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Next, we introduce the jump of a vector-valued function across an interior edge,
which will be used in the definition of the a posteriori error estimators. Let E be
an interior edge shared by elements K+ and K−and q be a vector-valued function,
that is smooth inside each element K±. q± denote the traces of q on E taken from
within the interior of K±, respectively. Then, the jump of q on E is given by,

[q] = q+ · nK+ + q− · nK− ,

where nK± denote the unit outward normal vector of ∂K±, respectively.
The following lemma gives a representation of the error u − uh, which plays a

key role in the a posteriori error analysis.
Lemma 3.3.Assume that u and uh are the solutions of (1) and (9), respectively.

Then for the error eh = u− uh and any v ∈ H1
0 (Ω), we have

a′(u; eh, v) =
∑

K∈Th

(
∇ · F (x,∇uh)− g(x, uh,∇uh), v − I∗hv

I
)
K

−
∑

E∈E0
h

([F (x,∇uh)], v − I∗hv
I)E +R(u, uh, v)

(20)
= Π1 +Π2 + Π3,

where vI ∈ Sh is the interpolant of v.
Proof. Setting ω = u, ωh = uh in (18) and noting u, uh ∈ H1

0 (Ω), we have

a′(u; eh, v) = a′(u;u− uh, v) = (a(u, v)− a(uh, v)) +R(u, uh, v).(21)

Since v ∈ H1
0 (Ω), from (14), we have a(u, v) = 0. Then, from this identity and (15),

we have

a(u, v)− a(uh, v) = −a(uh, v)

= −a(uh, v − vI)− a(uh, v
I)

=
(
−(F (x,∇uh),∇(v − vI))− (g(x, uh,∇uh), v − vI)

)
(22)

−a(uh, v
I)

= Σ1 +Σ2.

By Green’s formula,

−(F (x,∇uh),∇(v − vI)) =
∑

K∈Th

(∇ · F (x,∇uh), v − vI)K

−
∑

K∈Th

(F (x,∇uh) · nK , v − vI)∂K .(23)

Then, Σ1 in (22) becomes

Σ1 =
∑

K∈Th

(∇ · F (x,∇uh)− g(x, uh,∇uh), v − vI)K

−
∑

K∈Th

(F (x,∇uh) · nK , v − vI)∂K .(24)

In view of the definition of a(·, ·), we have

a(uh, v
I) =

∑

K∈Th

(F (x,∇uh),∇vI)K +
∑

K∈Th

(g(x, uh,∇uh), v
I)

= I1 + I2.(25)
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Since I∗hv
I is a constant in K ∩K∗

p , p ∈ Nh(K), from Green’s formula, we have

I1 =
∑

K∈Th

∑

p∈Nh(K)

∫

K∩K∗
p

F (x,∇uh) · ∇(vI − I∗hv
I)dx

= −
∑

K∈Th

∑

p∈Nh(K)

∫

K∩K∗
p

∇ · F (x,∇uh)(v
I − I∗hv

I)dx

+
∑

K∈Th

∑

p∈Nh(K)

∫

∂(K∩K∗
p)

F (x,∇uh) · n(vI − I∗hv
I)ds

= −
∑

K∈Th

∑

p∈Nh(K)

∫

K∩K∗
p

∇ · F (x,∇uh)(v
I − I∗hv

I)dx(26)

+
∑

K∈Th

∫

∂K

F (x,∇uh) · n(vI − I∗hv
I)ds

+
∑

K∈Th

∑

p∈Nh(K)

∫

K∩∂K∗
p

F (x,∇uh) · n(vI − I∗hv
I)ds.

Since F (x,∇uh) and vI are continuous inside each K ∈ Th, we obtain

∑

p∈Nh(K)

∫

K∩∂K∗
p

F (x,∇uh) · nvIds = 0.(27)

Noting that vI |E = I∗hv
I |E = 0, E ∈ ∂Ω, from (26) and (27), we have

I1 = −
∑

K∈Th

(∇ · F (x,∇uh), v
I − I∗hv

I)K +
∑

K∈Th

(F (x,∇uh) · n, vI − I∗hv
I)∂K

−
∑

p∈N0
h

vI(p)

∫

∂K∗
p

F (x,∇uh) · nds.(28)

From (9), we know ah(uh, I
∗
hv

I) = 0, i.e.,

−
∑

p∈N0
h

vI(p)

∫

∂K∗
p

F (x,∇uh) · nds+ (g(x, uh,∇uh), I
∗
hv

I) = 0.(29)

Combining (25), (28) with (29) yields

Σ2 = −a(uh, v
I)

=
∑

K∈Th

(∇ · F (x,∇uh)− g(x, uh,∇uh), v
I − I∗hv

I)K(30)

−
∑

K∈Th

(F (x,∇uh) · n, vI − I∗hv
I)∂K .

