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ANALYSIS OF A SECOND-ORDER, UNCONDITIONALLY
STABLE, PARTITIONED METHOD
FOR THE EVOLUTIONARY STOKES-DARCY MODEL

MICHAELA KUBACKI AND MARINA MORAITI

Abstract. We propose and analyze a partitioned numerical method for the fully evolutionary
Stokes-Darcy equations that model the coupling between surface and groundwater flows. The
proposed method uncouples the surface from the groundwater flow by using the implicit-explicit
combination of the Crank-Nicolson and Leapfrog methods for the discretization in time with
added stabilization terms. We prove that the method is asymptotically, unconditionally stable—
requiring no time step condition—and second-order accurate in time with optimal rates in space.
We verify the method’s unconditional stability and second-order accuracy numerically.
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1. Introduction

One of the difficulties in solving the Stokes-Darcy problem arises from the cou-
pling of two different physical processes in two adjacent domains. Using partitioned
methods to uncouple the Stokes from the Darcy equations resolves this issue and
allows one to leverage existing algorithms already optimized to solve the physical
processes in each subdomain. The first partitioned methods (first-order accurate)
for the evolutionary Stokes-Darcy equations were studied in [19]. Other first-order
partitioned methods were analyzed in [17], and second-order, long-time accurate,
partitioned methods in [6]. In [15], it was shown that the implicit-explicit combina-
tion of the Crank-Nicolson and Leapfrog methods (CNLF) results in a second-order
partitioned method for the Stokes-Darcy system. However, the conditional stability
of CNLF makes the method impractical when faced with certain small-value model
parameters.

By adding appropriate stabilization terms to both the Stokes as well as the
groundwater flow equation, the proposed numerical scheme, denoted CNLF-stab
and introduced in Section 3, equations (19)-(21), is unconditionally, asymptotically
stable, as well as second-order convergent. More specifically, we prove that the
added stabilization terms eliminate the time step restriction without affecting the
second-order accuracy of the method. Further, we show that CNLF-stab controls
the unstable mode due to Leapfrog and is thus asymptotically stable.

We let Q¢, 2, denote two regular, bounded domains, the fluid and porous media
regions respectively, and assume they lie across an interface I (Figure 1). Suppose
that an incompressible fluid flows both ways across I, described by time-dependent
Stokes flow in Q2 and the groundwater flow equation in €2,,. The fluid velocity field
u = u(z,t) and pressure p = p(x,t), defined in Qy, and porous media hydraulic
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Qy: fluid domain

00,

FiGure 1. Fluid and porous media domains

head ¢ = ¢(z,t), defined in (2, satisfy
u, — vAu+ Vp = fr(z,t),V-u=0, in Qy,
Sobw — V- (V) = fyla.), in O,
u(z,0) = ug, in Qf, ¢(x,0) = ¢o, in Qp, (1)
u(z,t) =0, in ONp\I, d(x,t) =0, in ON,\I,
+ coupling conditions across I,

where the pressure, p, and the body forces in the fluid region, f;, have been nor-
malized by the fluid density, p. Denoted by f, are the sinks or sources in the
porous media region, v > 0 is the kinematic viscosity of the fluid, and K is the
hydraulic conductivity tensor, assumed to be symmetric, positive definite with
spectrum(K) € [kmin, kmax]. We assume Dirichlet boundary conditions at the exte-
rior boundaries of the two domains (not including the interface I). We discuss the
assumed coupling conditions in Section 2.

In the aforementioned equations, Sy is the specific storage, defined as the volume
of water that a portion of a fully saturated porous medium releases from storage
per unit volume and per unit drop in hydraulic head, see [9, 11]. Table 1 gives
values of Sy for different materials [8, 13]. The time step condition for stability in
regular CNLF, derived in [15], is

At < Cmax{min{h?, gSo}, min{h, gSoh}},

where ¢ is the gravitational acceleration constant, h the mesh size in the finite
element discretization, and C' a positive constant independent of both h and At.
The time step condition is sensitive to values of Sy and this can be computationally
restrictive in certain cases. For instance, since g = O(10%), if Sy < O(1073) and
h = O(1071), then the time step condition implies that At < O(Sp). A small
time step is prohibitive since studying flow in large aquifers with low conductivity
necessitates accurate calculations over long-time periods.

Another important parameter in our analysis is the hydraulic conductivity ten-
sor, . In exact arithmetic, stability of CNLF does not depend upon K. Since the
hydraulic conductivity is often very small (Table 2, [1]), and computations are re-
quired over long-time intervals, unconditional stability—independent of X—of our
numerical scheme is desirable.

In Section 2 we present necessary preliminaries and the equivalent weak for-
mulation of the Stokes-Darcy problem. In Section 3 we introduce the CNLF-stab
method for the evolutionary Stokes-Darcy model and present the proof for uncon-
ditional, asymptotic stability. We prove second-order convergence of the method in
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TABLE 1. Specific storage (Sp) values for different materials.

Material So (m~1)

Plastic clay 2.0x 1072 -2.6 x 1073
Stiff clay 2.6 x1073 -~ 1.3 x 1073
Medium hard clay 1.3x1073-9.2x 107*
Loose sand 1.0x 1073 —4.9 x 10*
Dense sand 20x1074—-1.3x107%

Dense sandy gravel 1.0x107% —4.9 x 107°
Rock, fissured jointed 6.9 x 107° — 3.3 x 1076
Rock, sound less than 3.3 x 1076

TABLE 2. Hydraulic conductivity (kmin) values for different materials.

Material Kmin (m/s)
Well sorted gravel 10-1 —10°
Highly fractured rocks 1073 — 10°
Well sorted sand or sand & gravel 1074 —1072
Oil reservoir rocks 1076 — 1074
Very fine sand, silt, loess, loam 1078 —107°
Layered clay 1078 — 107
Fresh sandstone, limestone, dolomite, granite 10712 — 1077
Fat/Unweathered clay 10712 —107?

Section 4. Section 5 demonstrates the method’s unconditional, asymptotic stability
and second-order accuracy through a series of numerical tests. Finally, we present
conclusions in Section 6.

2. Preliminaries

Before discussing the CNLF-stab method, we present the equivalent variational
formulation along with some inequalities relevant to our analysis. To couple the
two flows modeled by the equations in (1), we must add appropriate conditions
to describe the flow along the interface, I. The coupling conditions consist of
conservation of mass across the interface

u-ny —KVe¢-n, =0, onl, (2)

and balance of normal forces across the interface
p—vis - (Vu+Vu') iy =go, onl, (3)
where 7, = —ny are the outward pointing unit normal vectors on Qy,, (Figure
1). The last condition is a condition on the tangential velocity on I. Let 7;,
i=1,...,d — 1, denote an orthonormal basis of tangent vectors on I, d = 2 or 3.

