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NUMERICAL INVERSION SCHEMES FOR MAGNETIZATION

USING AEROMAGNETIC DATA

YILE ZHANG, YAU SHU WONG, JIAN DENG, SHA LEI, AND JULIEN LAMBERT

Abstract. The re-weighted regularized conjugate gradient (RRCG) method has been a popular
algorithm for magnetic inversion problems. In this work, we show that for a two-dimensional
problem with uniform field data, the resulting coefficient matrix to be inverted has a symmetric
Block-Toeplitz Toeplitz-Block (BTTB) structure. Taking advantage of the BTTB properties, the
storage and computational complexity can be significantly reduced, so that the efficiency of the
RRCG method is greatly improved and it is now capable of dealing with much larger system with
a modest computing resource. This paper also investigates various numerical inversion schemes
including the CG type and multigrid (MG) methods. It has been demonstrated that the MG is
an efficient and robust numerical tool for magnetic field inversion. Not only the MG produces a
rapid convergence rate, the performance is not sensitive when applying to noisy data. Numerical
simulations using synthetic data and real field data are reported to confirm the effectiveness of
the MG method.

Key words. Magnetic inversion, Numerical algorithm, Toeplitz matrix, Multigrid method, Con-
jugate gradient method.

1. Introduction

Magnetic field survey is one of the most popular geophysical techniques for fast
mapping of large areas in geophysical and environmental study. The survey consists
of mapping one or more components of the earth geomagnetic field in order to
analyze the magnetic anomalies. The magnetic anomalies mapping can be generally
used as a tool to many geological applications such as estimating the basement
topography, assessing the depth in oil exploration and the magnetic polarization in
mineral prospecting.

Inversion model is closely related to the forward computation, and this is a key
step in the geophysical survey. For the magnetic field inversion problem, the model
can be expressed mathematically as an integral formulation. The inversion solution
can be obtained by solving a resulting system of linear equations Au = b, where b is
the observation magnetic field data. The major challenge of the inversion problem
is due to the fact that the matrix A is often large, dense and ill-conditioned [13],
thus inverting the system by a direct method is not practical and employing an
numerical iterative scheme will require enormous computing resource.

Although some works have been reported for a 3-D magnetic field inversion
[18, 20], in many cases, 2-D model is more preferred, this is particularly true for
the aero-magnetic survey. The simplicity of the 2-D model also make the 2-D
inversion practical and efficient. The inversion for tabular magnetic anomalies or
thin layer magnetic anomalies have been investigated in [15, 21, 2, 22, 26].

For the irregular raw data, it can be rewritten into a uniform data conveniently by
the use of a regridding procedure. Many efficient methods have been developed, for
instance, Briggs [4] proposed a minimum curvature method to regrid non-uniform

Received by the editors October 14, 2014.
2000 Mathematics Subject Classification. 86A20, 86A22, 86A30.
This research was supported by the Natural Sciences and Engineering Research Council of

Canada and MITACS Accelerate Program.
684



NUMERICAL INVERSION FOR MAGNETIZATION 685

data. Cordell and Blakely [12, 3] presented an equivalent layer method (ELM), in
which a fictitious source layer is introduced and the non-uniform data points are
interpolated on the uniform grid. The advantage of implementing the ELM has
been reported by Cooper [11], and a comparative study of ELM and the minimum
curvature method can be found in [19].

The most important feature for considering a uniform field data is that the re-
sulting coefficient matrix for the inversion problem is a symmetric Block-Toeplitz
Toeplitz-Block (BTTB) matrix. Consequently, efficient and accurate numerical in-
version algorithms can be developed, and the matrix-vector product can be imple-
mented efficiently using a Fast Fourier Transform (FFT). In some other work, the
BTTB structure has already been noticed. Rauth and Strohmer [23] investigated
the potential field gridding problem by interpolating the non-uniform field data into
a uniform field data, where the trigonometric polynomial is used to approximate
the magnetic field, and the coefficients of the polynomial are computed by solving
a BTTB system. However, in our work, the BTTB structure is derived directly
from magnetic forward formulation. To the best of our knowledge, no systematic
investigation on the BTTB structure and construction of numerical schemes utiliz-
ing the special BTTB properties in magnetic inversion problem has been carried
out.

