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VARIATIONAL FORMULATION FOR MAXWELL’S EQUATIONS

WITH LORENZ GAUGE: EXISTENCE AND UNIQUENESS OF

SOLUTION

MICHAL KORDY, ELENA CHERKAEV, AND PHIL WANNAMAKER

Abstract. The existence and uniqueness of a vector scalar potential representation with the
Lorenz gauge (Schelkunoff potential) is proven for any vector field from H(curl). This repre-
sentation holds for electric and magnetic fields in the case of a piecewise smooth conductivity,
permittivity and permeability, for any frequency. A regularized formulation for the magnetic field
is obtained for the case when the magnetic permeability µ is constant and thus the magnetic field
is divergence free. In the case of a non divergence free electric field, an equation involving scalar
and vector potentials is proposed. The solution to both electric and magnetic formulations may
be approximated by the nodal shape functions in the finite element method with system matrices
that remain well-conditioned for low frequencies. A numerical study of a forward problem of a
computation of electromagnetic fields in the diffusive electromagnetic regime shows the efficiency
of the proposed method.

Key words. Lorenz gauge, Schelkunoff potential, Maxwell’s equations, Finite Element Method,
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1. Introduction

Fast and stable methods are needed for calculating electromagnetic (EM) fields
in and over the Earth. Such a simulation has applications in imaging of subsurface
electrical conductivity structures related to exploration for geothermal, mining,
and hydrocarbon resources. Over commonly used frequencies, EM propagation
in the Earth is diffusive since the conduction dominates over the dielectric dis-
placement. The finite element method (FEM) is attractive for this simulation in
comparison with other techniques in that it may be easily adapted to complex
boundaries between regions of constant EM properties, including the topography
or the bathymetry. The 3D interpretation of geophysical data is numerically ex-
pensive, as the forward problem needs to be computed many times [26, 3, 14].

For large scale simulation problems, iterative methods have been the ones of
choice to solve linear systems resulting from FEM formulations [7, 16, 11, 34, 29].
The speed of iterative methods is strongly related to the properties of the varia-
tional problem used. Difficulties arise when the computational domain includes a
high contrast, both the non-conducting air and a conducting medium in the Earth’s
subsurface, especially for low frequencies. Furthermore, the Earth’s subsurface in
general is characterized by the spatially changing conductivity, dielectric permit-
tivity and magnetic permeability. This can slow or prevent iteration convergence
[23, 31].

There have been multiple approaches to addressing the difficulties encountered
with high physical property contrasts and potentially discontinuous EM field vari-
ables. One is to apply special finite elements, so-called edge elements, that have a
discontinuous normal component of the vector field across elements, while keeping
the tangential field component continuous [24, 18, 4]. The edge elements are also
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compatible with the curl operator and are a part of the de Rham diagram [6]. How-
ever, if the curl-curl equation for the electric field E is used, and if the conductivity
is very small in a part of the domain (e.g., in the air) or if the frequency is very
low, the problem becomes ill-posed and the system matrix has a very large near
null space. This requires use of sophisticated preconditioners that handle the null
space of the curl properly in order to use iterative solvers. Such preconditioners
have been developed (see [38, 17, 19, 21, 2, 39]).

An alternative is to not solve directly for the EM fields themselves, but instead to
initially solve a well conditioned equation for a quantity which is continuous across
interfaces. Subsequently, the EM fields are obtained through a spatial differentia-
tion with the field discontinuities defined by the property jumps. One such quantity
is a vector potential with the Lorenz gauge, also called the Schelkunoff potential
[37, 8, 33, 9], which we examine in this paper. In general, this potential has both
scalar and vector components, and there are both electric and magnetic versions.
Using the Lorenz gauge, the scalar potential can be expressed as a function of the
vector potential, and as a result only the vector potential is needed to represent the
EM field.

In this paper, we show that the Lorenz gauged vector potential representation
exists for any member of H(∇×). Thus one can use it to represent the electric field
E as well as the magnetic field H . We prove that this representation exists for any
frequency ω > 0, if the permittivity ǫ is bounded and the magnetic permeability
µ and the conductivity σ are bounded away from 0 and ∞. The electromagnetic
properties ǫ, µ, σ are allowed to be discontinuous. We discuss an application of
this potential for FEM approximation of the EM field. In principle, it is enough to
use only the vector Lorenz gauged potential to represent the EM field. However,
when the conductivity σ is not constant and the electric field is not divergence-
free, it is difficult to find a weak equation involving only the vector potential. In
particular, we show that the vector potential does not satisfy the weak form of
the Helmholtz equation, sometimes erroneously used as a basis for FEM simulation
[33]. For the general case of non divergence-free EM fields, we propose a mixed
formulation involving the scalar and vector potentials.

We consider also the case of representing the magnetic field using a vector poten-
tial with the Lorenz gauge. If the magnetic permeability µ is constant, the magnetic
field is divergence-free and the vector potential coincides with the magnetic field.
We show that the Lorenz gauge approach leads to a regularized weak equation for
the magnetic field involving a divergence term, and as a result the equation does
not suffer from the large near null space.

We show that sesquilinear forms of the equations for both magnetic vector po-
tential and electric scalar-vector formulations remain coercive at low frequencies.
It makes iterative solvers fast even if only standard vector multigrid precondition-
ers [35] are used. Another advantage is that the considered vector potential is a
member of H(∇×) ∩ H(∇·). This allows to use nodal elements, which have more
widely available implementations than edge elements. The edge elements, due to a
discontinuity of the shape functions across elements boundaries, require post pro-
cessing to get a value of a field at a specific point within an element. In geophysical
applications, the domain is a convex polygon, so nodal discretization is dense in
H0(∇×) ∩H(∇·) or in H(∇×) ∩H0(∇·) [13, 6].

Regularization of the curl-curl equation using a divergence term has been also
suggested in [1, 13]. The current paper extends these ideas to the case of non-
constant, complex valued electromagnetic properties and non divergence-free fields.
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In [1], the authors consider the existence, the uniqueness and proper boundary con-
ditions for a Lorenz gauged vector potential only for the case of constant electro-
magnetic properties. In [13], the authors consider non-constant properties; however,
they seek a solution E ∈ H(∇×) such that σE ∈ H(∇·). If σ is not constant, it
is difficult to construct a compatible finite element discretization for the space of
vector fields of the suggested kind.