We assume the Beavers-Joseph-Saffman condition, see [14, 21]:
o
which is a simplification of the original and more physically realistic Beavers-Joseph
condition, see [2]. The parameter « in (4) is an experimentally determined constant.

For more information on this condition see, e.g., [12, 20].

—Vﬁ'(Vu—I—VuT)-ﬁf: u-7;, fori=1,...,d—1, on I, (4)
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The equivalent variational formulation of equations (1)-(4) follows, see, e.g., [7].
Let the L? norm on €/, be denoted by || - ||/, and the L? norm on I by || - [|;
denote the corresponding inner products on 2y, by (-,-)¢/,. Furthermore, denote
the H' norm on Qy, by | - ||1,4/,- Define the spaces

Xp:={ve(H" ()" :v=00ndQ\I},
X, :={y e H () :1p=0o0n 0\ },
Q = L§(Qy),
Vi={veX;:(V-v,q)f =0forall g € Q}.
The norms on the dual spaces X} and X are given by

(f7 U)f/p
Ifll=1,p/p = sup o=
Li/p 0£vEX /) ||V’U||f/p

In the analysis to follow we use some standard inequalities recalled next. The first
is the Poincaré-Friedrichs inequality. The second is a trace inequality, see, e.g., [3,
Chapter 1.6, p. 36-38]. The first and second inequalities hold for any function w
that belongs to either X; or X, and the third inequality holds for any v € Xj.

lwllf/p < Cp;,, IVwlly)p, for some constants Cp,, >0, (5)

1 1
[wllz200;,,) < C’Qf/p||w||J%/p||Vw||)%/p7 for some constants Cqo,, >0, (6)

IV - ull; < Vd||Vul|s, where d =2, or 3. (7)
Define the bilinear forms
d—1
ar(u,v) = (WVu, Vo) + ;/l ﬁ(u -t (v 7)) ds,
ap(¢a 1/}) = g (KV¢7 V’l/})p )
cr(u, @) = g/qSu -y ds.
I

The interface coupling term, ¢/ (-, -), plays a key role in our analysis. The following
inequalities hold for our bilinear forms.

Lemma 1. The bilinear forms as(-,-),ap(-,-) and ci(-,-) satisfy

ap(u,v) < max {v+1,271C(Qp)ak i1 Hlull sl 1. (8)
d—1

ap(u,u) = vI|[VulF + ok 2 3 / (u-#)? do > v]|Vul}, (9)
=1

%(d%l/)) < gkmawHV(pr”VwHPv (10)

ap(6,8) > hninl| V62, (1)

ler(u0)| < 27 9C(, )llul1 1]l 1, (12)

for all u,v € Xy and all ¢, € X,.

Proof. The proofs are straightforward. For the first four inequalities, see, e.g., [15,
Section IT Lemma 2.3]. For the last, see, e.g., [18, Section 2 Lemma 2.2]. O

An additional inequality on the interface term is given below and holds under
conditions on the domains §2¢,€2,. The constant Cy , depends on €/, and in the
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special case of a flat interface I, with ; and ), being arbitrary domains, Cy,,
equals 1, see [18, Section 3 Lemmas 3.1 and 3.2].

ler(u, )| < gCypllullaiv,s0ll1p, where [[ulFiy, ;= llullF + [Vu]F. (13)
The variational formulation of the Stokes-Darcy problem (1)-(4) reads: given u(z,0) =
uo(z), ¢(z,0) = ¢o(z), find w : [0,00) = V, ¢ : [0,00) — X, satisfying
(Ut,U)f+af(U, U) +C](’U,¢) = (ff?v)f7 (14)
gSO(¢ta¢)p+ap(¢a¢) —CI(UJ//) :g(f;mw)}% (15)

for all v € V4, and ¢ € X,,. The existence and uniqueness of a solution (u, ¢) to
the problem (14)-(15) follows by the theory of saddle point problems found in, e.g.,
[4, 5], established in, e.g., [16].

We discretize in space using the Finite Element Method (FEM). Select a quasi-
uniform triangular mesh, 75, for the combined subdomains, Qf U €2,, where h
denotes the maximum triangle diameter. Next, choose FEM spaces based on a
conforming FEM triangulation:

Fluid velocity: X} C X,

Darcy Pressure: X;,’ C Xy,
Stokes Pressure: Q’} C Qy.

Additionally, we must select X J’} and Q? so that they satisfy the discrete inf-sup
condition (LBB") (see, e.g., [10]) for stability of the discrete pressure. Notice that
th ={vp € X}L (qn, V-up); =0 Vg € Q'}} is not necessarily a subspace of V.
Hence, we must include the incompressibility condition (17) in the semi-discretized
formulation. Given up(x,0) = ug(x), ¢n(x,0) = ¢o(z), find (un,pn, ¢n) : [0,00) —
X}L X Q}]} X X;} such that

(un,t,vn) 5 + ap(un,vn) — (Pr, V- )5 + cr(vn, &n) = (fr,vn) s, (16)
(qn, V- up)y =0, (17)
950(Dnt:Vn)p + ap(Dn¥Yn) — cr(un, ¥n) = g(fo, ¥n)p, (18)

for all (v, qn, yn) € X} x QF x X}
3. CNLF-stab Method and Unconditional, Asymptotic Stability

The CNLF-stab method for the numerical solution of the evolutionary Stokes-
Darcy problem given in (1)-(4) is introduced next.

Algorithm 2 (CNLF-stab Method). Let t" := nAt and v"™ = v(z,t") for any
function v(x,t). CNLF with added stabilization for the evolutionary Stokes-Darcy
equations is as follows.

Given (uff,pk, k), (uk=1 pk=t oh=1) ¢ X}L X Q? x XN, find
(up P pp i) € X x Qi x XD satisfying for all (vh, qn, ¥n) € X x Q< X[
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k+1 k—1 k+1 k—1 k41 k—1
Up — —Up Up — —Up up ' Uy
Ph T %h B i S S S v Zh TR
( 2At 7Uh) f + (v ( 2At ) 7 Uh) f + af < 2 ,vh>

- <p’,j+1+p’,jl

2 ,V"Uh> +CI(/Uha¢]iCL) = (f]]??Uh)f’ (19)
f

(qn, V- Uﬁﬂ)f =0, (20)
n+1 k—1 k+1 k—1
_ +
950 (Wﬂ/’h) +ap <}12¢ha1/}h> - CI(“Zﬂ/’h) (21)
P

+Atg? 3, { (05 = o), + (V65T = o), Vun), | = g(f vne
where Cyp, is the constant from inequality (13).