In this paper, we investigate numerical schemes for magnetic data inversion.
Particular attention is focused on incorporating the BTTB structure to develop
efficient numerical inversion algorithms based on the conjugate gradient (CG) type
methods and the multigrid (MG) technique. The CG type methods include the
standard CG (CG), preconditioned CG (PCG) and the re-weighted regularized CG
(RRCG) method. A comparative study of the MG and CG type methods is pre-
sented, and the performance of these methods is validated by numerical simulations
applied to the synthetic field data and the real geophysical data.

2. Forward Model

Assuming that the magnetic data covers an area which is filled with a set of
vertical prisms with arbitrary horizontal section and the bottom at infinity, the
magnetic anomaly reduced to the pole is given by a layer of poles on the top of
each prism as shown in Figure 1.

The magnetization is defined as the magnetic moment (M) per volume as

J =
dM

dv
,(1)

which is induced by the earth magnetic field, and is the source of the magnetic
anomaly. To determine the magnetic field generated by the magnetization, the
concept of magnetic scalar potential ψ is introduced. When there is no free cur-
rent, the magnetic scalar potential can be used to determine the magnetic H-field
especially for the permanent magnets in the following way,

H = −∇ψ.(2)

It is known that the magnetic potential generated by dM at an arbitrary point
P is defined by dψ = dM·r

ρ
, where r is a coordinate of P , and ρ is the distance from

P to dv. According to (1),

dψ = −

[

J · ∇(
1

ρ
)

]

dv.(3)
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Figure 1. Forward Model.

Thus, the magnetic potential at the point P generated by a prism is given by

ψ = −

∫

V

[

J · ∇(
1

ρ
)

]

dv.(4)

According to the Gauss formula, (4) can be further rewritten as

ψ =

∫

S

(J · dS)

ρ
−

∫

V

(
divJ

ρ
)dv.(5)

By assuming that in each prism, the value of magnetization J is uniform, and
the magnetization in the prisms have the same direction, then divJ = 0, and only
the first term in (5) is retained. The integral on the side facing the prisms can be
neglected, since the bottom is assumed to be infinitely deep and the upper surface
can be regarded as the source plane. Hence, (5) can be simplified as

ψ =

∫

S

Jn
ρ
dS,(6)

where Jn is the vertical magnetization in nth prism. Here, the magnetic potential
ψ is a function of the coordinate of point P . If we denote the position of dv as Q,
and the coordinate of Q as r′, then ρ = |r − r′|. According to (2), the magnetic
field generated by each prism is given by

H = −∇ψ = −∇

∫

S

Jn
|r− r′|

dS,(7)

in which the vertical magnetic field is

Hz =

∫

S

Jn(z − z′)

|r− r′|3
dS.(8)

Now, considering all prisms as a whole, thus the magnetic field at the point P is
generated by all prisms. By (8), denote the Jn as a function of coordinate, then the
magnetic anomaly is described by the convolution of two functions: one depending
on the positions of the observations and the other describing the distribution of
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magnetization as the following:

Hz(x, y, z) =

∫∫

S

m(x′, y′, z′)G(x, y, z, x′, y′, z′)dx′dy′,(9)

where

G(x, y, z, x′, y′, z′) =
z − z′

[(x − x′)2 + (y − y′)2 + (z − z′)2]
3

2

.(10)

3. BTTB Structure

Using the standard discretization procedure, the forward model (9) can be dis-
cretized as
(11)

d(x(i), y(i), z) =
N
∑

j=1

M
∑

k=1

G(x(i), y(i), z, x′(j), y′(k), h)m(x′(j), y′(k), h)△x△y,

where z is the vertical coordinate of the observation point, and h is the depth of
the magnetization. Now (11) can be further rewritten as

(12) d(x(i), y(i), z) =

N×M
∑

l=1

G(x(i), y(i), z, x′(l), y′(l), h)m(x′(l), y′(l), h)△x△y,

where

G(i, l, h) =
h− z

[(x(i)− x(l))2 + (y(i)− y(l))2 + (h− z)2]
3

2

.