In this paper, we consider a different approach. The vector potential term −iωA
and the vector electric field E differ by ∇ϕ. The scalar potential ϕ satisfies the
Poisson equation for which the source term is given by the jumps of the normal
component of E across boundaries of regions with different EM properties. Repre-
senting the discontinuities of the electric field using ∇ϕ allows the vector potential
to be continuous, or more precisely to lie in the space H(∇×)∩H(∇·), which allows
to approximate it using the nodal elements.

A representation of the electric field related to our vector-scalar formulation was
considered in ([9] Lorenz gauge #2), where the authors proved the uniqueness of
the Schelkunoff potential continuous across interfaces for a nonlossy medium using
a mixed formulation that involved both scalar and vector potentials. The mixed
formulation involving scalar and vector potentials considered in the current paper
(section 6) is a reformulation of this approach for a medium with losses. We prove
not only the uniqueness, but also the existence of the solution (Theorem 6.1).

A closely related work was presented in [15], where the authors consider an eddy
current problem, with ǫ = 0 and σ > 0 in a part of the domain and ǫ = σ = 0 in
the rest of the domain. They show existence and uniqueness of the vector potential
representation with the Lorenz gauge. They consider also a mixed formulation
similar to ours. Here, we consider ǫ > 0. Also in our equation we apply a scaling
to the scalar potential, which makes a sesquilinear form coercive at ω → 0. Finally
our proof of the coercivity is more general, it does not require a smallness of the
coefficients used in the equation.

The structure of the paper is as follows. In section 2, a brief description of the
vector-scalar representation of the electric field with the Lorenz gauge is given in
the way it typically appears in the literature. We also show that it satisfies the
Helmholtz equation if the electromagnetic properties are constant.

In the third section, a theorem of the existence and the uniqueness of a Lorenz
gauged vector potential representation for any vector field in H(∇×) is formulated
and proven.

The purpose of section 4 is to build some intuition about the vector potential
with the Lorenz gauge. We consider a representation of the electric field by the
Schelkunoff potential. We present conditions that are satisfied on an interface
between two regions with different conductivity. We show how a jump in the normal
component of the electric field is represented by a jump of the normal derivative of
the scalar potential, allowing the vector potential to be continuous.

In section 5, a difficulty in obtaining a weak equation involving only the vector
electric Schelkunoff potential is presented.

In section 6, a mixed formulation involving a scalar and a vector potential is
developed for the electric Schelkunoff potential.

In section 7, a different approach is suggested to avoid the difficulties with the
electric potential. A magnetic Schelkunoff potential is defined and, in the situation
where magnetic permeability µ is constant, an appealing weak form of the governing
equation is derived.
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The last section (8) shows results of numerical simulations. We use the de-
veloped magnetic Schelkunoff potential approach to calculate the electromagnetic
field generated by a conductive brick in a resistive whole space with a plane-wave
(magnetotelluric) source. A comparison of the results with calculations done by an
independent Integral Equations code [36], is shown. A good agreement between the
calculated fields provides a verification of the validity of the method.

2. Lorenz gauged formulation of Maxwell’s equations

Let us consider the electromagnetic field satisfying Maxwell’s equations in the
frequency domain, with a time dependence eiωt, with the electric source J imp, in
some bounded domain Ω ⊂ R

3:

(1)

{

∇× E = −iωµH
∇×H = σ̂E + J imp , σ̂ = σ + iωǫ

Here, σ and ǫ are the conductivity and the permittivity of the medium, µ is the
magnetic permeability, and ω is the frequency.

The Schelkunoff potential, or the electric Schelkunoff potential, is a vector po-
tential A used together with a scalar potential ϕ to represent the electric field E

[37, 8, 33, 9] in a form:

(2) E = −iωA+∇ϕ
A relationship between A and ϕ, called the Lorenz gauge, is imposed:

(3) ∇
(∇ · A

σ̂µ

)

= ∇ϕ

As a result the electric field is represented as:

(4) E = −iωA+∇
(∇ ·A

σ̂µ

)

Substituting the first equation to the second one in (1) and using (2) to represent
the electric field E, in a region of constant properties σ̂, µ we obtain:

∇×
(

∇× 1

µ
A

)

= J imp − σ̂iωA+ σ̂∇ϕ

Application of the vector identity (51) results in:

∇
(

∇ · 1
µ
A

)

−∇ ·
(

∇
(

1

µ
A

))

= J imp − σ̂iωA+ σ̂∇ϕ

If the equation is multiplied by −µ (it is assumed that σ̂, µ are constant), the Lorenz
gauge (3) is used, then the following vector Helmholtz equation is obtained:

(5) ∆A− iσ̂µωA = −µJ imp

Yet the vector potential satisfies this equation only if the electromagnetic properties
are constant. The weak form of the Helmholtz equation is a separate equation for
each componentAk of the vector field, k = 1, 2, 3. For any test functionKk ∈ H1(Ω)
the following is satisfied:

(6)

∫

Ω

∇Kk · ∇Ak + iω

∫

Ω

σ̂µAk ·Kk =

∫

Ω

µJ
imp
k ·Kk

The equation above imposes conditions on interfaces between regions of different
σ̂, µ listed below:
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1. Ak is continuous, k = 1, 2, 3 2. ∂
∂n
Ak is continuous, k = 1, 2, 3

where n is a vector normal to the interface. In section 3 the existence and the
uniqueness of an electric Schelkunoff potential satisfying those conditions is inves-
tigated. As it turns out, with some reasonable assumptions when σ̂, µ are not
constant, an electric Schelkunoff potential continuous across interfaces (condition
1 is satisfied) exists, yet the condition 2 is not satisfied. As a result there is no
electric Schelkunoff potential that satisfies the weak form of the Helmholtz equa-
tion (6), so it should not be used as a basis for finite element approximation if the
electromagnetic properties are not constant.

3. Existence and uniqueness of the Schelkunoff potential

In this section we formulate and prove a theorem stating the existence and the
uniqueness of the Schelkunoff potential. All is done in an abstract setting that
uses the theory of the Sobolev spaces. Some physical interpretation, for the case of
representation of the electric field E, is given in the following section.