CNLF-stab is a three-level method. The zeroth terms, (ul,p?,#"), come from
the initial conditions of the problem. We must obtain the first terms, (u,p}, ¢} ),
by a one-step method, for example Backward Euler Leapfrog (BELF). The errors
in this first step will affect the overall convergence rate of the method. Notice that
the added stability terms,

k1 k—1
(V- (W) , V- vh> in (19) and
!

Atg?C? {( )+ (VT - ﬁ’l),VW)p} in (21),

are O(At?). Similar to CNLF, CNLF-stab uncouples the Stokes-Darcy equa-
tions into two subdomain problems by treating the coupling terms explicitly with
Leapfrog. By adding the above stabilization terms to CNLF, we eliminate the CFL
type time step restriction for stability. The proofs of unconditional and asymptotic
stability of CNLF-stab follow.

Theorem 3 (Unconditional Stability of CNLF-stab). CNLF-stab is uncondition-
ally stable: for any N > 1, there holds

1 ~ _
§(||uhN||§w,f+||uhN NZiwr) + 950 (IR 112+ llon —12)
At =
Tty DoAYV (™ g 1F + gkminlV (057 + 057 115}
k=1

< Nup s + 1430 s + 90 (16512 + 165112) (22)
+2020°C3, (141, + IR ) + 28t {ex (6, ul) — ex (6}, )
N—-1
At 1 k12 g k2
+ > 2 {V||ff||1,f + %pr 121, ¢

Proof. In (19), (21) set v), = u]fb"'l + u’fb_l, Uvp = ZH + (bi_l . Then the pressure
term in (19) cancels by (20). Adding the two equations together and multiplying
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both sides by 2At yields

||uk+1||div,f - ||’LL ||d1v f +gSO (||¢k+1||p - ||¢]}€Lil||12))
=+ 2At2g20?p (||¢k+1||1,p )

+At{af(k+1+u;cll k+1+uh )+ap(k+1+¢k1 k+1+¢ )}
+2At (cz(u’“+1+uh Lor) —er(uf, ¢E T 4+ ¢p )

{(ff’ ub gy h )f+g( i BHL | ghe )p}

If we let

Ck+1/2 (¢h7 k+1) CI( i"'l,u’,ﬁ),

then the interface terms in the equation above become
1 _1
cr(u kH"’“h o5 — er(ug, k+1+¢ hy=Ctz - ke,

Using coercivity of the bilinear forms ag,,(-,-), the dual norms on X, Xy, and
Young’s inequality we obtain, after rearranging,

ub 3 s = b Ry + 950 (1612 — llof=112)
+ 20826202 ([loF Y2, — lof 12 ,) + 248 fCF+E — oz
f.p P h D

_ 23
2L (4 ) 3+ gkl (6 05 12) (23)

At
< S+ 2R

Denote the energy terms by
k k
EFY2 = g™ G g+ i i, + 950 (lon 15 + 167 17)

+28%6°C, (165 1T, + 16617 ) -
Then (23) becomes

EMZ B {vllV( Pl ) 11 4 ghanlV (65T + 0871 12}

_ At (1 g
YN {o’““/z _ct 1/2} <5 {Vllf}“llzl,f + m”lefllzl,p} :

Sum up the inequality from k=1to N — 1 to find

At _
ENT12 4 Z{unv (b uB Y 2 4 ghnin |V (05T + 0E71) |12}

N—1/2 1/2 12, At RS T 9\ k2 2
+2ALC <EY? 40 +7; {V||ff||1’f+m||fp||1’p}.
Applying inequality (13) to the interface terms involved in the term CN—1/2 gives
ler(u s &3 ™I < 9C s pllug laiv, £llén " ll1,p and

N— N—
ler(uy =Y O] < gCplluy ™ Hlaiv. 197 11p-
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Therefore, we may bound the term CV~1/2 by the Cauchy-Schwarz and Young
inequalities as follows.

2AtCN T2 < = (||Uh I3iv.f + gy 1H<21iv,f)

+ 288%62CF, (lloy I, + 10w

15)-
Thus,

1
ENTIVZ L oAtCN T2 > 5 (Jlup’ ”dlv,f + [Jup H?iiv,f)
+ 95 (lon' 112 + llon 17) -

After combining inequalities (24) and (25) we achieve the desired unconditional
stability bound (22). O

(25)

The following corollary shows that the stable modes of Leapfrog, (u; kL uh )
and (¢, KL ngk 1), are asymptotically stable in the CNLF-stab method.

Corollary 4 (Control of the Stable Modes). The following inequality for the stable
modes of CNLF-stab holds for all At >0, h >0, and N > 1:

N-1
t —

TN IV @ Y 12 gkl V(65 R (12

P (26)
At 1 g
<priovr 8y {an}?n%l,f s |f;;|2_1,,,}.
=1 mwn
Additionally, if fr = fp, =0, then the stable modes converge to zero as n — oo.

Proof. Drop the positive term “3 ([[up [laiv, £ +I1u™ | aiv,£)+9So (@8 12410V ~1|2)”
from the left-hand side of (22) in the proof of Theorem 3. This proves control of
the stable mode.

When f; = 0 and f, = 0, the bound (26) implies that > 0", [V (up ™! +up~")|[3
converges. Thus, |V(uf™ + ")y — 0, as n — oo, and by the Poincaré-
Friedrichs inequality, Hu”“—&—u;’_lﬂ 5 — Oas well. (Similarly for (¢}t +¢71).) O

In Theorem 5, we show that CNLF-stab also controls the unstable modes of
Leapfrog, (uzJrl —uy 1) and (o ntl _ d)Z‘l), and that they are asymptotically
stable.

Theorem 5 (Control of the Stable and Unstable Modes). The CNLF-stab method
controls both the stable and unstable modes for all At > 0 and h > 0. That is, there
exists M > 0, such that for any N > 1,
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N-1
M {At DAV +u DI+ IV @+ a7

+ z:{Hulchl g lon T = 0h S + Aot — g f,p}}
N2 k|2 k)2 k)2 (27)
S ALY ANy + 1512 0 + A LI+ 155 15)}
k=1

g G + i i + 10015 + I9RI15 + AL GR11T , + I 9h115 )
+ At ([IVup [ + 1Vapll7 + VRl + 1VORI7)
+ At (er(uy,, 83) — ex(up, éh) + er(uf, — up, @1) — cr(up, 65, — d4)) -

Proof. Set vy, = 26At(uf ™ —uf ™) and ¥y, = 20AL(F T — o8 ) in (19)-(21) where
6 > 0 will be determmed later. After adding the equations, this produces

J {||Uk+1 - Uh Ei gt 950H¢k+1 h - ¢Z+1| ip
+ 0At {Ak+1/2 — Ak_l/Q} + 26 At {c( u’€+1 Loy — cI(UfL, A+l _ Zﬁl)}

= 268t {(ff,up ™ —ui s+ g(fh T — o) >}

with AFT1/2 .= af(u;fr1 ’”1) + ay( kH, Z“) + af(uﬁ,uﬁ) + ap(qﬁ’f“ (bﬁ) > 0.