Therefore, equation (9) can be approximated by the linear system

d = Am,(13)

where d is the (N×M)-by-1 observation data representing the anomalous magnetic
field, m is (N ×M)-by-1 column vector corresponding to the magnetization, and
A is a full and symmetric (N ×M)-by-(N ×M) matrix. Consider the case where
the observation field data is 512-by-512, then the resulting coefficient matrix A is
262144-by-262144. Therefore, the storage requirement for A is of the order (N ×
M)2 ∼ 6.8 ∗ 1010. Solving the linear system by a direct method is impossible or
very impractical since the work will be of order (N ×M)3 ∼ 1.8 ∗ 1016. However,
seeking a numerical solution by an iterative scheme would also require enormous
computing resources since the computational work is typically dependent on the
matrix-by-vector operations which is O((N ×M)2) ∼ 6.8 ∗ 1010.

One of the major contributions of the present work is to recognize that the re-
sulting matrix A is a symmetric Block-Toeplitz Toeplitz-Block system, and this will
lead to a tremendous saving in the storage for the coefficient matrix and offer many
efficient algorithms for solving the BTTB system. The BTTB matrix generated in
our problem is given as the following:

Tmn =

















T(0) T(1) · · · T(m−2) T(m−1)

T(1) T(0) T(1) · · · T(m−2)

... T(1) T(0)
. . .

...

T(m−2) · · ·
. . .

. . . T(1)
T(m−1) T(m−2) · · · T(1) T(0)

















,(14)
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where the blocks T(i), for i ≤ m− 1, are themselves symmetric Toeplitz matrices of
order n and each defined by the following,

Tn =

















t0 t1 · · · tn−2 tn−1

t1 t0 t1 · · · tn−2

... t1 t0
. . .

...

tn−2 · · ·
. . .

. . . t1
tn−1 tn−2 · · · t1 t0

















.(15)

It is important to note that the first row or first column contains all the informa-
tion of the matrix, therefore, the entire BTTB matrix can be compactly stored by
a (N ×M)-by-1 vector. For the same problem with given 512-by-512 observation
field data, the storage is now O(2.6 ∗ 105) instead of O(6.8 ∗ 1010) using a direct
storage.

Even though the BTTB matrix (14) is a dense matrix, computation for the
matrix-vector product can be efficiently implemented. It has already been reported
in [14] that a circulant matrix Cn can be diagonalized by the Fourier matrix Fn,
i.e.,

Cn = F ∗
nΛnFn,

where Λn is a diagonal matrix containing the eigenvalues of Cn. Therefore, the
matrix-vector product Cny and C−1

n y can be computed by fast Fourier transform,
which can also be implemented by a highly parallel algorithm. Similarly, the prod-
uct of a Block-Circulant Circulant-Block (BCCB) matrix and vector can be com-
puted by a two-dimensional FFT. Considering the fact that the (N×M)-by-(N×M)
BTTB matrix can be embedded into (2N ×M)-by-(2N ×M) BCCB matrix [7],
then the matrix-vector product Tmnv can also be computed by FFT. The computa-
tional cost is now reduced to O((N ×M) log(N ×M)), which is much smaller than
the original cost O((N ×M)2). For the example of the observation field data given
by 512-by-512, the work per iteration by using a CG method is now O(1.4 ∗ 106)
instead of O(6.8 ∗ 1010) without taking advantage of the BTTB properties.

By recognizing the matrix A has the symmetric BTTB structure, the dense
matrix can now be stored efficiently in a compact form, and the matrix-vector
product can be computed effectively by a fast Fourier transform.

4. Numerical Inversion Schemes

In this section, we present iterative numerical schemes for solving the magnetic
inversion problem given by Equation (13). The iterative schemes are based on the
Conjugae Gradient (CG) type methods including standard CG, preconditioned CG
(PCG), re-weighted regularized CG (RRCG) and the multigrid (MG) technique.

4.1. Conjugate gradient type methods. The conjugate gradient (CG) method
is one of the most powerful iterative schemes for solving large positive definite
system, and it has been widely used in solving the BTTB system [9].