Consider an open bounded domain Ω ⊂ R3 with Lipschitz boundary. We use
the following notation for the Sobolev spaces:

(7)

L2 = L2(Ω) =
{

ψ : Ω → C :
∫

Ω
|ψ|2 <∞

}

H1 = H1(Ω) =
{

ψ : Ω → C :
∫

Ω |∇ψ|2 +
∫

Ω |ψ|2 <∞
}

H(∇×) = H(∇×, Ω) =
{

K : Ω → C3 :
∫

Ω
|∇ ×K|2 +

∫

Ω
|K|2 <∞

}

H(∇·) = H(∇·, Ω) =
{

K : Ω → C
3 :

∫

Ω |∇ ·K|2 +
∫

Ω |K|2 <∞
}

If homogeneous boundary conditions are assumed, a subscript ”0” is added. For
H1

0, H0(∇×), H0(∇·), the value of the function, tangential and normal components
of a vector field are fixed respectively. If n is a vector normal to the boundary ∂Ω,
then

(8)
H1

0 = H1
0(Ω) =

{

ψ ∈ H1(Ω) : ψ|∂Ω = 0
}

H0(∇×) = H0(∇×, Ω) = {K ∈ H(∇×, Ω) : n×K|∂Ω = 0}
H0(∇·) = H0(∇·, Ω) = {K ∈ H(∇·, Ω) : n ·K|∂Ω = 0}

Additionally, the notation for norms is as follows:

(9)
‖ψ‖0 =

√

∫

Ω |ψ|2

‖ψ‖1 =
√

‖ψ‖20 + ‖∇ψ‖20 =
√

∫

Ω
|ψ|2 +

∫

Ω
|∇ψ|2

We use the following Poincare inequality (see Appendix A in [6]). There is a
constant c > 0, dependent on the domain Ω, such that:

(10) c‖ψ‖0 ≤ ‖∇ψ‖0 for ψ ∈ H1
0

Theorem 3.1. For a vector field G ∈ H0(∇×) and a scalar complex valued function
γ satisfying

(11)

γ = γR + iγI , γR, γI : Ω → R

|γR| ≤ γRM <∞
0 < γIm ≤ |γI | ≤ γIM <∞
γI > 0 in Ω or γI < 0 in Ω

there is a unique T ∈ H0(∇×) ∩H(∇·) satisfying

(12)
∇ · T
γ

∈ H1
0

(13) G = T +∇
(∇ · T

γ

)
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Proof. Consider an equation for ϕ ∈ H1
0:

(14)

∫

Ω

∇ϕ · ∇ψ −
∫

Ω

γϕψ =

∫

Ω

G · ∇ψ

satisfied for any ψ ∈ H1
0. We will prove that there is a unique solution ϕ to this

equation, ϕ = ∇·T
γ

. It is obvious that with assumptions (11), the sesquilinear form

(15) B(ϕ, ψ) =
∫

Ω

∇ϕ · ∇ψ −
∫

Ω

γϕψ

is bounded with respect to the norm ‖.‖1, defined in (9). We will prove that B is
also coercive.

|B(ψ, ψ)| =
∣

∣

∣

∣

∫

Ω

|∇ψ|2 −
∫

Ω

γ|ψ|2
∣

∣

∣

∣

=

∣

∣

∣

∣

(
∫

Ω

|∇ψ|2 −
∫

Ω

γR|ψ|2
)

− i

∫

Ω

γI |ψ|2
∣

∣

∣

∣

If the real part of a complex number is decreased, then the modulus is decreased,
so we can write that for any α ∈ (0, 1]

(16)

|B(ψ, ψ)| ≥
∣

∣α
(∫

Ω
|∇ψ|2 −

∫

Ω
γR|ψ|2

)

− i
∫

Ω
γI |ψ|2

∣

∣

≥ 1√
2

[
∣

∣α
(∫

Ω |∇ψ|2 −
∫

Ω γR|ψ|2
)
∣

∣+
∣

∣

∫

Ω γI |ψ|2
∣

∣

]

≥ 1√
2

[

α
(∫

Ω |∇ψ|2 −
∫

Ω |γR‖ψ|2
)

+
∫

Ω |γI‖ψ|2
]

≥ 1√
2

[

α
(

‖∇ψ‖20 − γRM‖ψ‖20
)

+ γIm‖ψ‖20
]

≥ min( α√
2
, γIm−αγRM√

2
)
(

‖∇ψ‖20 + ‖ψ‖20
)

This proves the coercivity of B if only α is taken such that γIm
γRM

> α > 0.

As G ∈ H0(∇×) ⊂ (L2)3, the right hand side of (14) is a bounded linear func-
tional on H1

0 , thus from the Lax-Milgram theorem there is a unique ϕ ∈ H1
0 satis-

fying (14).
Define

(17) T = G−∇ϕ

As ϕ ∈ H1
0, then ∇ϕ ∈ H0(∇×). As G ∈ H0(∇×), we conclude that T ∈ H0(∇×).

Take any smooth function with a compact support in Ω, ψ ∈ C∞
c (Ω). Such a

function is also in H1
0, so it satisfies (14). Evaluation of ∇ · T at ψ gives

〈∇ · T, ψ〉 = −
∫

Ω

T · ∇ψ (17)
= −

∫

Ω

(G−∇ϕ) · ∇ψ (14)
=

∫

Ω

γϕψ

This shows that ∇ · T is a function and

∇ · T = γϕ

As |γ| ≤
√

γ2RM + γ2IM < ∞ and ϕ ∈ L2, then ∇ · T ∈ L2, which proves that
T ∈ H(∇·). Moreover as γ 6= 0, we have

(18)
∇ · T
γ

= ϕ

which proves (12). Definition (17) of T , together with (18) proves (13). �

Remark 3.2.

• One could consider non-homogeneous Dirichlet boundary conditions. For
any G ∈ H(∇×) the same proof would give a vector potential T ∈ H(∇×)∩
H(∇·) such that n× T = n×G on ∂Ω.
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• One could consider G ∈ H(∇×) and a different potential T , satisfying
different boundary conditions. If equation (14) is considered for φ, ψ ∈ H1,
it will lead to T ∈ H(∇×) ∩ H0(∇·). To prove that in this case T has the
normal component equal to 0 on ∂Ω, one can take any ψ ∈ H1 and evaluate

∫

∂Ω

(T · n)ψ =

∫

Ω

T · ∇ψ +

∫

Ω

(∇ · T )ψ =

∫

Ω

(G−∇ϕ) · ∇ψ +

∫

Ω

γϕψ = 0

• In the case of (14) for ϕ, ψ ∈ H1
0 assumption |γI | > 0. may be weakened.