Using (22), (24) and (30), we get

a(u, v)− a(uh, v) =
∑

K∈Th

(∇ · F (x,∇uh)− g(x, uh,∇uh), v − I∗hv
I)K

−
∑

K∈Th

(F (x,∇uh) · n, v − I∗hv
I)∂K .(31)
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Since v− I∗hv
I is continuous on the interior edges and zero on the boundary edges,

we have
∑

K∈Th

(F (x,∇uh) · n, v − I∗hv
I)∂K =

∑

E∈E0
h

([F (x,∇uh)], v − I∗hv
I)E .(32)

Then, the result of this lemma follows from (21), (31) and (32). �

Motivated by the above lemma, we introduce locally computable quantities that
play a major role in the residual-based a posteriori error analysis.
Definition 3.1. On each K ∈ Th and E ∈ E0

h, define the residual RK and the
jump JE , respectively,

RK = RK(uh) = ∇ · F (x,∇uh)− g(x, uh,∇uh),

JE = JE(uh) = [F (x,∇uh)]E ,

and define the local error estimators

η2R,K = h2
K ||RK ||20,K , η2J,E = hE ||JE ||20,E , η2E =

∑

K∈ωE

η2R,K + η2J,E ,(33)

where ωE is the union of two elements which share the edge E.
The residual-based H1-norm a posteriori error estimator is defined by

η = ηR + ηJ ,(34)

where

ηR =

(
∑

K∈Th

η2R,K

) 1
2

, ηJ =




∑

E∈E0
h

η2J,E





1
2

.(35)

We are now in a position to prove the main result in this subsection. It establishes
a reliable estimate for the error u− uh in the H1-norm.

Theorem 3.4. Assume that u ∈ W 2,r(Ω), r > 2, and uh are the solutions of (1)
and (9), respectively. Then, there exists a constant h1 > 0 such that 0 < h ≤ h1,

||u− uh||1 ≤ Cη.

Proof. In the proof, we will estimate the terms on the right-hand side of (20)
separately. It follows from Cauchy-Schwarz inequality, the interpolation error esti-
mates and Lemma 2.1 that

|Π1| =

∣∣∣∣∣
∑

K∈Th

(RK , v − I∗hv
I)K

∣∣∣∣∣

≤
(
∑

K∈Th

h2
K ||RK ||20,K

) 1
2
(
∑

K∈Th

h−2
K ||v − I∗hv

I ||20,K

) 1
2

≤ CηR

(
∑

K∈Th

h−2
K (||v − vI ||20,K + ||vI − I∗hv

I ||20,K)

) 1
2

(36)

≤ CηR||v||1.
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The estimation of Π2 is obtained using Cauchy-Schwarz inequality, Lemma 2.6,
Lemma 2.1 and the interpolation error estimates in the following calculation

|Π2| ≤
∑

E∈E0
h

||[F (x,∇uh)]||0,E · ||v − I∗hv
I ||0,E

≤



∑

E∈E0
h

hE ||JE ||20,E




1
2

·



∑

E∈E0
h

h−1
E ||v − I∗hv

I ||20,E




1
2

≤ CηJ

(
∑

K∈Th

(h−2
K ||v − I∗hv

I ||20,K + |v − I∗hv
I |21,K)

) 1
2

(37)

≤ CηJ

(
∑

K∈Th

(h−2
K (||v − vI ||20,K + ||vI − I∗hv

I ||20,K) + |v|21,K)

) 1
2

≤ CηJ ||v||1.
Since u ∈ W 2,r(Ω), r > 2, using the Sobolev imbedding theorem [9] and Lemma
2.4, we know that there exists a positive constant K1 such that

||u||1,∞ + ||uh||1,∞ ≤ C||u||2,2+ǫ ≤ K1.