However, a drawback of the CG method relates to the robustness, namely the
performance is sensitive to the perturbation or noise in the observation field data.
To enhance the reliability, a general approach based on the Tikhonov regulariza-
tion method [27] is usually incorporated with the CG method. The regularized
CG schemes are frequently employed in geophysical applications. Recall that the
inversion is achieved by solving the linear equation (13), where A is the symmetric
BTTB matrix, d is the observation magnetic field data and m is the magnetization
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to be inverted. Now consider the corresponding parametric functional given by the
following form:

Pα(m, d) = ||WdAm−Wdd||
2 + α||Wmm−Wmmapr||

2,(16)

where Wd and Wm are weighting matrices for the data and model, respectively.
In most applications, Wd is a diagonal matrix, mapr is a vector which contains
priori geologic information and || · || denotes the Euclidean norm in the spaces of
data and models [27]. The regularized problem is an approximation to the original
equation, but it will be more well-posed than the original problem. Since the
regularization deviates from the original problem, to reduce the deviation, a re-
weighted regularization strategy is introduced. Let the regularization parameter α
be self-adaptive, the re-weighted regularized conjugate gradient (RRCG) method
is given as the following [27]:

(1) rn = Amn − d, sn =WenWm(mn −mapr),
(2) Iαn

n = Iαn(mn) = ATW 2
d rn + αnWenWmsn,

(3) βαn

n = ||Iαn

n ||2/||I
αn−1

n−1 ||2,

(4) Ĩαn

n = Iαn

n Ĩ
αn−1

n−1 , Ĩα0

0 = Iα0

0 ,

(5) k̃αn

n = (ĨαnT
n Iαn

n )/
[

ĨαnT
n (ATW 2

dA+ αW 2
enW

2
m)Ĩαn

n

]

,

(6) mn+1 = mn − k̃αn

n Ĩαn

n , γ = ||sn+1||
2/||sn||

2,
(7) αn+1 = αn, if γ ≤ 1, and αn+1 = αn/γ, if γ > 1,

where the Wen is the error estimation matrix. The initial regularization parameter
α0 is chosen according to the L-curve strategy [16]. Moreover, Wd = I, Wen = I,
mapr = 0, Wm = I are chosen in the following computation.

In addition to the RRCG method, the preconditioned CG (PCG) methods are
also popular in solving the BTTB system [10]. Various preconditioners have been
designed for the BTTB system [24, 17, 6], and the PCG algorithm is given as the
following [1]:

(1) r0 = b−Am0,
(2) p0 = r0,

(3) αn−1 =
rT
n−1

pn−1

PT

n−1
APn−1

,

(4) mn = mn−1 + αn−1pn−1,
(5) rn = rn−1 − αn−1Apn−1,
(6) Solve BTBzn = rn for zn,

(7) pn = zn −
zT

n
Apn−1

pT

n−1
Apn−1

pn−1,

where BTB is known as a preconditioner. By choosing B = I, it reverts to the
standard CG. In the present work, the preconditioner BTB is chosen as

BTB = (Cr)
1

4 = F ∗
mnΛ

1

4Fmn

where Cr is the BCCB matrix given by Chan’s preconditioner [7], Fmn is the
corresponding Fourier matrix, and Λ is the eigenvalue of matrix Cr. The regularized
PCG [8] has also been applied to other BTTB system related to image processing
problems.

4.2. Multigrid techniques. It is well-known that the convergence of the CG type
methods depends on the condition number of the matrix A. In magnetic inversion
problems, the matrix is usually very ill-conditioned and with a large condition num-
ber. Multigrid (MG) technique is developed based on multilevel iterative methods,
and it has generally been regarded that MG is an optimal iterative method for
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solving large positive definite systems from elliptic partial differential equations.
The technique is optimal since the convergence rate is apparently optimal and in-
dependent of the condition number of A and the size of the linear system.

When solving a linear system by a classical relaxation scheme based on the Jacobi
or Gauss-Seidel method, we note that the high frequency error can be eliminated
very quickly, but it is hard to remove the low frequency error. Consequently, a
rapid error reduction is typically observed at the initial stage, and after that the
error decreases very slowly leading to a slow convergence rate.