Next, use Cauchy-Schwarz and Young’s inequality on the right-hand side, absorb
the resulting unstable mode terms into the left-hand side, and sum from 1 to N —1:

SALANTYZ 1 5(1 Z {lap ™ =i & + gSolloh ™ = 637 I}
k=1
N-1
+5EZIIV up = TG+ 208826°CF, D llon T - eI,
k=1

+25Atz {er(up™ —up™h o) — er(up, op = o3~}

SAL2 T g
<oneat’ + L5 Lists + Z1gsie)
k=1
In the previous equation, € € (0,1) is the constant arising from Young’s inequality.
We add the above inequality to (26) obtained in Corollary 4 to find
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N-1
SALANTY2 4 6(1—e) ) {lluy ™ — i Wi, s + gSollen ™ — 0T )
k=1

N-1
+ 8¢ Z ||V k+1 )Hf +25At2 QCfp Z ||¢k+1 k‘+1||17p
k=1
N-1
+ 2008 {er(uptt —uf T of) — er(uf, of T — of )}
k=1
o (25)
t _ _
5 Z VIV @E + )2 + ghin [V (64 + 057112}
k=1
No1 g
< OAtAY? + BV 1 2AtC2 4208 Y {an,’fu?_l,f + k_nf;fn?_l,,,}
=1 min
OALE S [ ks 9 2
#2201
N-—1
To simplify notation, let @ = 26At kz {er(ui ™ —uf = oFy —cp(uf, i — i)},

=1
The next step is to bound and subsume the couphng terms in Q. We first rewrite
them in terms of the stable and unstable modes as follows. For k > 2,

er(uy™ —uy” 7¢h)-—67(uﬁ7 M=o

:%Cl(ulfi—‘rl_uh a(bh h )+lc( ﬁ—i_l_uh a¢h+¢ )
— ger(uf —up 2 optt = op ) = Ser(up +up % op T = gh ).
By (13),
N-1
k k— k— k—
Q < 6AtgCrp > {llup™ = uf awv.s (165 — &5 lup + 65 + 6 2ll1)
k=2

(29)
k k k—
+ (Huh - uh 2||d1v rt ”“h + Uh 2Hdlv f) H@b + ¢h 1||p}

+ 20 At [C[(Uh — uh, (bh) - CI(uha ¢h - (bh)} .

Bound the terms with the stable modes above by Poincaré inequality (5) and in-
equality (7):

luk 4wy laiv.r < 1/C3 s+ dlIV (uf, +up )5,

165 + 52 lhp < /1 + CRLIV(en + 6,72 -

Apply Young’s inequality to all terms on the right-hand side of (29). Let B =
AtgCy,,. By Young’s inequality, for any €123 > 0, there holds
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BQ
k k— k— k kf k—
Blluf ™ — ™ v g0 — 0 2llp < Gl — b s + 50 — oI,

Blup ™ = uy ™ laiv. 6% + 05l

nB*(1+C3,)

€2 k+1 —12 P k k—2
< 5”“;;r - I iv,  + 2—62||V(¢h + & Iy

_ €1 _
Bllup, — w,*llawv,glloh ™ — 657 lp < 5l — uy” 2IIdeJrflkb’““—<f>’,i gl

1,p»
BHuh + uh 2”dlv f”(bk+1 - ‘ZSZil”p
C2
- e3(Cpy +d)
- 2
Using the above bounds, simplify (29) and bhlft the index of the sums to obtain a
bound for Q by the stable and unstable modes.
)
Lp

2

ko k— k k-
IV Cufy + )1 + ||¢> SR [

Q< Z { €1+ 52 ||uk+1 _ uh Hdlvf +92At20fp( )||¢k+1 ¢§71|
=1
N—-1

NN

+ {CPf+d 3|V (u k+1_“h )Hf

k=1

2 2 2
ge At Cc? (1+CP ) _
+ f,Z;Q P Hv( k+1 ¢;<:l 1)||;2;

+ 20At [CI(U%L - u(})w ¢:}lL) - Cf(u}w ¢%L - ¢(I)L)] .
Incorporate the bound for Q so that (28) becomes

N-—1
1 _
5 {(vAt —5(d+ C} p)es) VU™ +uf )5}
k=1
1= 59> At*CF (14 C%,) R+l | k=12
+ 5 gkminAt - ’ ||v( + (bh )”p
€2
k=1
N—1
+0 ) {((1=e)—(er+ ) lup™ —uf " ai s}
k=1
N—-1
+6 ) {(gSo(1 =) lof ™ — o2}
k=1 (30)
+ de Z {IV - (™ —uf )3}
N—-1
+0g2802C3, > { (2= (& + ) loh™ - of13,.
k=1
N—

SAL?
<3 fome (Listia s+ gaies, )+ 22 (i + Zagie)}

tA1/2 +EY? 4 2AtC’1/2 + 20At [c[(ui —ul, or) —cr(up, p3 — (;52)] .
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Control over the stable and unstable modes, ||V (wy ™ +wy 1) £ /p, [[w) T —w) ™ /0

for w = u, ¢, respectively, as given in (27), is obtained provided the coefficients of
the sums on the left-hand side of (30) are positive:

vAt —6(C% ; + d)es > 0,
09> At*C7 (14 C3 )
€2
(1-¢)—(e1+%) >0,

2— (£ +55)>0.

2e3

Gkmin At — > 0,

Rearrange the last two inequalities:

€1+ % 1 1
— <1 —+ — <2
1—¢ g1 2e3
Many choices of € and €2 3 will satisfy these requirements. For example, choose

e=¢ey=g,61 =32, and e3 = 3. Then

ei+% 344 13 1 1 4 1 5
1—¢ % 14 €1 + 253 3 + 3 3
As for §, choose
vAt Kkmin€2
0 = min , > 0.
{ (d+C% p)es” gALC? ,(1+C3 ) }

Thus, with careful choice of §, ¢, and €; 2 3, one may find a positive constant M,
independent of mesh width, h, and time step, At, so that the inequality (27) holds.
This in turn implies control over both the stable and unstable modes and hence
asymptotic stability for CNLF-stab. (]

4. Error Analysis of CNLF-stab

In this section, in Theorem 7, we establish the method’s second-order conver-
gence over long-time intervals. An essential feature of the error analysis is that no
form of Gronwall’s inequality is used.

