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Abstract. In this paper, we investigate a spectral method for mixed boundary value problems
defined on hexahedrons. Some results on irrational orthogonal approximation are established,
which play important roles in numerical solutions of partial differential equations defined on
hexahedrons. As examples of applications, we provide spectral schemes for two model problems,
and prove their spectral accuracy. Efficient numerical implementations are described. Numerical
results demonstrate the high efficiency of suggested algorithms.
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1. Introduction

Over the past three decades, spectral methods have been increasingly popular in
scientific computations. Especially, the Legendre and Chebyshev spectral methods
have been widely used for numerical solutions of partial differential equations, see
[1, 2, 3, 7, 8, 11, 13, 18] and the references therein. Recently, there was also some
work on the Jacobi approximation and the Jacobi spectral method for degenerated
problems, see [9, 10, 14, 15, 16]. Most of the problems considered in these papers
are defined on bounded rectangular domains. However, it is more practical to deal
with problems defined on non-rectangular domains. In particular, it is interesting to
develop the spectral method for three-dimensional and non-rectangular domains.
Recently, Guo and Jia [12] proposed a spectral method and a spectral element
method on polygonal domains. Whereas, so far, there has been little work on
spectral and spectral element methods for hexahedrons and polyhedrons.

In this paper, we investigate the spectral method for mixed boundary value
problems on hexahedrons. We first recall some recent results on the Legendre
orthogonal approximation on the cube in the next section. Then, we introduce the
irrational orthogonal approximation on arbitrary convex hexahedrons and establish
the basic results on such approximation in Section 3. These results play essential
roles in numerical solutions of partial differential equations defined on hexahedrons.
As applications of the above results, we propose the spectral method for two model
problems on hexahedrons in Section 4. Their spectral accuracy is proved. We
describe the numerical implementation of proposed schemes in Section 5, together
with some numerical results to demonstrate the high efficiency of our algorithms.
The last section is for some concluding remarks. The main idea and techniques
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developed in this work are also applicable to other mixed boundary value problems
defined on three-dimensional and non-rectangular domains.

2. Preliminaries

In this section, we recall some recent results on the Legendre orthogonal approx-
imation in three-dimensions. Let the interval Ij = { ξj | −1 < ξj < 1} and the cube
K = { ξ = (ξ1, ξ2, ξ3) | ξj ∈ Ij , 1 ≤ j ≤ 3}. We denote by Hr(K) and Hr

0 (K) the
Sobolev spaces as usual with the norm ||u||r,K . The inner product and the norm
of L2(K) are denoted by (u, v)K and ||u||K , respectively.

For any integer N > 0,PN(I1) stands for the set of all polynomials of degree at
most N , and

VN (K) = PN (I1)⊗ PN(I2)⊗ PN (I3).

The L2(K)−orthogonal projection PN,K : L2(K) → VN (K) is defined by

(u − PN,Ku, φ)K = 0, ∀φ ∈ VN (K).

For describing the approximation error precisely, we introduce the following quan-
tity with an integer r ≥ 0,

Ar,K(u) =

∫

I3

∫

I2

‖(1− ξ21)
r
2 ∂rξ1u(·, ξ2, ξ3)‖2I1dξ2dξ3

+

∫

I3

∫

I1

‖(1− ξ22)
r
2 ∂rξ2u(ξ1, ·, ξ3)‖2I2dξ1dξ3

+

∫

I2

∫

I1

‖(1− ξ23)
r
2 ∂rξ3u(ξ1, ξ2, ·)‖2I3dξ1dξ2.

Throughout this paper, we denote by c a generic constant independent of any
function and N . According to Theorem 2.1 of [19], we know that if u ∈ L2(K), and
Ar,K(u) is finite for integers r ≥ 0, r ≤ N + 1, then

(1) ‖PN,Ku− u‖2K ≤ cN−2r
Ar,K(u).

Next, let V 0
N (K) = H1

0 (K) ∩ VN (K). The H1
0 (K)−orthogonal projection P 1,0

N,K :

H1
0 (K) → V 0

N (K) is defined by

(∇(P 1,0
N,Ku− u),∇φ)K = 0, ∀φ ∈ V 0

N (K).