Suppose we want to solve a linear system given by Au = b, instead of applying
an iterative scheme directly to the system, we now consider the solution being
computed by applying a relaxation scheme to multilevel or multigrid systems

Ajuj = bj ,

where Aj denotes the matrix at different grid levels with A1=A known as the finest
grid, and the matrices Aj , j = 2, 3, · · · are referred as the coarse grid levels. The
coefficient matrix Aj for j > 1 can be constructed using the same way as for A1

but with a coarser mesh. The superior performance of a MG method is achieved
due to the fact that the low frequency error on the fine grid can be regarded as the
high frequency error on the coarse gird. Thus by employing a relaxation scheme to
a sequence of various grid levels, the high and low frequency error components can
be eliminated rapidly and this ensures a fast convergence rate for a MG method.

The idea of a MG approach can be easily explained by a two-grid method as
illustrated in Figure 2.

Figure 2. Two-grid and V-cyle MG.

Recall that if ū is the computed solution of Au = b, the residual is defined by

r = b−Aū = A(u − ū) = Ae,(17)

where e is the error vector. By solving Ae = r, we can then improve the numerical
solution, such that

u = ū+ e.(18)

Let Ω1 and Ω2 denote the fine grid (i.e. level 1) and the coarse grid (i.e. level
2). In a two-grid method, starting with an initial approximation u0, the algorithm
is given as

(1) In Ω1, apply relaxation v1 time, u1 → S(u1, b1),
(2) Compute residual and transfer from Ω1 to Ω2:

r1 = b1 −A1u1, r2 = R2
1r

1,

(3) In Ω2, solve the error equation: A2e2 = r2,
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(4) Interpolate error from Ω2 to Ω1 and improve the approximation: u1 →
u1 + I12e

2,
(5) Repeat the procedure until a stopping criteria such as ||r1|| < ε is achieved.

Here, S(u1, b1) denotes a smoothing or a relaxation process which will be defined
shortly. Dropping the superscript index for the matrix A, let A = D−L−LT , u0 is
an initial approximation, the weighted Jacobi relaxation is selected as a smoothing
operator such that S(u1, b1) is defined by

u1 = [(1− ω)I + ωD−1(L + LT )]u0 + ωD−1b1,

where ω is a parameter, which can be estimated by a formula proposed in [25]:

ω ≤
a0,0
ρ(A)

,(19)

where a0,0 is the first element of the matrix A and ρ(A) is the spectral radius of
A. Note that R2

1 is a restriction operator which is used to transfer the residual
from a fine grid to coarse grid and I12 is an interpolation operator which is used to
interpolate the error from a coarse grid to a fine grid. Also, (1) is generally referred
as the smoothing step, and (3) is the correction step in an MG cycle.

It should be recognized that solving the error equation in step 3 is a system of
the same type as the original system. Therefore, by repeatedly applying a two-grid
method, we can construct a multigrid method, and the V-cycle MG is shown in
Figure 2. The details on the construction of the coarse grid coefficient matrices,
the restriction and interpolation operators can be found in [5].

5. Numerical Simulations

To validate the effectiveness of various iterative schemes presented in the previous
section, we consider the following test cases. The CG type methods and the MG will
be assessed based on their efficiency, accuracy and robustness. The computation
are carried out using a laptop computer with Intel i7-3632QM 2.2 Hz and 12G
RAM. For the MG method, the computation is based on a V-cycle using three grid
levels with one relaxation at each grid during the smoothing and correction steps.

5.1. Synthetic data. The first test case is constructed based on a synthetic data
set. Figure 3 illustrates the initial magnetization distribution, and it is considered
to be the exact solution for the magnetic inversion problem. In Figure 4, we dis-
play the computed solutions of the magnetic field data generated by the synthetic
magnetization at different depth h = 50m, 100m, 200m, 250m, respectively. To
evaluate the performance of various numerical inversion schemes, let the relative
error (RE) be defined as:

RE =
||Uinv − Uexact||∞

||Uexact||∞
× 100%,(20)

where Uinv is the computed inverse solution, Uexact is the exact solution.
In Table 1, we list the condition number of the coefficient matrix for a range of

depths from h = 50m to 250m. The condition number increases as the depth is
increasing. Since the largest condition number appears at the maximum depth, the
synthetic field data at h = 250m is chosen as the test case in which the simulation
data will be inverted. The stopping criterion used for the numerical inversion
methods is:

||rn||∞
||r0||∞

< tol,
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Figure 3. Initial magnetization distribution.