We assume that the FEM spaces, X J’}, X[j, and Q?, satisfy approximation prop-
erties of piecewise polynomials of degree r — 1, r, and r + 1:

inf |lu—u < O™ || gr
=l < O0

. _ s
u:g(?uu upll1,r < CR"||ul| griv(apy

. - r+1 1
¢12§(3H¢> Onllp < CR |l rr1(a,) (31)

h

f e
hng{;M o

; 1p < Ch |9l mri1(a,)

int [lp— pully < CH™*pllzess oy
PrEQY

Moreover, we assume that the spaces X ]}} and Q? satisfy the (LBB") condition. As
a consequence, there exists some constant C' such that if u € V¢, then

inf ||lu—wv <(C inf |lu—=x 32
Uhevhll nlls < Zhex}lH rllgs (32)
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(see, e.g., [10, Chapter II, Proof of Theorem 1.1, Equation (1.12)]). Let N € N be
given and denote t" = nAt and T = NAt. If T = oo then N = co. We introduce
the following discrete norms.

oll320meme o,y = At Y V¥ lI3e(q,,):
k=0

|||U|||L°o(0,T;Hs(Qf,p)) = OE&XNHU ||H (2 .p)"

In the proof of convergence to follow, we will need the bounds of the next lemma.

Lemma 6 (Consistency Errors). The following inequalities hold:

uF R (A
Z A7 < 20 ||Uttt||L20TL2(Qf)) (33)
k=1 f
N-1 2
L e
kz i , < 50 | peet |3 2 (0,T5L2(2,))> (34)

N-1 wkHl -1\ (|2 4
+ U T(At
Ay |9 (- ) < " oz 9
k=1 f
N-1 2
¢k+1 +¢k 1 7(At)4
At \Y (¢k S % Dot 172 0,751 (2, (36)
k=1 P
N-1 W= (AR
X |9 (uf - )| < G IVuliorsey. @D
k=1 !
N-1
At I+ — 6" H13, < AALNbel 20,7810, (38)
k=1
Proof. For (33)-(37) see [15, Section 3 Lemma 3.2]. For the proof of (38), we have
N-1 N-1 ot 2
ALY [lo" T — "2 = At Z / / ¢y dt | dx
k=1 2 \Jte—
tht1 el
<At/ / dt/ ¢2 dt do
Qr k=1
tk+1
= At Z 2AL / ¢? dt da
Qf =1 et
tk
< 2At2/ 22 ¢2 dt da
Qf =1 thk—1
= 4At2||¢t||2L2(o,T-,L2(Q,,))- (39)
Similarly,
ALY IV (" =" |2 < ANV il 22070200, ) (40)
Inequalities (39) and (40) combined give (38). O

Denote the errors by e} = u™ — uj; and ey = ¢" — ¢j,.
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Theorem 7 (Second-order Convergence of CNLF-stab). Consider the CNLF-stab
method (19)-(21). For any 0 < ty =T < oo, if u, p, and ¢ satisfy the regularity
conditions

we L*(0,T; H2(Qy)) N L>°(0,T; HHH () N H(0, T3 H (Q4)),
p € L*(0,T; H (),
¢ € L*(0,T; H™2(Q,)) N L>=(0,T; H'(Q,)) N H*(0, T; H(Q,)),

then there ezists a constant C > 0, independent of the mesh width h, time step At,
and final time ty =T, such that, for N > 1,

1 _ -

Ul WG + lleg ™ Nan.s) + 9Solllep I + ey 115
At N-1
2

{VIV (R + 53 + ghmanl V(e + 52}

k=1

< C {h2T (|‘ut‘|%2(O,T;HT+1(Qf)) + |||U|H%2(O,T;H’”+1(Qf)) + |||u|H%°°(O,T;HT+1(Qf))
FAE |Gt 17 20,7, 1.0, )) + H|¢|||2Loo(o,T;Hr+1(Qp))) (41)
R <|||p|H%2(O,T;H““+1(Qp)) + 16411720, 1: 571000, )) |||¢|||%°°(O,T;HT+1(QP)))
+Aait (””t“||2L2<o,T;H1(Qf>> sl oo 2t 0,) + 1002l Z2 0 72222, )

20}

Proof. Consider CNLF-stab (19)-(21) over the discretely divergence free space

Vh={u, € XJ’} :(gn, V-vp)f =0 Vg € Q?},

instead of X]}}, so that the pressure term ((p’fb"'l +pﬁ_1)/2,v -vp) cancels out.
Subtract (19) and (21) from (14) and (15) evaluated at time t* to get:

k+1 k—1 k+1 k-1
kU T U _ Y TR .
(ut 2At ’Uh>f (V ( 2At > 'V U”)f

k+1 k—1
—|-le <uk _ M7vh> — (pk,v "Uh)f +cr (Uhaqzsk _¢fb) = 0’

. k1l k1 . BE1 g gk
950 t_vah +ap| o —%,wh
P

= Atg*CF {63 — o )y + (V0T = 6571, Ven), }
—cr (uk - U’fbﬂﬁh) =0.
Since vy, is discretely divergence free, we have that

(pk,V-vh)f = (pk —,\’g,v-vh)f, for any A\ € Q’;.

2
eI a0.rm2 @ + 16ullia 0z ) + ek s + lep
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Further, (V -uf, w,) = 0. Thus, after rearranging we get:

I;Jrl I;c 1 I;Jrl 6];71
f f
k+1 k—1
+e
+ay (fzf ) o (un,ek)

k+1 k—1 k+1 k—1
N _ ok U —w )
= (Ut oAl ,vh)f (V (ut oA ) , vV vh)f

k+1 k—1
U —+u )
—ay (uk — 2,vh> + (pk — )\Z,V-vh)f

k+1 k—1 k+1 k—1
e —e e +e
950 (Wﬂﬂh) +ap <p2pﬂ/}h>
p

+AtG? O {(ep ™ = e )y + (Ve ™ =g ™), Vin)p} — 1 (e, vn)

k+1 k—1 k+1 k—1
= —950 (cﬁf _? (b ﬂ//h) —ap <¢k - W,%)

+Atg2CF, {(6"T = 6 ), + (V(o" T = 0", Vi) ) -

Denote the consistency errors by:

k+1 k—1 k+1 k—1
k _ E U —Uu EU —Uu
er(vn) == (“t B m’“h)f_ (V' <“t B 2At) ’v'“h)f

. bt k-1
—ayf|u —f,vh ,

¢k+1 ¢k 1
5§(1/}h) = _gSO (¢1]5€ - ﬂf/h) + Atg20?7p {(¢k+1 - ¢k717¢h)p
p

2At
k+1 k—1
V@ = 6,90, ) - ap (o = ).