For any integer r ≥ 1, we define

(2) Br,K(u) = B
(1)
r,K(u) +B

(2)
r,K(u) +B

(3)
r,K(u),

where for r = 1, 2,

B
(1)
r,K(u) = B

(2)
r,K(u) = B

(3)
r,K(u) = ||u||2r,K ,

and for r ≥ 3,
(3)

B
(1)
r,K(u) =

∫ ∫ ∫

K

((1−ξ21)r−1(∂rξ1u)
2+(1−ξ22)r−1(∂rξ2u)

2+(1−ξ23)r−1(∂rξ3u)
2)dξ1dξ2dξ3,

(4)

B
(2)
r,K(u) =

∫ ∫ ∫

K

(1 − ξ21)
r−2((∂r−1

ξ1
∂ξ2u)

2 + (∂r−1
ξ1

∂ξ3u)
2)dξ1dξ2dξ3

+

∫ ∫ ∫

K

(1− ξ22)
r−2((∂ξ1∂

r−1
ξ2

u)2 + (∂r−1
ξ2

∂ξ3u)
2)dξ1dξ2dξ3

+

∫ ∫ ∫

K

(1− ξ23)
r−2((∂ξ2∂

r−1
ξ3

u)2 + (∂ξ1∂
r−1
ξ3

u)2)dξ1dξ2dξ3,
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(5)

B
(3)
r,K(u) =

∫ ∫ ∫

K

((1 − ξ21)
r−3(∂r−2

ξ1
∂ξ2∂ξ3u)

2 + (1 − ξ22)
r−3(∂ξ1∂

r−2
ξ2

∂ξ3u)
2

+(1− ξ23)
r−3(∂ξ1∂ξ2∂

r−2
ξ3

u)2)dξ1dξ2dξ3.

According to Theorem 2.3 of [19], we have that if u ∈ H1
0 (K) and Br,K(u) is finite

for integers 1 ≤ r ≤ N + 1, then

(6) ‖P 1,0
N,Ku− u‖2µ,K ≤ cN2µ−2r

Br,K(u), µ = 0, 1.

In many practical problems, Neumann or Robin boundary conditions are im-
posed on certain parts of the boundary of K. For solving such mixed boundary
value problems, we need several specific projections. For instance, we set

0H1(K) = {u ∈ H1(K) | u(1, ξ2, ξ3) = u(ξ1, 1, ξ3) = u(ξ1, ξ2, 1) = 0},
0VN (K) = 0H1(K) ∩ VN (K).

The orthogonal projection 0P 1
N,K : 0H1(K) → 0VN (K) is given by

(∇(0P 1
N,Ku− u),∇φ) = 0, ∀φ ∈ 0VNK

(K).

It was shown in Theorem 2.4 of [19] that if u ∈ 0H1(K) and Br,K(u) is finite for
integers 1 ≤ r ≤ N + 1, then

(7) ‖0P 1
N,Ku− u‖2µ,K ≤ cN2µ−2r

Br,K(u), µ = 0, 1.

Remark 2.1.In the same manner, we may define the orthogonal projections and
derive their error estimates for functions in H1(K), vanishing on other faces.

3. Irrational orthogonal approximation on hexahedrons

In this section, we propose the irrational orthogonal approximation on hexahe-
drons, which serves as the mathematical foundation of spectral method on hexahe-
drons.

3.1. Variable transformation. Let x = (x1, x2, x3) and Ω be a convex hexahe-
dron with the eight vertices Qj = (xj1, xj2, xj3), 1 ≤ j ≤ 8, see Figure 1.

(8)

σ1(ξ1, ξ2, ξ3) =
1

8
(1− ξ1)(1− ξ2)(1− ξ3), σ2(ξ1, ξ2, ξ3) =

1

8
(1 + ξ1)(1− ξ2)(1− ξ3),

σ3(ξ1, ξ2, ξ3) =
1

8
(1 + ξ1)(1 + ξ2)(1− ξ3), σ4(ξ1, ξ2, ξ3) =

1

8
(1− ξ1)(1 + ξ2)(1− ξ3),

σ5(ξ1, ξ2, ξ3) =
1

8
(1− ξ1)(1− ξ2)(1 + ξ3), σ6(ξ1, ξ2, ξ3) =

1

8
(1 + ξ1)(1− ξ2)(1 + ξ3),

σ7(ξ1, ξ2, ξ3) =
1

8
(1 + ξ1)(1 + ξ2)(1 + ξ3), σ8(ξ1, ξ2, ξ3) =

1

8
(1− ξ1)(1 + ξ2)(1 + ξ3).

We make a coordinate transformation

(9) xi(ξ1, ξ2, ξ3) =

8∑

j=1

xjiσj(ξ1, ξ2, ξ3), i = 1, 2, 3.