Even if γI = 0 the theorem holds as long as γRM 6= 0 and γRM < c, where c
is the constant in Poincare inequality (10). The proof of the coercivity has
to be adapted as follows. Continuing with the calculation (16) for α = 1 we
obtain for some β, such that 1 > β > γRM

c
> 0:

√
2|B(ψ, ψ)| ≥ ‖∇ψ‖2 − γRM‖ψ‖2 = (1 − β)‖∇ψ‖2 + β‖∇ψ‖2 − γRM‖ψ‖2

≥ min(1 − β, βc− γRM )(‖∇ψ‖2 + ‖ψ‖2)

Corollary 3.3. To obtain the Schelkunoff potential representation (4) of the elec-
tric field E, one has to set G = E, T = −iωA and γ = −iωµσ̂ = ω2ǫµ − iωσµ.
The assumptions (11) of Theorem 3.1 will be satisfied for any ω > 0 if there exist
constants µm, µM , σm, σM , ǫM such that

(19)
|ǫ| ≤ ǫM <∞

0 < σm ≤ σ ≤ σM <∞
0 < µm ≤ µ ≤ µM <∞

4. Interface conditions

In this section, we discuss interface conditions of the Schelkunoff potential for
the electric field E. Consider a fragment of the domain Ω with two subsets V1, V2
and the interface ∂V1∩∂V2 between them (see Figure 1). For simplicity, we assume
that all considered vector and scalar fields are smooth in V1 as well as in V2,
and have limits of values and derivatives on the interface ∂V1 ∩ ∂V2, yet the limit
if one approaches the interface from V1 may be different from the limit if one
approaches the interface from V2. With this assumption, the members of H1,
such as the scalar potential ϕ, are continuous across the interface. The members of
H(∇×), such as the electric field E and ∇ϕ have continuous tangential components
across the interface, but may have discontinuous normal components. Members of
H(∇×) ∩ H(∇·), such as A and T have continuous both tangential and normal
components across the interface. The fields in the subdomain Vj are denoted by a
subscript “j”. The vector normal to the surface and pointing out of V1, towards V2
(see Figure 1), is denoted by n.

Let us consider representation (2) of the electric field E, with ϕ = ∇·A
σ̂µ

. In

this representation, all the components, E, A, ∇ϕ are members of H(∇×), so they
have continuous tangential components across the interface. Analysis of the normal
components is more interesting. Using the fact that the normal component of A
has to be continuous, we obtain the condition on the jump of the normal derivative
of ϕ:

(20)
−iω (n · A1) = −iω (n ·A2)

n · (E1 −∇ϕ1) = n · (E2 −∇ϕ2)
n · (∇ϕ2 −∇ϕ1) = n · (E2 − E1)

We will show that this is exactly the condition imposed by equation (14). Inte-
grating equation (14) by parts for a test function ψ with the support in the interior
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Figure 1. The properties σ̂, µ experience a jump on ∂V1 ∩ ∂V2.
As a result the normal component of E has a jump. The field ∇ϕ
is chosen in such a way, that its normal component jump allows
−iωA to be continuous.

of V1 ∪ V2 and using G = E, we obtain the following:

(21)

∫

V1∪V2

[−∇ · ∇ϕ− γϕ]ψ +
∫

∂V1∩∂V2

n · (∇ϕ1 −∇ϕ2)ψ =

−
∫

V1∪V2

(∇ ·E)ψ +
∫

∂V1∩∂V2

n · (E1 − E2)ψ

For a test function with the support entirely in V1 or entirely in V2, the interface
terms are 0, hence

(22) ∇ · ∇ϕ+ γϕ = ∇ · E

almost everywhere in V1 ∪ V2. Using this result in (21), for a test function non-zero
on the interface, one gets only the boundary terms and subsequently one obtains
condition (20) for the jump in the normal derivatives of ϕ.

Notice that in many applications, the source term J imp in (1) is divergence free.
If additionally σ̂ = const in V1 and in V2, then taking divergence of the second
equation in (1), one obtains that

∇ ·E = 0

in V1 as well as in V2. In this case, the strong equation (22) has the right hand
side equal to zero. As a result the source term in (14) is related only to the jump
of the normal component of E. More precisely if E has a jump in the normal
component, then its divergence is a distribution. This distribution is the source
term in equation (14).

If the electromagnetic properties have corners or edges, then the electric field
has singularities [12], which can be represented by a gradient of a scalar function
∇ϕ. The Lorenz gauged vector potential that we consider, exploits exactly this
property. It allows to represent the electromagnetic field, which is a member of
H(∇×), with a more regular field A, which is in H(∇·) ∩H(∇×). The singularity

is contained in the term ∇
(

∇·A
σ̂µ

)

.
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5. A difficulty in obtaining a weak form of the governing equation for

the vector potential representation of the electric field E

To be able to use the finite element method for a calculation of the EM field, a
weak form of a governing equation satisfied by the electric Schelkunoff potential is
needed.

In order to obtain a weak equation, one starts from Maxwell’s equations (1).
Dividing the first equation by −iωµ, taking curl and substituting into the second
equation, one obtains

(23) ∇× 1

−iωµ∇× E − σ̂E = J imp

Next −iωA+∇
(

∇·A
σ̂µ

)

is substituted for E and the equation is multiplied by a test

vector field K. The result is

∫

Ω

(

∇× 1

µ
∇×A

)

·K −
∫

Ω

∇
(∇ ·A

σ̂µ

)

· (σ̂K) +

∫

Ω

iωσ̂A ·K =

∫

Ω

J imp ·K

In order to integrate by parts the first term in the above equation, one uses con-
tinuity of the tangential component of 1

µ
∇ × A, which is equivalent to continuity

of the tangential component of the magnetic field H and one needs the tangential
components of K to be continuous across interfaces (like the interface ∂V1 ∩ ∂V2
considered in section 4).