Decompose the error terms into
ekl g k1 E4+1 _ ) k41 ~k+1 ~ k41 k+1 k+1 k+1
ey =ut —wy = (W = atT) (@7 ) = +&7,

€§+1 — ¢k+1 ¢k+1 (¢k+1 (ng+1) + (ékqtl _ Ili—&-l) k+1 +£k+17

and take @51 € VP and ¢Ft1 € X!, so that f?“ € V. Then the error equations
become:

5k+1 5?71 €k+1 5/}?71 €k+1 +£‘];71
( IAL , Uh f+ V. IAL ; Un f+af ) y Uh

k+1 k—1 k+1 k—1
k ny "y My Ty
+ cr(vn, &) = <2At7vh f— V- oA Voo .

(5

9 ,Uh) _CI(’Uh7n1]f)+E];(Uh)+(pk_Afwv"Uh)jw
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k+1 _ ¢k—1 k+1 +§ & &
g5 | T gay o wn | tap fﬂ% +Mtg*CEL (G =67 )
p

(VT =&, V) — cr(€F,vn)

k1 _ k-1 1 k-1
n -n n + 1
= —950 (p 5A = ﬂ/}h> —ap (p 5 Jﬁh) + cr(nf,vn)
p

= Atg*Cf, {(np ™ My ), Vn)p}t + ey (n).
Pick v, = §k+1 §f V" and ¢y, = fg“ + 5571 € X;} in the equations above
and add to obtain:

=y L n)p + (V™ —

e (||s'€“||div s+ 9S0llEh T2 + Ag2CE IR R )

— 5 (1 B s+ 9Solleh 12 + g,

2)
+[ene ) g )
b a4 T ) a4 g 1 )
1 k k k k—1
- o (T g ),

+(V (=), V- (e - §k+1))f]

1 k+1 k—1 ¢k+1 k—1
2At[gSO (T]p T}p s Sp +€ )p

+At920fp {( b+l _

L e+ (VO ), Ve )
1 _ _ _
-5 o (n'}“ TG ) by (T g g7

— [er(f €5 mh) - cf<n§,5§+1 +¢7h)

A R (e A ()

Rewrite the coupling terms on the left-hand side equivalently as follows
cr(€ &L G) —erlEh T G

= (erlef ™ 6h) —enleh &™) = (erleh 6671 —en(ef 0

_ kts k—g
=C; *-C; .
If we denote the £ energy terms by
Ek+1/2

€5 Wiv.s + €5 s + 950 (™12 + 1 12)

k
+A2g°CF, (167117 5 + 1E511 )
and also apply the coercivity of the forms ay(-,-) and a,(-, ), the inequality becomes
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EFFV? pomcttt — BETY? anict

i3
+ At (vnwsk“ NI + ghuin V(€S + €57112)
k+1 k+1 k—1 k+1 k—1 k+1 k—1
<—[(nf+ gtegT) (Vo () v (g g ))J
=[98 @t g ), 28007}, {0 - ),
(VT =), VT ), )] (12)

- At iaf (Wlfﬂ +oy et +fif71) +ap (" TG+ 5571)}
— 2t [01(5’”1 & hmy) — 01(?7f G+ ¢ ’1)i

28 [ T 08 NV g g

where we multiplied by 2At¢. Next, we bound each term on the right-hand side of
the above inequality. We bound the first two terms by the Cauchy-Schwarz and
Young inequalities along with the Poincaré inequality (5) and inequality (7).

k+1 _ k+1 k—1 k+1 k—1 k+1 k—1
(nf af ‘i‘ff )f‘i‘(v (77f — Ny )a (f ‘i'ff )>f
6C3, _ _
< Atfllnk+1 7 + IIV( P - )||f+A1ﬁ*||V(£kJrl &I

gSo( k+1 7711; L £+1+£ 7) oA 2Cfp{( k+1 775 L Ilf+1+£ 71)1)

TV ) Vg g ), )

- 15gCP7p
= 2kmin At
30At3 304 B gkmm
P2V (g = ) I AR T+
To bound the second term, we apply the continuity of the bilinear forms a(-,-)
and a,(-,-). Letting M = v+ aCk_, 1/2 gives:

min

ar(i™ 0 LG G+ ap(n,’.f“ /R SRR S

(Sg +4At*g*Cy ) Iy =i HI12

SMIVEFT Hnf OIAVETT + €7Dy
+ gkmaxnv( AR 77p )||p||v(€k+1 + 55_1)“}7
5gk2

3 - max
< 7IIV( P I+ S IV Ot

2k
k+1 71 2 gkmm k1 ch—1y)12
HV(£ M + V(& + &7 Dz

We bound the couphng terms on the right—hand side using the trace (6), Poincaré
(5) and Young inequalities. Letting C' = C%fCép Cp,tCppg?, this yields
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(€ &) —a i T+ 6T

< g (I + €570 < agllalimglls + I wfnzngk“ + €7 )

< Co, Ca,g (€57 + €571 12UV + DI In 1219k 12)
+ (st + eIt + 5,’3-1>||,1/2||nf||“2||wf||”2)

<V (Ivigft + *1>||f||v77;f||p+||an||f||v<s;f+l+5§-1>||p)

< 7HW’;H?« + gmnvﬂzni IV + I3

kmln
T (g5 + 512

+ =

Finally, we bound the consistency errors, e% and eff, and the pressure term by using
the Cauchy-Schwarz, Young, and Poincaré (5) inequalities as well as inequality (7):

(§k+1 _|_§1;—1) _ (uf _ W;Tafk—H + g’;—1)
)
e R MG

k+1 k—1
+u _
+MHV (uk - )H )nv (e

2 2

902 k+1 _ k=1 M2 k+1 k—1
< P,f‘Utu 2Au +9 V(uku ;ru )
tolly v 7
942 wk L k1 |2 -
= \Y (Uf - M) H Hv(ka +§]; DI,

2At
+At920?7p{ ¢k+l _ d)kfl k+1 + )p
+(v(¢k+1 ¢k 1) ( k‘+1+ )p}

u (¢k¢k+1;¢k 17§k+1+§k 1> <

k(ektl | gh—1y _ A kL gkl
€p(€p + gp ) - gSO ¢t 5
P
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k41 k—1
< (Cp,p \v4 (¢k _ M)

k+1 _ 4 k—1
w +gkmax 5

oF —
28t |,
+Atg*C2 (V@™ = " )|,

Oy llh ! — ¢51,) ) I(EE+ + 51,

—1112
R T — gkt N 10A2g*C1 O3

p

2,12
< 1OgSOCPaP Pp ||¢k+1 ¢k—1 ”12)

o kmin K 2At P kmln
10At2 30?:0 \V/ k+1 k—1y12 1ngmaux \V4 k ¢k+1+¢k_1 ?
e L R e MG |
gkmln
IV (s + 12,
G <s’f+1+ejf-1>) < lIp* = AElAV - (€5 + )5
< S NI + LV eI

After absorbing all the resulting £ terms into the left—hand side of inequality (42)
and grouping together the remaining terms, the inequality becomes

BT E pomcltt - BEE —onic)

_ Ef
At _
+ 5 {VIVET + €703 + ghun V(65 + 512}

- 6CP 159013 -
< (ap) { —PL |t g3+ R (834 4 GPCH ) st —

k k—
AL g - 1>||§}

30At2g3C* 3M ~
+At{fpV( s =) ||p+i||V( PO

kmin

5gk2,.. _ 12C 10C
PR |V I3 + IV o

2kmln
v <uk B uk+1 +uk—1)
2

2
12d” .

w1802
- -

t
2At f v

ok uF L k1 2
Yt 2AL

f
18d?