Then, it follows from (19) and Lemma 2.5 that

|Π3| ≤ C(||eh||20,4 + ||∇eh||20,4 + ||eh∇eh||)||∇v||
≤ C(||eh||0,∞||eh||+ ||∇eh||0,∞||∇eh||+ ||∇eh||0,∞||eh||)||∇v||
≤ C||u − uh||1,∞||eh||1||v||1(38)

≤ C1h
1− 2

r | lnh| |u|2,r||eh||1||v||1.
From (20), (36)-(38), we get

a′(u, eh, v)

||v||1
≤ C(ηR + ηJ) + C1h

1− 2
r | lnh| |u|2,r||eh||1.

It follows from Lemma 3.2 that

||eh||1 ≤ C(ηR + ηJ) + C1h
1− 2

r | lnh| |u|2,r||eh||1.(39)

There exists a constant h1 > 0 such that for 0 < h ≤ h1,

C1h
1− 2

r | lnh| |u|2,r ≤
1

2
.(40)

Therefore, the proof completes from (39) and (40). �

3.2. Local lower bound. In this subsection, we derive the local lower bounds on
the error u − uh in the H1-norm. For this purpose, we shall use some properties
of the bubble functions. For each triangle K ∈ Th, denote by λK,1, λK,2, λK,3 the
barycentric co-ordinates. Define the triangle-bubble function bK by

bK =

{
27λK,1λK,2λK,3, on K,

0, on Ω\K.

Furthermore, given two triangles K and K ′ (such that ωE = K ∪K ′) sharing an
interior edge E, we set

bE =





4λK,kλK,j , on K,
4λK′,lλK′,m, on K ′,

0, on Ω\ωE,
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λK,k and λK,j are the barycentric coordinates associated with K with λK,kλK,j = 0
on ∂K\E. The functions λK′,l and λK′,m are such that λK′,lλK′,n = 0 on ∂K ′\E.

Some properties of the bubble functions are collected in the following lemma.
Lemma 3.5. ([34])For each element K ∈ Th and each edge E ∈ E0

h, the functions
bK and bE satisfy the following properties:

(1) suppbK ⊂ K, 0 ≤ bK ≤ 1, and max
x∈K

bK(x) = 1;

∫

K

bKdx =
9

20
|K| ∼ h2

K , ||∇bK ||0,K ≤ Ch−1
K ||bK ||0,K ;

(2) suppbE ⊂ ωE , 0 ≤ bE ≤ 1, and max
x∈ωE

bE(x) = 1;
∫
E
bEds =

2
3hE ,

∫

ωE

bEdx =
1

3
|ωE | ∼ h2

E ; ||∇bE ||0,ωE
≤ Ch−1

E ||bE ||0,ωE
.

The following integral form of the Taylor’s formula for p ∈ R
2 in terms of q ∈ R

2

is used in the subsequent analysis

F (x,p) − F (x,q) = −F̃z(x,q)(q − p),(41)

where

F̃z(x,q) =

∫ 1

0

Fz(x,p
t)dt, pt = q+ t(p− q).(42)

Similarly, the above formula can be defined for the function g as

g(v,p)− g(u,q) = −g̃y(u,q)(u− v)− g̃z(u,q)(q − p),(43)

where

g̃y(u,q) =

∫ 1

0

gy(v
t,pt)dt,(44)

g̃z(u,q) =

∫ 1

0

gz(v
t,pt)dt, vt = u+ t(v − u).(45)

To present the local lower bounds on the error u − uh in the H1-norm, we
introduce the oscillations of the residual RK and the jump JE :

oscR,K = hK ||RK −RK ||0,K , oscJ,E = h
1
2

E ||JE − JE ||0,E ,

where RK is the average of RK over K and JE is the average of JE on E, which
are defined by, respectively,

RK =
1

|K|

∫

K

RK(uh)dx, JE =
1

hE

∫

E

JE(uh)ds.

We denote the total oscillations oscE0
h
by

osc2E0
h
=
∑

E∈E0
h

osc2E , where osc2E =
∑

K∈ωE

osc2R,K + osc2J,E .(46)

Theorem 3.6. Assume that u and uh are the solutions of (1) and (9), respec-
tively. There exists a constant C independent of hK and hE such that

(i). for each K ∈ Th,
hK ||RK ||0,K ≤ C||u− uh||1,K + CoscR,K .
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(ii). for each E ∈ E0
h,

h
1
2

E ||JE ||0,E ≤ C||u− uh||1,ωE
+ CoscJ,E + C

∑

K∈ωE

oscR,K .