On the other hand, in order to integrate by parts the second term, one would use
a continuity of ∇·A

σ̂µ
, and one needs the normal components of σ̂K to be continuous

across interfaces. So if σ̂ is discontinuous, so is the normal component of K. This
is the essence of the problem in obtaining a proper weak form of the equation
for A. A family of vector finite element shape functions with continuous tangential
components and normal components experiencing specific jumps is difficult to build.
One may consider a mixed formulation involving scalar and vector potentials (see
section 6), but that increases the number of coefficients needed to represent the
field.

It turns out that, assuming that µ is constant, it is possible to obtain an equation
involving only the vector potential, but for a vector potential representation of the
magnetic field H . This idea is presented in section 7.

6. A formulation with both scalar and vector potentials

If the original field is not divergence free, an equation involving both scalar and
vector components must be considered. Although the number of coefficients per
point in space increases from 3 to 4, the obtained equation is valid for non-constant
electromagnetic properties and a non divergence free field. Also, if the boundary
of the domain Ω is connected, a sesquilinear form of the equation remains coercive
as ω = 0.

In [9], in the case of the Lorenz gauge #2, the authors proved the uniqueness of
the Schelkunoff potential given as a solution of an equation (see (58) in [9]) that
has the following bilinear form in the left hand side:

G ((A, ρ), (K,ψ)) =
∫

Ω[∇×A · 1
µ
∇×K +∇ · A 1

µ
∇ ·K − ω2ǫA ·K

−iωǫ∇ · ψA+ ǫ∇ρ · ∇ψ − ω2ǫ2µρψ − iωǫ∇ · ρK]
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This bilinear form, considered for a purely imaginary frequency ω = iω̃, ω̃ > 0,
may be rewritten as

G =

∫

Ω

1

µ
(∇·A+µω̃ǫρ)(∇·K+µω̃ǫψ)+

∫

Ω

ǫ(ω̃A+∇ρ)·(ω̃K+∇ψ)+
∫

Ω

1

µ
(∇×A)·(∇×K)

Using this form we can prove the boundedness and the coercivity of G for A, K ∈
H0(∇×,Ω) ∩ H(∇·,Ω), ρ, ψ ∈ H1

0(Ω). So from the Lax-Milgram theorem, there
exists a unique solution to the equation for the Lorenz gauged vector and scalar
potentials that is considered in [9]. This formulation may be adapted to a lossy
medium, which is expressed in Theorem 6.1.

Theorem 6.1. Let the assumptions (19) be satisfied. The unique electric
Schelkunoff potential A, together with a scalar field

(24) φ =
∇ · A√
ωσ̂µ

satisfy the following equation

(25)

∫

Ω
1
µ
(∇×A) · (∇×K) +

∫

Ω
1
µ
(∇ · A−√

ωµσ̂φ)(∇ ·K −√
ωµσ̂ψ)

+i
∫

Ω
σ̂(
√
ωA+ i∇φ) · (√ωK + i∇ψ) =

∫

Ω
J imp · (K + i∇ψ√

ω
)

∀K ∈ H0(∇×) ∩H(∇·) and ψ ∈ H1
0

(26) A ∈ H(∇×) ∩H(∇·), n× (−iωA) = n× E on ∂Ω, φ ∈ H1
0.

The sesquilinear form associated with equation (25) is bounded and coercive with
respect to the norm

(27) ‖(K,ψ)‖B =
√

‖K‖20 + ‖∇×K‖20 + ‖∇ ·K‖20 + ‖∇ψ‖20 + ‖ψ‖20
Hence if J imp ∈ (L2)3, then the solution to this equation exists and is unique.

Remark 6.2.

• If the domain is a convex polygon, or if the domain has C2 boundary, then
one may use nodal shape functions to approximate both A and φ.

• In order to obtain the electric field E, one has to calculate

(28) E = −iωA+
√
ω∇φ

• If one drops all the terms multiplied by ω, the resulting sesquilinear form
remains coercive. To prove this, one has to use the Poincare inequality
for H0(∇×) ∩ H(∇·) (see [1], Corollary 3.19). The proof of this result is
easier than the proof of coercivity of the original sesquilinear form, so it is
omitted.

• In [15], the authors present a similar equation to ours. In our formulation,
we apply a scaling 1√

w
on the scalar function ϕ. As a result our sesquilin-

ear form remains coercive for ω = 0. Instead of 1
µ
, one can consider an

arbitrary weight in the middle term of the sesquilinear form, the term con-
taining the divergences. The authors of [15] denoted this weight by 1

µ∗

and

their proof of the coercivity of the sesquilinear form depends on the small-
ness of the upper bound of µ∗. The proof we present is not dependent on
such a bound, thus is valid as long as µ∗ is bounded away from 0 and from
∞. Also in our formulation and in the proof, we consider the case of non
zero ǫ and an arbitrarily large frequency ω, thus an arbitrarily large term
iωǫ.



VARIATIONAL FORMULATION FOR MAXWELL EQU. 741

Proof. The fact that the vector potential A of Corollary 3.3 and φ defined in (24)
satisfy equation (25) is straightforward and is explained as follows. A consequence
of (24) is that the middle term on the right hand side of (25) vanishes. The definition
of φ implies (28). If (28) is used, then equation (25) simplifies to
∫

Ω

1

µ
(∇× E) · (∇×K) + iω

∫

Ω

σ̂E ·
(

K + i
∇ψ√
ω

)

= −iω
∫

Ω

J imp ·
(

K + i
∇ψ√
ω

)

Since K ∈ H0(∇×) ∩ H(∇·) and ψ ∈ H1
0, then K̃ = K + i∇ψ√

ω
∈ H0(∇×) and

∇ × K̃ = ∇ × K, so it remains to show that for any K̃ ∈ H0(∇×) the following
equation is satisfied:

∫

Ω

1

µ
(∇× E) · (∇× K̃) + iω

∫

Ω

σ̂E · K̃ = −iω
∫

Ω

J imp · K̃

This is a standard equation satisfied by the electric field E which satisfy Maxwell’s
equations (1). The equation is satisfied for all K̃ ∈ H0(∇×). This concludes the
proof that A and φ defined in (24) satisfy equation (25).

Let us now focus on a proof of the boundedness and the coercivity of the sesquilin-
ear form B((A, φ), (K,ψ)) defined as the left hand side of the equation (25).