More precisely,
(10)
xi = bi0+bi1ξ1+bi2ξ2+bi3ξ3+bi4ξ1ξ2+bi5ξ1ξ3+bi6ξ2ξ3+bi7ξ1ξ2ξ3, i = 1, 2, 3.
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Figure 1. Hexahedron Ω. Figure 2. Cube K.

where

(11)

bi0 =
1

8
(x1i + x2i + x3i + x4i + x5i + x6i + x7i + x8i),

bi1 =
1

8
(−x1i + x2i + x3i − x4i − x5i + x6i + x7i − x8i),

bi2 =
1

8
(−x1i − x2i + x3i + x4i − x5i − x6i + x7i + x8i),

bi3 =
1

8
(−x1i − x2i − x3i − x4i + x5i + x6i + x7i + x8i),

bi4 =
1

8
(x1i − x2i + x3i − x4i + x5i − x6i + x7i − x8i),

bi5 =
1

8
(x1i − x2i − x3i + x4i − x5i + x6i + x7i − x8i),

bi6 =
1

8
(x1i + x2i − x3i − x4i − x5i − x6i + x7i + x8i),

bi7 =
1

8
(−x1i + x2i − x3i + x4i + x5i − x6i + x7i − x8i).

By the transformation (9), the hexahedron Ω is mapped to the reference cube K
with the vertices Vj = (ξj1, ξj2, ξj3) corresponding to Qj for 1 ≤ j ≤ 8, see Figure
2. Indeed, we have



ξ11 ξ21 ξ31 ξ41 ξ51 ξ61 ξ71 ξ81
ξ12 ξ22 ξ32 ξ42 ξ52 ξ62 ξ72 ξ82
ξ13 ξ23 ξ33 ξ43 ξ53 ξ63 ξ73 ξ83




=



−1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1


 .

If Ω is a parallelepiped, then biν = 0 for 4 ≤ ν ≤ 7, i = 1, 2, 3. In this case, the
transformation (9) is reduced to an affine mapping.

For simplicity, we denote
∂x1

∂ξ1
by ∂ξ1x1, ect.. The Jacobi matrix of transforma-

tion of (9) is

MΩ(ξ) =




∂ξ1x1 ∂ξ1x2 ∂ξ1x3
∂ξ2x1 ∂ξ2x2 ∂ξ2x3
∂ξ3x1 ∂ξ3x2 ∂ξ3x3



 =



b11 + b14ξ2 + b15ξ3 + b17ξ2ξ3 b21 + b24ξ2 + b25ξ3 + b27ξ2ξ3 b31 + b34ξ2 + b35ξ3 + b37ξ2ξ3
b12 + b14ξ1 + b16ξ3 + b17ξ1ξ3 b22 + b24ξ1 + b26ξ3 + b27ξ1ξ3 b32 + b34ξ1 + b36ξ3 + b37ξ1ξ3
b13 + b15ξ1 + b16ξ2 + b17ξ1ξ2 b23 + b25ξ1 + b26ξ2 + b27ξ1ξ2 b33 + b35ξ1 + b36ξ2 + b37ξ1ξ2


 .
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Its Jacobian determinant is denoted by JΩ(ξ). We assume that hexahedron Ω is
convex. Therefore, there exist positive constants δΩ and δ∗Ω such that

(12) 0 < δΩ ≤ JΩ(ξ) ≤ δ∗Ω.

The inverse of transformation (9) is given by ξ = ξ(x), namely, ξi = ξi(x1, x2, x3), i =
1, 2, 3. They are irrational functions generally. The Jacobi matrix of the above in-
verse transformation is

(13) MK(x) =M−1
Ω (ξ)|ξ=x =




∂x1

ξ1 ∂x1
ξ2 ∂x1

ξ3
∂x2

ξ1 ∂x2
ξ2 ∂x2

ξ3
∂x3

ξ1 ∂x3
ξ2 ∂x3

ξ3.



 .

Its Jacobian determinant is denoted by JK(x). Thanks to (12), we assert that

(14) 0 <
1

δ∗Ω
≤ JK(x) =

1

JΩ(ξ(x))
≤ 1

δΩ
.

3.2. L2(Ω)-irrational orthogonal approximation on hexahedron. We define
the spaces Hr(Ω) and Hr

0 (Ω) in the usual way, with the norm ||u||r,Ω. The inner
product and the norm of L2(Ω) are denoted by (u, v)Ω and ||u||Ω, respectively.

For nonnegative integers l,m and n, we introduce the following irrational func-
tions on the hexahedron Ω,

(15) ψl,m,n(x) = Ll(ξ1(x1, x2, x3))Lm(ξ2(x1, x2, x3))Ln(ξ3(x1, x2, x3)).

Let

VN (Ω) = span{ ψl,m,n(x) | 0 ≤ l,m, n ≤ N }.
The L2(Ω)-irrational orthogonal projection PN,Ω : L2(Ω) → VN (Ω), is defined by

(16) (PN,Ωv − v, φ)Ω = 0, ∀φ ∈ VN (Ω).

Let dΩ be the length of the longest edge of Ω. For characterizing the approxima-
tion error, we introduce the quantity

Ar,Ω(v) = d2rΩ

3∑

i=1

r∑

k=0

k∑

j=0

‖(1− ξ2i )
r
2 ∂jx1

∂k−j
x2

∂r−k
x3

v‖2Ω.