Proof. Assertion (i): It follows from triangle inequality that

hK ||RK ||0,K ≤ hK ||RK ||0,K + hK ||RK −RK ||0,K
= hK ||RK ||0,K + oscR,K .(47)

Next, we only estimate hK ||RK ||0,K . By the properties of bK in Lemma 3.5

9

20
||RK ||20,K = (RK , bKRK)K

= (RK , bKRK)K + (RK −RK , bKRK)K .(48)

Using Cauchy-Schwarz inequality and maxx∈K bK(x) = 1, we get

|(RK −RK , bKRK)K | ≤ ||RK −RK ||0,K ||bKRK ||0,K
≤ ||RK −RK ||0,K ||RK ||0,K .(49)

Since bKRK ∈ H1
0 (K) ⊂ H1

0 (Ω), from (14), we have

a(u, bKRK) = 0,(50)

i.e.,

(F (x,∇u),∇(bKRK))K + (g(x, u,∇u), bKRK)K = 0.(51)

By the definition of RK , Green’s formula and (51),

(RK , bKRK)K = (∇ · F (x,∇uh), bKRK)K − (g(x, uh,∇uh), bKRK)K

= −(F (x,∇uh),∇(bKRK))K − (g(x, uh,∇uh), bKRK)K

= (F (x,∇u) − F (x,∇uh),∇(bKRK))K(52)

+(g(x, u,∇u)− g(x, uh,∇uh), bKRK)K

= Q1 +Q2.

It follows from (41) and (43) that

F (x,∇u)− F (x,∇uh) = F̃z(x,∇u)∇(u − uh),(53)

g(x, u,∇u)− g(x, uh,∇uh) = g̃y(x, u,∇u)(u− uh)

+g̃z(x, u,∇u)∇(u− uh),(54)

where F̃z, g̃y and g̃z can be defined by (42), (44) and (45) similarly.
From (4), (53) and (54), Cauchy-Schwarz inequality and Lemma 3.5, we get

|Q1| ≤ C|u − uh|1,K ||∇(bKRK)||0,K = C|u− uh|1,K ||∇bK ||0,K |RK |
≤ Ch−1

K |u− uh|1,K ||bK ||0,K |RK | = Ch−1
K |u− uh|1,K ||bKRK ||0,K(55)

≤ Ch−1
K |u− uh|1,K ||RK ||0,K ,

and

|Q2| ≤ C||u − uh||1,K ||bKRK ||0,K ≤ C||u − uh||1,K ||RK ||0,K .(56)

From (48), (49), (52), (55), (56), we have

||RK ||0,K ≤ Ch−1
K ||u− uh||1,K + C||RK −RK ||0,K ,

i.e.,

hK ||RK ||0,K ≤ C||u − uh||1,K + CoscR,K .(57)
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Then, assertion (i) follows from (47) and (57).
Assertion (ii): By the triangle inequality once more,

h
1
2

E ||JE ||0,E ≤ h
1
2

E ||JE ||0,E + h
1
2

E ||JE − JE ||0,E
= h

1
2

E ||JE ||0,E + oscJ,E .(58)

Next, we only estimate h
1
2

E||JE ||0,E . By the properties of bE in Lemma 3.5

2

3
||JE ||20,E = (JE , bEJE)E

= (JE , bEJE)E + (JE − JE , bEJE)E .(59)

Using Cauchy-Schwarz inequality and maxx∈ωE
bE(x) = 1 to get

|(JE − JE , bEJE)E | ≤ ||JE − JE ||0,E ||bEJE ||0,E
≤ ||JE − JE ||0,E ||JE ||0,E .(60)

Since bEJE ∈ H1
0 (ωE) ⊂ H1

0 (Ω), as in (51), we have

(F (x,∇u),∇(bEJE))ωE
+ (g(x, u,∇u), bEJE)ωE

= 0.(61)