Aully
f

1112 2.3
2095(%0123,1) k ¢k+1 — ¢k ! + 20At 9 C CPP ||¢k+1 k—lHQ
kmin t 2At p kmin P
0A26°CH, it e L 200k (o (g 85+ e |
T g (gt - gk 2+ = -t
min min P
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Now, we sum this inequality from £ =1,..., N — 1. This yields

AR TN To AR O L TN ToK
N—-1
At - .
7 Z {VHV (§k+1 1) ||?C +gkmin”v(§£+1 _|_£Ilf 1)”12)}
k=1
N-1
P —
-1 Z{ fH k+1 77]; 1”?
k=1
159C% .
SR (6 4 AACE,) I — I+ ST () 13
30At2¢3C4 .
o Z { I MU )”2+7IIV( FARE [

m1n

5gkmax k1, h—1yy2 , 120 O pio 100 k2
g B T D)2 4+ T + = V)
18C% uF k12 182 L uFtl gkl 2
+— || — SAL + V(u* - —
f v f
1842 Y AN - oAk
T V(Ut—m> f‘*‘f“ Anlls
20953C3, || o OFFt—oF P 20A8%63CT CRL it e
+ kmin t AL ) + kmm ||§ZS d) Hp
20At2g3C4 . 20qk2 k+1 k—1
— f.p ||V((l5k+1 . ¢k—1)||12) ]f max |y (¢k,‘ . ¢ ‘;(b )

f

)

723

To obtain a bound involving norms instead of summations, we use the Cauchy-
Schwarz and other basic inequalities to bound each term on the right-hand side as
follows. For the first term, we have:

N-1 2

tk+1
Z It =M=

/ ’I]f’t dt
1 tk—1

N-1 o1

<> [ ean [l dedo
Qf tr

k=1

!

< 4At||’l7f7t||%2(O,T;L2(Qf))'

Likewise, we treat the second term,

Z gt =y I3 < 4At||7lp,t||2L2(0,T;L2(Qp))-

In a similar manner we bound the third and fourth terms.

Z IV = hIIF < AALIV 120,702 (0,
k=1
N-1

IV (st =5~ < 4DV il 20,7220, ))-
k=1

(45)

(46)
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Inequalities (43) and (45) imply the following.
N-1

S I = nf R IV = I3} < AAtnpal ey (47)
k=1

The rest of the n terms are bounded using Cauchy-Schwarz and the discrete norms.

Z IV + s )2 < 2 Z (15213 + 19t 13)
k=1

(48)
N
Z ||V77f||f < 4(At)” 1|||V77f|HL2(0 T;L2(Q))
k=0
N-1
IV Ot 4y~ DT < 4A) V[l 720,120, ) (49)
k=1
N-1
IVn§13 < (A) ™ NIVl T20,7;2(0,)): (50)
k=1
N-1
IVl < (A Vel 20,7220, ) (51)
k=1
D IpE = X7 < (AP = MlllZ20.0;22(0, ) (52)

After applying the bounds (43)-(52), along with (33)-(38), and the bound (25) from

the stability proof, and after absorbing all the constants into one constant, Cy, the
inequality becomes

1 N— _
SUEF NGiv s + 1165 lEiv, ) + 9So(ligy' I + 1165~ 115)

At = _ _
+ 5 D {VIVET + €73 + ghainllV(ET + 65712
k=1

<G {||77f,t||2L2(o,T;H1(Qf)) + (|11 %Q(O,T;LQ(QP)) + At4||V77p7t||%2(07T;L2(Qp))

2
Vs 2 0.7,020,0) + VIl 220,7;22(0,)) + At (”utttHL?(O,T;Hl(Qf))
2 2
F el 20,500 (0p)) T 190l 2 0,0:02(0,)) ||¢t||%2(O,T,H1(Qp)) (53)
2 1/2 1/2
+ ||¢tt||L2(O,T;H1(Qp))) + llp — )‘h|||%2(O,T;L2(Qf))} + Eg/ + QAth/ :
Recall that the error terms equal
ef =uN —wy =i +¢f, e =N - =) + &)
Applying the triangle inequality we have
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1 N— 950 _
Z(IIe}VIIiV,ﬁllef 1||§iv,f)+7(\\eﬁlli+lleév 2
At N-1

4
k=1

1 _
< SUIEF NG, r + 167 i) + 9So(lIE 15 + ll€g 117

VIV + 53 + gl |V (e + e )2}

e
AUV 1 B + gk VT + €2

2
k=1
1 2 2
5 Unf Wi g+ Y 3 ) + g0l 12 + Imy = 112)
AtN_l
+ 5 > (VI I + g D+ )2}
k=1

Notice that anprp, H77f 1||fp < |||77f,p|||Loo 0.1;L2(0;.,)) and therefore

8 (v, s < dlllng 7o 0,700 0y
This fact, together with the previous bounds for the 1 terms and inequality (53)
result in

1 N— 950 _
Z(Ile}vlliiv,ﬁllef 1lliiv,f)+7(He§f||§+IIeéV i)

At N—-1
+ 5 3 {VIVET + IR + gl V(e + b TI12)
k=1
<O {Hn.f7t||2L2(0,T;H1(Qf)) el 720,020, (54)

FA IV ell7200.7:2200,)) + IV 2200200, + 11Vl 22072200, )
+At! (||Uttt||2L2(o TV Q) T Hutt||2L2(0 THI(Q))) T H‘bttt”iZ(O,T;L%Qp))
9130,z (0,0 + 19102 0,20011,) + 1o = MllEao 720, )
g 13 e 02,712 + Il oo 0,22 § + N€- Wi, + 169 Wiy

1/2
+9So(lE 12 + 160 12) + ALg*CF (1613, + 165113 ) + 24¢C 72,

where we absorbed all constants into a new constant, 62 > 0. Now, we bound the
coupling terms on the right-hand side as follows:

C
1/2
Ce" < 5 (1013 + 1615, + €813 5 + 1EF NG ) - (55)