Denote σ̂M = (σM + ωǫM ). The boundedness of B is straightforward, as from
the Cauchy-Schwartz inequality, it follows that:

|B((A, φ), (K,ψ))| =

=

∣

∣

∣

∣

∫

Ω

1

µ
(∇×A)·(∇×K)+

∫

Ω

1

µ
(∇·A−

√
ωµσ̂φ)(∇·K−

√
ωµσ̂ψ)

+i

∫

Ω

σ̂(
√
ωA+i∇φ)·(

√
ωK+i∇ψ)

∣

∣

∣

∣

≤ 1

µm

∫

Ω

|∇ ×A| |∇ ×K|+
∫

Ω

1

µm
|∇ · A−

√
ωµσ̂φ| |∇ ·K −

√
ωµσ̂ψ|

+

∫

Ω

σ̂M |
√
ωA+ i∇φ| |

√
ωK + i∇ψ|

≤ 1

µm
‖∇×A‖0‖∇×K‖0 +

1

µm
‖∇ · A−

√
ωµσ̂φ‖0‖∇ ·K −

√
ωµσ̂ψ‖0

+ σ̂M‖
√
ωA+ i∇φ‖0‖

√
ωK + i∇ψ‖0

≤ 1

µm
‖∇×A‖0‖∇×K‖0+

1

µm
(‖∇·A‖0+

√
ωµM σ̂M‖φ‖0) (‖∇·K‖0+

√
ωµM σ̂M‖ψ‖0)

+σ̂M (
√
ω‖A‖0+‖∇φ‖0) (

√
ω‖K‖0+‖∇ψ‖0)

≤ max

(

1

µm
,

√
ωµM

µm
σ̂M ,

ωµ2
M

µm
σ̂2
M , σ̂M , σ̂M

√
ω, σ̂Mω

)

‖(A, φ)‖B‖(K,ψ)‖B
To prove the coercivity, we have to prove that there exists a constant d > 0 such

that for any (K,ψ) ∈ (H0(∇×,Ω) ∩H(∇·,Ω)) ×H1
0(Ω)

|B((K,ψ), (K,ψ))| ≥ d‖(K,ψ)‖2B
It is enough to prove that it is not possible to have a sequence of (Kn, ψn)

∞
n=1 such

that

1 = ‖(Kn, ψn)‖2B
= ‖Kn‖20 + ‖∇×Kn‖20 + ‖∇ ·Kn‖20 + ‖∇ψn‖20 + ‖ψn‖20(29)

and

(30) B((Kn, ψn), (Kn, ψn)) −−−−→
n→∞

0



742 M. KORDY, E. CHERKAEV, AND P. WANNAMAKER

For a proof by contradiction, assume that there is a sequence (Kn, ψn) satisfying
(29) and (30). We will prove that there is a subsequence of (Kn, φn) convergent to
0 in ‖.‖B. Using the compact embedding of H0(∇×) ∩H(∇·) in (L2)3 (Maxwell’s
compactness property, [25]) and the compact embedding of H1

0 in L2 (Rellich’s
theorem), there is a subsequence (Knk

, ψnk
) convergent to (K,ψ) in (L2)4. To

simplify the notation we will write n instead of nk, thus replacing the original
sequence with its subsequence. We obtain that

(31) ‖Kn −K‖0 −−−−→
n→∞

0

(32) ‖ψn − ψ‖0 −−−−→
n→∞

0

We will prove that Kn converges to K in H0(∇×) ∩ H(∇·), ψn converges to ψ in
H1

0 , and that ψ = 0 and K = 0 .
Consider the imaginary part of B((Kn, ψn), (Kn, ψn)). Using the fact that σ̂ =

σ + iωǫ, we obtain:

(33) Im[B((Kn, ψn), (Kn, ψn))] =

∫

Ω

σ|
√
ωKn + i∇ψn|2 −−−−→

n→∞
0

Similarly, taking the real part, we have:

Re[B((Kn, ψn), (Kn, ψn))] =
∫

Ω

1

µ
|∇ ×Kn|2 +

∫

Ω

1

µ
|∇ ·Kn −

√
ωµσ̂ψn|2 −

∫

Ω

ωǫ|
√
ωKn + i∇ψn|2

Using (33) and the bounds (19) for σ and ǫ, we conclude that the third term in
the above approaches 0. As the remaining two terms are nonnegative, we conclude
that:

(34)

∫

Ω

1

µ
|∇ ×Kn|2 −−−−→

n→∞
0

(35)

∫

Ω

1

µ
|∇ ·Kn −

√
ωµσ̂ψn|2 −−−−→

n→∞
0

Using the bounds (19) on σ and µ, we conclude that (33), (34), (35) imply:

(36) ‖
√
ωKn + i∇ψn‖0 −−−−→

n→∞
0

(37) ‖∇×Kn‖20 −−−−→
n→∞

0

(38) ‖∇ ·Kn −
√
ωµσ̂ψn‖20 −−−−→

n→∞
0

Taking any smooth vector field Z with a compact support in Ω, Z ∈ (C∞
c (Ω))3,

using (31) and (36), we obtain:
∣

∣

∣

∣

〈i∇ψ,Z〉+
∫

Ω

√
wK · Z

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫

Ω

iψ(∇ · Z) +
∫

Ω

√
wK · Z

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Ω

i(ψn − ψ)(∇ · Z) +
∫

Ω

(i∇ψn +
√
wKn) · Z +

∫

Ω

√
w(K −Kn) · Z

∣

∣

∣

∣

≤ ‖ψn − ψ‖0‖∇ · Z‖0 + ‖i∇ψn +
√
wKn‖0‖Z‖0 +

√
w‖K −Kn‖0‖Z‖0 −−−−→

n→∞
0

which implies that

(39) i∇ψ = −
√
ωK ∈ (L2)3
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Moreover as a consequence of (31) and (36)