Since bEJE ∈ H1
0 (ωE), by the definition of JE , Green’s formula and (61),

(JE , bEJE)E = ([F (x,∇uh)], bEJE)E

= (F (x,∇uh),∇(bEJE))ωE
+ (∇h · F (x,∇uh), bEJE)ωE

= (F (x,∇uh),∇(bEJE))ωE
+ (g(x, uh,∇uh), bEJE)ωE

+(∇h · F (x,∇uh)− g(x, uh,∇uh), bEJE)ωE
(62)

= (F (x,∇uh)− F (x,∇u),∇(bEJE))ωE

+(g(x, uh,∇uh)− g(x, u,∇u), bEJE)ωE

+(∇h · F (x,∇uh)− g(x, uh,∇uh), bEJE)ωE

= R1 +R2 +R3,

where ∇h · F (x,∇uh) is the function whose restriction to K is ∇ · F (x,∇uh).
Since maxx∈ωE

bE(x) = 1, we get the estimation of ||bEJE ||0,ωE
,

||bEJE ||0,ωE
= ||bE ||0,ωE

|JE | ≤ ChE |JE | ≤ Ch
1
2

E ||JE ||0,E .(63)

Using (53), (4), Cauchy-Schwarz inequality, Lemma 3.5 and (63), we obtain

|R1| ≤ C|u − uh|1,ωE
||∇(bEJE)||0,ωE

= C|u− uh|1,ωE
||∇bE ||0,ωE

|JE |
≤ Ch−1

E |u− uh|1,ωE
||bE ||0,ωE

|JE | = Ch−1
E |u− uh|1,ωE

||bEJE ||0,ωE
(64)

≤ Ch
− 1

2

E |u− uh|1,ωE
||JE ||0,E .

From (54), (4), Cauchy-Schwarz inequality and (63), we have

|R2| ≤ C||u− uh||1,ωE
||bEJE ||0,ωE

≤ Ch
1
2

E ||u − uh||1,ωE
||JE ||0,E .(65)

By Cauchy-Schwarz inequality and (63),

|R3| ≤ ||∇h · F (x,∇uh)− g(x, uh,∇uh)||0,ωE
||bEJE ||0,ωE

≤ Ch
1
2

E ||∇h · F (x,∇uh)− g(x, uh,∇uh)||0,ωE
||JE ||0,E .(66)

Combining (59), (60), (62), (64), (65) with (66) yields

||JE ||0,E ≤ Ch
− 1

2

E ||u − uh||1,ωE
+ Ch

1
2

E ||∇h · F (x,∇uh)− g(x, uh,∇uh)||0,ωE

+||JE − JE ||0,E .(67)
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Multiplying h
1
2

E on the both sides of (67), and applying (58) and assertion (i), we
can obtain assertion (ii). �

Remark 3.1. From Lemma 2.3, we know that the finite volume element method
is of first order in the H1-norm, i.e., ||u − uh||1 ≤ Ch|u|2. In contrast to this
estimate, oscE0

h
is higher order term, which tends to zero faster than O(h), see [12]

for details. Then, from Theorems 3.4 and 3.6, we see that η is a reliable and efficient
a posteriori error estimator of ||u− uh||1.

4. L2-norm a posteriori error estimator: global upper bound

In this section, we propose a residual-based L2-norm a posteriori error estimator
of the finite volume element method for (1) which satisfy DzzF = 0 and Dzzg = 0,
such as Bratu’s equation and nonlinear eigenvalue equation. We use the duality
argument to derive the global upper bound on the approximation error in the L2-
norm.

For this purpose, we introduce the following auxiliary problem: find ω ∈ H1
0 (Ω)

such that

a′(u; v, ω) = (u− uh, v), ∀v ∈ H1
0 (Ω).(68)

By [24], we have the following elliptic regularity estimate

||ω||2 ≤ C||u − uh||.(69)

Definition 4.1. We define the residual-based L2-norm a posteriori error esti-
mator η̃ as

η̃ = η̃R + η̃J ,(70)

where

η̃R =

(
∑

K∈Th

(
h2
K ||RK −RK ||20,K + h4

K ||RK ||20,K
)
) 1

2

,

η̃J =




∑

E∈E0
h

(
hE ||JE − JE ||20,E + h3

E ||JE ||20,E
)




1
2

.