Inequality (54) holds for any @ € V", ), € Q?, and ¢ € XZ’}. Taking the infimum
over the spaces V", Q% and X!, using (32) to bound the infimum over V" by the
infimum over X J}}, and using bound (55), we have the following for some positive

constant 63:
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1 ~ _
§(II€}V||§iv,f +llef M Ei.p) + gSoley 117 + llen ~H12)
At X

+ 5 D VIV + eI + ghminl V(e + b2
k=1

=G {Niergh{||77f,t||?:2(o,T;H1(szf)) + H|V77f|||%2(O,T;L2(Qf))
ucay

oo 0,750 ) + I€F NGiv, 5 + €7 1Gv £}

. _ 2 . 2
+ Aféé; [lp )\h|||L2(o,T;L2(Qf)) + q;lergg{nnpat||L2(0,T;L2(Qp))
FAL VI 122 0.7:020,)) T IVDIIT20,7:2200,)) + N0l 2 072200, ))

+1&;

2 2
o ISR} + A (lhusee oo,z + el 320, 2y

2 2
Flleeelz20m 0200,y + 19172 0,750 (0, ) + ||¢tt||L2(o,T;H1(Qp))) } :

The result of the theorem now immediately follows by applying the approxima-
tion assumptions given in (31). (]

Corollary 8. Under the same regularity conditions as in Theorem 7, the temporal
growth of the error is at most

e Naiv,s, ey Il = O(Viw).
Proof. For any function v : [0,00) — X and any spatial norm || - ||x we have:
tN
| el dt < ey

for any 0 < ty < co. Similarly, we have for the discrete norms:

N N
Z ||UkH§(At < ”UH%OO(O,OO;X) Z At = tN”UH%OO(O,oo;X)‘
k=1 k=1
Applying the above to the terms on the RHS of (41) gives the claim of the Corollary.

O

5. Numerical tests
We verify the method’s unconditional, asymptotic stability and rate of conver-
gence in a series of numerical tests. For these experiments we use the exact solutions

from [19] recalled next. All tests were conducted with FreeFEM++ [22]. The com-
putational domains are

Qp=(0,1) x (1,2), Q, =(0,1) x (0,1), I={(z,1): 2 €(0,1)},
and the true solution in the first test problem is
u(z,y,t) = ([2°(y — 1)* + y] cost, [2z(1 — y)* + 2 — msin(nz)] cost)
p(z,y,t) = [2 — 7sin(rz)]sin(Fy) cost (56)
o(z,y,t) = [2 — wsin(mx)][1 — y — cos(my)] cost,
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where all model parameters are set to one, and in the second test problem

u(z,y,t) = ((y — 1)* cost, [z° — z] cost)

p(z,y,t) = 2u(xr +y — 1) + 572 ] cost (57)
¢z, y,t) = [ {x(l —2)(y = 1) + 39° — v + y} + 2a]cost,

where all model parameters may vary. We confirm second-order accuracy of CNLF-
stab with both test problems. To confirm unconditional stability of the method,
independent of the model parameter values, we set the body force and source func-
tions, fr and fp, equal to zero in the second test problem and check that the solution
vanishes over long-time intervals. In all tests, we enforce non-homogeneous Dirich-
let boundary conditions, except along the interface: u, = u on Qf \ I, ¢ = ¢ on
Q, \ I, and choose the initial conditions, as well as the first terms in the method,
to match the exact solutions.

5.1. Convergence Rate Verification. To confirm second-order accuracy, we set
h = At and calculate the errors and convergence orders for the variables u, p, and
¢. We define the discrete error norms, E(u), E(p), and E(¢), as follows.

E(u) = [lu— uhHILOO(O,T;H}“,U(Qf))v

E(p) = llp = prlllLe=(0,7;22(2;));

E(9) = lllg — énlllL>(0,1;22(0,))-
We let 4, denote the calculated order of convergence. Table 3 gives the calculated
errors for the first test problem and Table 4 the errors for the second test problem,
with Sp = 107% and ki, = 1071, both over the time interval [0,1]. As expected,

in both cases we have second-order convergence for the Stokes velocity, u, Stokes
pressure, p, and Darcy pressure, ¢.

TABLE 3. Second-order convergence of CNLF-stab for test problem 1.

h=At E(u) Ty E(p) Tp E(¢) T
1/4 0.0304013 - 1.10942 - 0.130579 -
1/8 0.0048835 | 2.64 | 0.272517 |2.03 | 0.0347465 | 1.91
1/16 0.00105315 | 2.21 | 0.0649257 | 2.07 | 0.00878685 | 1.98
1/32 | 0.000264613 | 1.99 | 0.0163038 | 1.99 | 0.00220226 | 2.00
1/64 | 0.000064201 | 2.04 | 0.00453213 | 1.85 | 0.000550882 | 2.00

TABLE 4. Second-order convergence of CNLF-stab for test prob-
lem 2, with Sy = 10™* and kmyin = 1071,

h = At E(u) Ty E(p) Tp E(¢) Té

1/8 0.00163737 - 0.214387 - 0.0819758 -
1/16 0.000464456 | 1.82 | 0.0700264 | 1.61 | 0.0264185 | 1.63
1/32 0.000115658 | 2.01 | 0.0187149 | 1.90 | 0.00691258 | 1.93
1/64 0.000029022 | 2.00 | 0.00486284 | 1.94 | 0.00174539 | 1.99
1/128 | 0.00000726908 | 2.00 | 0.00126994 | 1.94 | 0.000437368 | 2.00
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FIGURE 2. Instability of CNLF for test problem 2 with At = h = 1/16.

5.2. Unconditional, Asymptotic Stability. To check unconditional, asymp-
totic stability, we set h = At = 1/16 and calculate the discrete energy,

Energy (t"~/%) = [uji|[F + uy ™17 + So (65115 + 167115

over the time interval [0, T, for T up to 40, and for varying Sy and kmin. The results
of the computed energy for CNLF are shown in Figure 2 and the corresponding ones
for CNLF-stab in Figure 3. The energy of CNLF-stab decays to zero over time, as
expected, while CNLF blows up in all cases.
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FiGURE 3. Unconditional stability of CNLF-stab for test problem
2 with At = h =1/16.

6. Conclusions

The added stabilization terms in the proposed CNLF-stab method for the Stokes-
Darcy model correct shortcomings of the original CNLF (Crank-Nicolson Leapfrog)
method, namely conditional stability requiring small time step sizes and extreme
sensitivity to small values of the specific storage parameter, Sy. Theoretical analysis
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of CNLF-stab showed that the method maintains second-order accuracy while elim-
inating all time step conditions for stability, and while effectively controlling both
the stable and unstable modes of Leapfrog, resulting in unconditional, asymptotic
stability. Numerical tests confirmed all theoretical results.
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