(40)
‖∇ψn −∇ψ‖0 = ‖i∇ψn − i∇ψ‖0
≤ ‖√ωK −√

ωKn‖0 + ‖√wKn + i∇ψn‖0 −−−−→
n→∞

0

Thus ψn converges to ψ in ‖.‖1, and as ψn ∈ H1
0 and H1

0 is a closed subspace of
H1, then ψ ∈ H1

0 .
Similarly, taking any Z ∈ (C∞

c (Ω))3, using (31) and (37), we obtain

(41)

|〈∇ ×K,Z〉| = |〈∇ × (K −Kn), Z〉+ 〈∇ ×Kn, Z〉|
=

∣

∣

∫

Ω
(K −Kn) · (∇× Z) +

∫

Ω
(∇×Kn) · Z

∣

∣

≤ ‖K −Kn‖0‖∇× Z‖0 + ‖∇×Kn‖0‖Z‖0 −−−−→
n→∞

0

Thus ∇×K = 0. This, together with (37) implies that

(42) ‖∇×K −∇×Kn‖0 = ‖∇×Kn‖0 −−−−→
n→∞

0

In a similar way, using (38) and (32) one shows that

(43) ∇ ·K =
√
ωµσ̂ψ ∈ L2

(44) ‖∇ ·Kn −∇ ·K‖0 −−−−→
n→∞

0

We have proven that (Kn, ψn) converges to (K,ψ) in ‖.‖B. To prove that K = 0
and ψ = 0, notice that (43) and (39) imply

(45) −∇ · ∇ψ + iωµσ̂ψ = 0

which rewritten in a weak form says:

(46)

∫

Ω

∇ψ · ∇ν −
∫

Ω

(−iωµσ̂)ψν = 0

for any test function ν ∈ H1
0. The sesquilinear form of this equation is a bounded

and coercive sesquilinear form, which has been shown in the proof of Theorem 3.1
for γ = −iωµσ̂. Thus from the Lax-Milgram theorem the equation admits a unique
solution ψ = 0. This and (39) imply K = 0. We have obtained a contradiction
with (29). Hence the sesquilinear form B is coercive.

If J imp ∈ (L2)3, then the right hand side of (25) is a bounded linear functional on
the space (H0(∇×)∩H(∇·))×H1

0 with the norm ‖.‖B, thus from the Lax-Milgram
theorem, there exists a unique solution to equation (25). �

The vector-scalar formulation of Theorem 6.1 forms a basis for a general finite
element simulation scheme for non divergence-free EM fields.

7. A representation of the magnetic field H

If the original field is divergence-free, a simpler weak equation involving only the
vector potential may be obtained. This approach is presented for a representation
of the magnetic field H . This representation is mentioned in [37],

(47) H = F −∇
(∇ · F
iωσ̂µ

)

Existence of this representation follows from Theorem 3.1 if assumptions (19) are
satisfied. Although in a geophysical setting it cannot be assumed that the conduc-
tivity is constant, most of the rocks have magnetic permeability µ = µ0. In this
case the magnetic field H is divergence free:

∇ ·H = 0
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In this situation, the vector potential for which ∇·F
iωσ̂µ

= 0 on ∂Ω, coincides with the

magnetic field:
F = H

We start with the standard curl-curl equation for the magnetic field H :

(48)

∫

Ω

1

σ̂
(∇×H) · (∇×K) + iω

∫

Ω

µ0H ·K =

∫

Ω

1

σ̂
J imp · (∇×K)

Substitution of
(

H −∇
(

∇·H
iωσ̂µ

))

instead of H , results in the equation presented

below:
∫

Ω

1

σ̂
(∇×H) · (∇×K)+

∫

Ω

1

σ̂
(∇ ·H)(∇ ·K) + iω

∫

Ω

µ0H ·K

=

∫

Ω

1

σ̂
J imp · (∇×K)(49)

∀ K ∈ H(∇×) ∩H(∇·), n×K|∂Ω = 0

H ∈ H(∇×) ∩H(∇·), n×H |∂Ω = n× Ĥ |∂Ω
where n× Ĥ denote tangential boundary values for H .

The sesquilinear form of this equation for σ̂ ∈ R and 0 < σm ≤ σ̂ ≤ σM < ∞ is
coercive and bounded with respect to the norm

‖K‖∇·,∇× =
√

‖∇×K‖20 + ‖∇ ·K‖20 + ‖K‖20
So the equation admits a unique solution, which is the magnetic field H .

The advantage of the equation (49) is that the sesquilinear form is coercive, even
if the term iω

∫

Ω
µ0H · K is not present, as long as the boundary of the domain

Ω is connected. This situation happens when the frequency w = 0. As a result
the system matrix is well conditioned for small frequencies. If there is a jump in
conductivity, the condition number of the system matrix increases, yet the situation
is similar to the case of a discontinuous coefficient in the Poisson equation. Even
for a high contrast in conductivity, it should be sufficient to use standard vector
multigrid preconditioners [35] for an iterative solver to converge.

This kind of regularization has been studied in the literature (see [1, 13]) without
introducing the notion of the Schelkunoff potential. Indeed, if the original field is
divergence free, then the Schelkunoff potential of Theorem 3.1 coincides with the
original field. An interesting eigenvalue analysis for the equation with and without
the divergence term is presented in [30].

In geophysical applications a computational domain is usually a convex polygon
(in magnetotellurics it is a cuboid). In this situation (H1)3 ∩ H0(∇×) is dense in
H(∇·) ∩ H0(∇×), so the use of the nodal shape functions leads to a convergent
discretization. Caution is needed when applying this method to other problems as
(H1)3 ∩H0(∇×) is not always dense in H(∇·) ∩ H0(∇×) (see [13] or Appendix B
in [6]). In application to magnetotellurics, numerical tests involving equation (49)
are presented in section 8.

8. Numerical results

In this section, the magnetic field H for a plane-wave (magnetotelluric) source
is calculated using equation (49) and compared with a field calculated by an inde-
pendent integral equation code of [36].

The considered model is a conductive brick of resistivity 1Ωm and dimensions
1km x 2km x 2km in the whole space of resistivity 100Ωm. The field is calculated
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500m above the brick, along a line going in the y-direction. The second order nodal
shape functions for a hexahedral mesh (Q2) are used for each component of the
field. A sketch of the model and the hexahedral mesh is presented in Figure 2.