Figure 4. Magnetic field data at different depths.

Table 1. Condition number of the coefficient matrix correspond-
ing to different depths.

Depth (m) Condition Number
50 1.2410*108

100 5.8372*108

200 2.1781*109

250 3.2852*109
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where tol is the tolerance of the iteration, rn is the residue at the n-step iterations,
r0 is the initial residue. For the multigrid method, the V-cycle iteration scheme is
used.

Table 2. Computing time and number of V-cycles of MG with
various grid levels.

Tol=10−3 Tol=10−4

Level TMG (s) N TMG (s) N
2 7.122357 24 62.540190 203
3 3.575487 11 32.270307 97
4 3.248739 10 33.257580 103
5 3.209048 10 33.601279 103

In Table 2, we present the MG results where the level denotes the number of grid
levels used in a V-cycle, T is the computing time in second, N is the number of cycles
to reach a given tolerance. It is clear that good performances are achieved when
the grid level is greater than two. However, for the inversion problem considered
here, taking three grid levels in a V-cycle seems to suffice, and a 50% reduction in
computing time over a two-grid method is achieved.

To compare the effectiveness of various numerical inversion schemes, Table 3
reports the inversion of the synthetic magnetic field data at h = 250m by CG,
PCG, RRCG and MG methods. Here N denotes the number of iterations in CG
type methods and number of cycles in MG method, and N/A means that the scheme
fails to converge within 2000 iterations. In Figure 5, we plot the convergence rate
for the CG, PCG, RRCG and MG method.

Table 3. Computing time and number of iteration of various nu-
merical inversion for synthetic data at h=250m.

Tolerance TCG (s) N TRRCG (s) N TPCG (s) N TMG (s) N

10−2 0.678969 9 9.323636 50 0.547881 7 0.585323 2
10−3 1.330730 19 31.220969 167 1.175903 14 3.219449 11
10−4 3.477457 53 N/A N/A 2.692719 35 27.853854 97
10−5 11.896358 182 N/A N/A 7.668079 99 306.236100 1026

From the results presented in Table 3 and Figure 5, we note that the PCG is
the most efficient in term of computing time needed to reach a given accuracy, and
it then follows by the CG, MG and RRCG. Although the RRCG method has been
a popular inversion algorithm used in many geophysical applications, it has a slow
convergence and fails to reach a given tolerance within 2000 iterations when a small
tolerance is required as indicated in Table 3. When the tolerance is in the level of
10−2 or 10−3, the performance of the CG, PCG and MG are comparable in terms
of convergence rate and the computing time required. In Figure 6, the computed
solutions of the four methods for the inversion problem are displayed.

It is worthwhile to point out that the accuracy of the inversion problem cannot
be guaranteed even when a small tolerance is achieved by a numerical inversion
scheme. In Table 4, we present the relative errors computed by the CG and MG
methods for the test cases using the synthetic data. For a given depth, the relative
error can be reduced by setting a smaller tolerance. It is observed that for a fixed
tolerance, the error increase, as the depth is increasing.
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Table 4. Relative error of CG and MG method at different depths
and tolerance.

CG MG
Depth/Tol 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

50 6.55% 2.83% 1.30% 0.52% 6.72% 4.32% 2.13% 1.75%
100 11.54% 3.55% 2.33% 0.97% 14.00% 9.77% 5.09% 3.70%
200 21.78% 14.95% 8.62% 6.7% 24.11% 16.47% 10.43% 7.75%
250 24.42% 19.28% 12.97% 6.67% 27.20% 21.25% 15.00% 9.87%
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Figure 5. Convergence rate of CG, RRCG, PCG and MG method
at tolerance=10−3.

Figure 6. Inversion of the magnetic field at h=250m by CG,
RRCG, PCG and MG method.
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The test cases investigated here are constructed based on synthetic data, and
they are essentially noise-free data. It should be noted that the performance of an
accuracy and effective inversion algorithm may not be guaranteed if the data is con-
taminated with noise. In reality, the magnetic field data obtained by measurement
are usually contaminated with noise. Thus, it is important to study the robustness
of the inversion schemes.