The following Theorem 4.1 gives a reliable estimate for the error in the L2-norm.
Theorem 4.1. Assume that the problems (1) satisfy DzzF = 0 and Dzzg = 0,

u ∈ W 2,r(Ω), r > 2, and uh are the solutions of (1) and (9), respectively. Then,
there exists a constant h2 > 0 such that 0 < h ≤ h2,

||u − uh|| ≤ Cη̃.(71)

Proof. Let v = u − uh = eh in (68), from (20) and the definitions of RK and
JE , we have

||u− uh||2 = a′(u; eh, ω)

=
∑

K∈Th

(RK , ω − I∗hω
I)K −

∑

E∈E0
h

(JE , ω − I∗hω
I)E +R(u, uh, ω)(72)

= T1 + T2 + T3.
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It follows from Lemma 2.1 that

T1 =
∑

K∈Th

(RK , ω − ωI)K +
∑

K∈Th

(RK , ωI − I∗hω
I)K

=
∑

K∈Th

(RK , ω − ωI)K +
∑

K∈Th

(RK −RK , ωI − I∗hω
I)K(73)

= T11 + T12.

Using Cauchy-Schwarz inequality, the interpolation estimate and (69), we get

|T11| ≤
(
∑

K∈T h

h4
K ||RK ||20,K

) 1
2
(
∑

K∈T h

h−4
K ||ω − ωI ||20,K

) 1
2

≤ C

(
∑

K∈T h

h4
K ||RK ||20,K

) 1
2

||ω||2(74)

≤ C

(
∑

K∈T h

h4
K ||RK ||20,K

) 1
2

||u − uh||.

Similarly, from Cauchy-Schwarz inequality, Lemma 2.1 and ||ωI ||1 ≤ C||ω||2 ≤
C||u− uh||, we get

|T12| ≤
(
∑

K∈T h

h2
K ||RK −RK ||20,K

) 1
2
(
∑

K∈T h

h−2
K ||ωI − I∗hω

I ||20,K

) 1
2

≤ C

(
∑

K∈T h

h2
K ||RK −RK ||20,K

) 1
2

||ωI ||1(75)

≤ C

(
∑

K∈T h

h2
K ||RK −RK ||20,K

) 1
2

||u− uh||.

Combining (74), (75) with (73) yields

|T1| ≤ Cη̃R||u− uh||.(76)

Using the technique to estimate T1, we can bound the second term on the right-hand
side of (72) in which Lemma 2.6 is used

|T2| ≤ Cη̃J ||u− uh||.(77)

Since DzzF = 0 and Dzzg = 0, from (16), we know that δ1 = 0. Then, the
third term on the right-hand side of (72) is estimated by (19), Lemma 2.5 and
|ω|1 ≤ ||ω||2 ≤ C||u − uh||

|T3| ≤ C(||u − uh||20,4 + ||(u− uh)∇(u − uh)||)||∇ω||
≤ C(||u − uh||0,∞||u − uh||+ ||∇(u− uh)||0,∞||u− uh||)||∇ω||
≤ C||u− uh||1,∞||u− uh|| |ω|1(78)

≤ C2h
1− 2

r | lnh| |u|2,r||u− uh||2.
There exists a constant h2 > 0 such that for 0 < h ≤ h2,

C2h
1− 2

r | lnh| |u|2,r ≤
1

2
.(79)
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From (72), (76)-(79), we get

1

2
||u− uh||2 ≤ C(η̃R + η̃J)||u − uh||,

which together with (70) completes the proof. �

Remark 4.1. Since Bratu’s equation satisfies DzzF = 0 and Dzzg = 0, η̃ is a
reliable a posteriori error estimator of ||u − uh||. In this case, we have JE − JE =

0, ∀E ∈ E0
h, and η̃J in η̃ is reduced to η̃J =

(∑
E∈E0

h
h3
E ||JE ||20,E

)1/2
.

5. Numerical Experiments

In this section, we present two numerical examples to illustrate the performance
of the error estimators that have been analyzed earlier. Our particular interest
is to give an observation about the ability of the a posteriori error estimator η
to imitate the convergence behavior of the exact errors in the H1-norm for the
nonlinear elliptic problems (1), as well as the residual-based L2-norm a posteriori
error estimator η̃ discussed in section 4.