The solution H is approximated by

(50) H =

n
∑

j=1

xjNj

where n is the number of degrees of freedom, Nj are shape functions. Inserting
(50) into equation (49) gives

∫

Ω
1
σ̂

(

∇×∑n
j=1 xjNj

)

· (∇×Nk) +
∫

Ω
1
σ̂

(

∇ ·∑n
j=1 xjNj

)

(∇ ·Nk)

+iω
∫

Ω
µ0

∑n
j=1 xjNj ·Nk =

∫

Ω
1
σ̂
J imp(∇×Nk)

which produces a linear system Ax = b to be solved, where

Akj =

∫

Ω

1

σ̂
(∇×Nj) · (∇×Nk) +

∫

Ω

1

σ̂
(∇ ·Nj)(∇ ·Nk) + iω

∫

Ω

µ0Nj ·Nk

bk =

∫

Ω

1

σ̂
J imp · (∇×Nk)

The total field generated by a plane wave in the whole space with the brick, is
decomposed into a primary electromagnetic field (Hp, Ep) and a secondary electro-
magnetic field (Hs, Es)

Ht = Hp +Hs, Et = Ep + Es

The primary field is a plane wave traveling in increasing z direction in the 100Ωm
whole space with H field purely in the y direction. The secondary field is the change
of the field due to the presence of the brick. The code solves for the secondary field
Hs, with n×Hs = 0 on ∂Ω. It is assumed that σ = σt is the conductivity of a con-
ducting brick in a whole-space, with the source J imp = Epσs, where σs = σt − σp
is the difference between the conductivity of the whole-space with the conducting
brick and the conductivity of the whole space. Two frequencies were considered:
0.001Hz and 10Hz. The mesh consisted of 15x15x20 hexahedral elements and ex-
tended more than 20km from the brick. The inner part of the mesh is presented
in Figure 2. The linear system had 98, 397 unknowns. QMR with incomplete LU
preconditioner converged to the relative residual norm of 10−7 in 28 iterations for
the frequency 10Hz and in 54 iterations for 0.001Hz.

Figure 3 presents a ratio of the secondary field to the primary field. The fields
calculated by an Integral Equation code [36] and FEM code that uses (49), are sim-
ilar for both frequencies. The proposed method gives proper values of the magnetic
field H .
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Figure 2. Sketch of a considered model for numerical simula-
tion(left); Hexahedral mesh cross-sections(right).

9. Appendix

Three vector identities are used. For K,L : R3 → C3, u : R3 → C, which are at
least C2 regular in Ω, we have:

(51) ∇×∇×K = ∇(∇ ·K)−∇ · (∇K)

(52)

∫

Ω

(∇×K) · L =

∫

Ω

K · (∇× L) +

∫

∂Ω

(n×K) · L

(53)

∫

Ω

∇u ·K = −
∫

Ω

u∇ ·K +

∫

∂Ω

u(K · n)

[27, 28, 5, 10, 32, 40, 22, 20, 15]
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[5] A. Bermúdez, R. Rodŕıguez and P. Salgado, Numerical solution of eddy current problems
in bounded domains using realistic boundary conditions, Computer Methods in Applied
Mechanics and Engineering, 194 (2005) 411–426.

[6] P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods, Springer New
York, 2009.

[7] R.-U. Boerner, Numerical modelling in geo-electromagnetics: advances and challenges, Surv.
Geophys., 31 (2010) 225–245.

[8] A. Bossavit, On the Lorenz gauge, COMPEL - the International Journal for Computation
and Mathematics in Electrical and Electronic Engineering, 18 (1999) 323–336.

[9] W. E. Boyse, D. R. Lynch, K. D. Paulsen and G. N. Minerbo, Nodal-based finite-element

modeling of Maxwell’s equations, IEEE Transactions on Antennas and Propagation, 40
(1992) 642–651.

[10] C. F. Bryant, C. R. I. Emson and C. W. Trowbridge, Comparison of Lorentz gauge formu-
lations in eddy current computations, IEEE Transactions on Magnetics, 26 (1990) 430–433.

[11] M. Commer, and G. A. Newman, New advances in three-dimensional controlled-source elec-
tromagnetic inversion, Geophys. J. Int., 172 (2008) 513–535.

[12] M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems, ESAIM:
Mathematical Modelling and Numerical Analysis, 33 (1999) 627–649.

[13] A.-S. B.-B. Dhia, C. Hazard and S. Lohrengel, A singular field method for the solution of
Maxwell’s equations in polyhedral domains, SIAM Journal on Applied Mathematics, 59
(1999) 2028–2044.

[14] C. G Farquharson, D. W. Oldenburg, E. Haber and R. Shekhtman, An algorithm for the
three-dimensional inversion of magnetotelluric data, In 72st Ann. Internat. Mtg., Soc. Expl.
Geophys, (2002) pp. 649–652.

[15] P. Fernandes and A. Valli, Lorenz-gauged vector potential formulations for the time-harmonic
eddy-current problem with L∞- regularity of material properties, Math. Methods Appl. Sci.,
31 (2008) 71–98.



748 M. KORDY, E. CHERKAEV, AND P. WANNAMAKER

[16] E. Haber, D. Oldenburg and R. Shekhtman, Inversion of time-domain three-dimensional data,
Geophys. J. Int., 171 (2007) 550–564.

[17] R. Hiptmair, Multigrid method for Maxwell’s equations, SIAM Journal on Numerical Anal-
ysis, 36 (1998) 204–225.

[18] R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica, 11 (2002)
237–339.

[19] R. Hiptmair, Analysis of multilevel methods for eddy current problems, Mathematics of
Computation, 72 (2003) 1281–1303.

[20] Y. Huang, J. Li, and Y. Lin, Finite element analysis of Maxwell’s equations in dispersive
lossy bi-isotropic media, Adv. Appl. Math. Mech., 5 (2013) 494–509.

[21] T. V. Kolev and P. S. Vassilevski, Some experience with a H1-based auxiliary space AMG
for H(curl) problems, Lawrence Livermore National Laboratory, Technical report UCRL-
TR-221841, Livermore, CA. (2006).

[22] W. Li, D. Liang, and Y. Lin, A new energy-conserved S-FDTD scheme for Maxwell’s equations
in metamaterials, Int. J. Numer. Anal. Model., 10 (2013) 775–794.

[23] R. L. Mackie, J. T. Smith and T. R. Madden, Three-dimensional electromagnetic modeling
using finite difference equations: The magnetotelluric example, Radio Science, 29 (1994)
923–935.

[24] J. C. Nedelec, Mixed finite elements in R3, Numer. Math., 35 (1980) 315–341.
[25] R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic

theory, Mathematische Zeitschrift, 187 (1984) 151–164.
[26] W. Rodi, and R. L. Mackie, Nonlinear conjugate gradients algorithm for 2-D magnetotelluric

inversion, Geophysics, 66 (2001) 174–187.
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