To simulate test cases with noisy data, we introduce certain level of noise into
the synthetic field data. Let A be the matrix resulted from the synthetic data, and
E be the matrix with coefficients generated by pseudo random values in the range
[0, 1] drawn from the standard normal distribution. Considering the fact that the
noise in geophysical survey is produced by the measuring apparatus, then the noisy
observation matrix with α% noise is defined by A′ = A+ α% ∗ E.

In Table 5 and Figure 7, the performance of the CG, PCG, RRCG and MG
methods are compared when certain noise level is introduced to the synthetic data.
When the noise level is 0%, the test cases revert to the original clean magnetic data
with no noise. It is observed that although the CG and PCG are very effective
when applied to clean data, their performances deteriorated rapidly when noise is
present in the field data. The RRCG is a very reliable method, and the relative
error remains almost at the same level even when a 20% noise is introduced. The
MG method is not sensitive when the noise level is less than 10%, but the effect due
to noise becoming noticeable when the noise level is greater than 10%. Unlike the
RRCG, a regularization procedure is not incorporated to the MG method. There-
fore, the performance could be improved if a suitable regularization is introduced.

Table 5. Relative error of CG, RRCG, PG and MG with different
noise levels (%).

0% 1% 4% 8% 12% 16% 20%

CG 24.42% 24.46% 24.25% 26.13% 4.8*104 6.7*104 8.0*104

RRCG 26.51% 26.51% 26.40% 25.63% 25.34% 25.00% 24.09%
PCG 25.80% 60.36% 7.2*106 1.4*107

MG 27.20% 27.19% 27.24% 26.60% 27.78% 29.49% 32.90%

5.2. Real Data. From the computational results presented for the synthetic data,
it is clear that both the CG and PCG methods are sensitive to the noisy data, thus
the methods will not be considered for the real data inversion. In this section,
only the RRCG and MG methods are employed as the numerical inversion tool for
applications to real data. The real magnetic field data being tested are provided
by the TerraNotes Ltd Geophysics.

Given a real geophysical data, the numerical inversion program provides an esti-
mate of magnetization of underground rocks at certain depth h. Generally speaking,
h is an unknown, and by producing a sequence of magnetization at various depths, it
would provide useful information for the geologists or geophysicists to interpret the
computation results and to study how dependent the results are on the variations
of h.

In order to reduce the effects due to the numerical artifact which is usually
introduced near the boundary, we adjust the results presented in the window in
Figure 8 which is obtained by removing the shadow layer from the original data.
Note that the shadow layer is very thin and consists of only five grid points, and
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Figure 7. Error vs noise level for the CG, RRCG, PCG and MG
method under tolerance=10−2.

the original data field usually covers several hundred grid points in both directions.

Figure 8. Original field data and selected window W.

5.2.1. Test case I. For the first test case, the magnetic field data covers a square
area with 6000m in both the x- and y- directions, and the interval between each
grids is 12m. Thus the resulting matrix is 500 by 500 as shown in the Figure 9.

Let the tolerance of the inversion program be 3 ∗ 10−1, the computed inversion
results at depth h = 50m, 100m and 150m using the RRCG and MG methods are
shown in Figure 10. The corresponding computing time are listed in Table 6.

From the results presented in Figure 10 and Table 6, we observe that the mag-
netic inversions using the RRCG are in good agreement with those computed by
MG. At h = 50m, the two results are almost identical. However, as h increases,
the RRCG produces noticeable artifacts near the boundary. To investigate the
sensitivity of the computed solutions, we carry out simulation with a fixed depth,
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Figure 9. Test case I.

Table 6. Computing time for test case I with tolerance 3 ∗ 10−1.