In all examples, we use the same true solution

u(x1, x2) = x3
1 ln(x1)x

3
2 ln(x2),(80)

designate the expression of F (x, u,∇u), and set the function g(x, u) to satisfy the
equation (1). For these two examples, the problems are posed in the domain Ω =
(0, 1) × (0, 1). The domain is discretized into N numbers of rectangle in each
direction, and then each rectangle is divided into two triangles, resulting a mesh
with size h =

√
2/N . For the computation, the conforming linear finite element

space Sh and the dual volume element space S∗
h are built on these meshes and their

dual partitions, respectively.
For the first example, we consider the equation of prescribed mean curvature

described in subsection 2.1. The numerical results are shown in Table 1. Here and
thereafter the comparisons of the error estimators η and η̃ against the exact errors
in the H1 and L2-norms are denoted by, respectively,

R1 =
‖u− uh‖1

η
, R2 =

||u− uh||
η̃

,

where η = ηR + ηJ and η̃ = η̃R + η̃J . From this table, we can see the same
convergence rate of the a posterior error estimator η and the exact error in the
H1-norm.

Table 1. Performance of the estimator η for the first example.

h ‖u− uh‖1 ηR ηJ η R1
√
2/10 8.7736e-3 2.0395e-2 4.1867e-2 6.2262e-2 0.14

√
2/20 4.4137e-3 1.0194e-2 2.2572e-2 3.2766e-2 0.13

√
2/40 2.2110e-3 5.0976e-3 1.1653e-2 1.6751e-2 0.13

√
2/80 1.1078e-3 2.5490e-3 5.9128e-3 8.4617e-3 0.13

√
2/160 5.5776e-4 1.2743e-3 2.9772e-3 4.2515e-3 0.13

√
2/320 2.8635e-4 6.3715e-4 1.4937e-3 2.1309e-3 0.13
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For the second example, we consider the following semilinear problem.
{

−△u+ u3 = f, in Ω,
u = 0, on ∂Ω,

where as before, f(x) is chosen such that (80) is the solution of the above problem.
The numerical results are shown in Table 2 and 3, which also confirm our theoretical
results.

Table 2. Performance of the estimator η for the second example.

h ‖u− uh‖1 ηR ηJ η R1
√
2/10 8.7712e-3 2.4624e-3 4.1914e-2 4.4376e-2 0.20

√
2/20 4.4120e-3 1.2313e-3 2.2605e-2 2.3836e-2 0.19

√
2/40 2.2092e-3 6.1564e-4 1.1672e-2 1.2288e-2 0.18

√
2/80 1.1050e-3 3.0782e-4 5.9229e-3 6.2307e-3 0.18

√
2/160 5.5255e-4 1.5391e-4 2.9825e-3 3.1364e-3 0.18

√
2/320 2.7628e-4 7.6955e-5 1.4964e-3 1.5734e-3 0.18

Table 3. Performance of the estimator η̃ for the second example

h ||u− uh|| η̃R η̃J η̃ R2
√
2/10 2.7726e-4 3.7123e-4 2.9638e-3 3.3350e-3 0.08

√
2/20 7.0263e-5 9.3454e-5 7.9920e-4 8.9265e-4 0.08

√
2/40 1.7631e-5 2.3404e-5 2.0633e-4 2.2974e-4 0.08

√
2/80 4.4021e-6 5.8534e-6 5.2351e-5 5.8205e-5 0.08

√
2/160 1.0888e-6 1.4635e-6 1.3181e-5 1.4644e-5 0.07

√
2/320 2.6008e-7 3.6589e-7 3.3066e-6 3.6725e-6 0.07

6. Summary and concluding remarks

In this paper we established the a posteriori error estimates of the finite volume
element method for the quasilinear elliptic problem (1). We derived the global upper
and local lower bounds on the approximation error in the H1-norm and developed
the global upper bound on the error in the L2-norm for some special quasilinear
elliptic problems. Numerical experiments provided in this paper confirmed our
theoretical findings.

The results of this paper can be extended to the following general nonlinear
elliptic problems by making appropriate modification in the analysis

Lu = −∇ · F (x, u,∇u) + g(x, u,∇u) = 0, in Ω, u = 0, on ∂Ω.

For the assumptions on the functions F (x, y, z), g(x, y, z) and the operator L, we
refer to [8, 37] for details.

The a posteriori error estimator is an essential ingredient and also a major dif-
ficulty in the convergence analysis of an adaptive finite volume element method.
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Based on the error estimator described in this paper, we will develop and analyze
an adaptive finite volume element method to solve (1) in the future work.
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