Depth (m) TRRCG (s) TMG (s)

50 1.102995 0.466652
100 2.121059 0.964995
150 3.515279 1.404609

namely h=50m and h=100m, and examine the computed solutions at two values
of tolerances. Figure 11 and 12 present the numerical inversion results, and the
corresponding computing time are reported in Table 7. As expected, the computed
solutions are less sensitive when h is small as shown in Figure 11. Figure 12 displays
the RRCG and MG results when h = 100m and the tolerances are set at 4 ∗ 10−1

and 2 ∗ 10−1, respectively. Here, the difference between the results corresponding
with two tolerances are obvious. Moreover, the artifacts resulting from RRCG at
ε = 2 ∗ 10−1 is also noticeable. From the computing time reported in Tables 6 and
7, it is clear that MG is more efficient and requires less computing time than the
RRCG for all cases tested.

Table 7. Computing time for test case I using RRCG and MG.

Depth (m) Tolerance TRRCG (s) TMG (s)

50 ε = 4 ∗ 10−1 0.894744 0.304539
50 ε = 2 ∗ 10−1 2.557688 0.964625
100 ε = 4 ∗ 10−1 1.576802 0.549794
100 ε = 2 ∗ 10−1 4.114992 2.068582

5.2.2. Test case II. In the second test case, the real magnetic field data is given
as a rectangle area with length=14040m, width=8720m, and the interval between
each grids is 20m. The real magnetic field is defined by a two-dimensional grid of
702 by 436 as shown in Figure 13.
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Figure 10. Inversion results for test case I with tolerance 3 ∗ 10−1.

To evaluate the two numerical inversion schemes, Figure 14 presents the com-
puted solutions using RRCG and MG methods at a fixed depth h=100m for toler-
ance 1 ∗ 10−1, 5 ∗ 10−2 and 1 ∗ 10−2. In Figure 15, the inversion results at various
depths h=50m, 100m and 150m are illustrated. The computing time required by
the two methods are reported in Table 8.

From the results applied to test case II, we note that when the depth h is small,
the inversion results produced by RRCG and MG methods are very similar. How-
ever, the discrepancy in terms of the maximum and minimum magnetization be-
come noticeable as the depth increases and when the tolerance is decreasing. It is
noted that both methods are capable of capturing similar underground geological
features, but the RRCG produces larger artifacts near the boundary. The superior
performance of the MG method over the RRCG is also clearly demonstrated by the
significant saving in computing time as shown in Table 8.



NUMERICAL INVERSION FOR MAGNETIZATION 699

Figure 11. Inversion result for test case I at depth h=50m.

Table 8. The computing time for test case II.

Depth (m) Tolerance TRRCG (s) TMG (s)

100 ε = 1 ∗ 10−1 2.626800 0.700371
100 ε = 5 ∗ 10−2 8.858662 2.744200
100 ε = 1 ∗ 10−2 144.395461 46.382697
50 ε = 1 ∗ 10−2 33.221171 15.612463
200 ε = 1 ∗ 10−2 352.861550 75.893122

6. Conclusion

In developing numerical inversion schemes for magnetization using uniform grid
spacing, it is important to recognize that the inversion results can be computed
by solving a symmetric Block-Toeplitz Toeplitz-Block (BTTB) system. The linear
system is frequently large, dense and ill-conditioned. Direct implementation of the
matrix coefficients will require considerable storage and leading to the requirement
of large computing resources for the solution. By taking advantages of a symmetric
BTTB property, the storage requirement can be reduced from O(N2) to O(N) and
the computational work for a typical iterative scheme decreases to O(N logN) in-
stead of O(N2). Therefore, efficient numerical inversion schemes can be developed,
and they are capable of dealing with a large scale inversion problem.

Several numerical inversion schemes have been investigated, and it has been
demonstrated that the RRCG and MG methods are effective numerical tools for
the inversion problems. Both methods have been tested to problems generated by



700 Y. ZHANG, Y. WONG, J. DENG AND S. LEI, J. LAMBERT

Figure 12. Inversion result for test case I at depth h=100m.

Figure 13. Test case II.
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Figure 14. Inversion result for test case II at h = 100m.

synthetic data and real magnetic field data. Based on the computational simulation,
we conclude that the MG technique has a superior performance compared to the
RRCG method, in particular, the artifact near the boundary resulting from MG
is much less than that produced by the RRCG. Moreover, significant saving in
computing time is achieved by the MG for all cases tested in this paper. The MG
method can be generalized to inversion problems with nonuniform grid spacing and
to 3D problems.
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