Theorem 3.1. If v ∈ L2(Ω), and Ar,Ω(v) is finite for integers r ≥ 0 and
r ≤ N + 1, then

(17) ‖PN,Ωv − v‖2Ω ≤ cδ∗Ωδ
−1
Ω N−2r

Ar,Ω(v).

Proof. By the projection theorem, we have

‖PN,Ωv − v‖2Ω ≤ ‖φ− v‖2Ω, ∀φ ∈ VN (Ω).

Let u(ξ) = v(x1(ξ), x2(ξ), x3(ξ)), and

ψ(ξ) = PN,Ku(ξ), φ(x) = ψ(ξ1(x), ξ2(x), ξ3(x)) ∈ VN (Ω).

By using (1) and (14), we obtain

(18) ‖φ− v‖2Ω =

∫ ∫ ∫

K

(u− PN,Ku)
2JΩ(ξ)dξ1dξ2dξ3 ≤ cδ∗ΩN

−2r
Ar,K(u).

By virtue of (10), a direct calculation shows
(19)

∂rξiu =

r∑

k=0

k∑

j=0

Ck
rC

j
k(∂ξix1)

j(∂ξix2)
k−j(∂ξix3)

r−k∂jx1
∂k−j
x2

∂r−k
x3

v, i = 1, 2, 3.
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Moreover, we see from (10) that

(20) |∂ξ1x1| = |b11 + b14ξ2 + b15ξ3 + b17ξ2ξ3| ≤ 2dΩ, etc..

Therefore, we use (19), (20) and (14) successively, to derive thatAr,K(u) ≤ cδ−1
Ω Ar,Ω(v).

This, along with (18), leads to the desired result.
Remark 3.1. In the norms of derivatives ∂jx1

∂k−j
x2

∂r−k
x3

v involved in the quantity

Ar,Ω(v), there are the weight functions (1− ξ21)
r
2 , (1− ξ22)

r
2 or (1− ξ23)

r
2 , which tend

to zero simultaneously as the point Q(x1, x2, x3) goes to the vertices of Ω. As a
result, ‖PN,Ωv − v‖Ω still keeps the order N−r, even if the approximated function
has certain weak singularity at the vertices of Ω.

Remark 3.2 If Ω = Ka1,a2,a3
= {(x1, x2, x3) | |xi| < ai, i = 1, 2, 3}, then

xi = aiξi, i = 1, 2, 3. In this case, JΩ = a1a2a3 and

‖PN,Ωv − v‖2Ω ≤ cN−2r
3∑

i=1

‖(a2i − x2i )
r
2 ∂rxi

v‖2Ω.

Thus, the L2(Ω)-irrational orthogonal approximation turns out to be the Legendre
orthogonal approximation. It keeps the same spectral accuracy, even if the consid-
ered function possesses certain singularity on the faces of Ω.

3.3. Irrational orthogonal approximation in H1
0 (Ω). We now turn to the

H1
0 (Ω)-irrational orthogonal approximation. According to Poincaré inequality, there

exists a positive constant cΩ such that

(21) ‖w‖Ω ≤ cΩ‖∇w‖Ω, ∀w ∈ H1
0 (Ω).

Let V 0
N (Ω) = H1

0 (Ω)∩VN (Ω). TheH1
0 (Ω)-irrational orthogonal projection P

1,0
N,Ω :

H1
0 (Ω) → V 0

N (Ω) is defined by

(22) (∇(P 1,0
N,Ωv − v),∇φ)Ω = 0, ∀φ ∈ V 0

N (Ω).

For simplicity of statements, let x4 = x1 and x5 = x2. We also introduce the
quantity Br,Ω(v) as follows,
(23)

B1,Ω(v) = δ−1
Ω d2Ω|v|2H1(Ω), B2,Ω(v) = δ−1

Ω d4Ω|v|2H2(Ω) + δ−1
Ω d2Ω|v|2H1(Ω),

Br,Ω(v) = B
(1)
r,Ω(v) +B

(2)
r,Ω(v) +B

(3)
r,Ω(v), r ≥ 3,

where

(24) B
(1)
r,Ω(v) = δ−1

Ω d2rΩ

3∑

i=1

r∑

k=0

k∑

j=0

‖(1− ξ2i )
r−1

2 ∂jx1
∂k−j
x2

∂r−k
x3

v‖2Ω, r ≥ 3,

(25)

B
(2)
r,Ω(v) = δ−1

Ω d2rΩ

3∑

ν=1

3∑

i=1

r−1∑

k=0

k∑

j=0

‖(1− ξ2ν)
r−2
2 ∂jx1

∂k−j
x2

∂r−k−1
x3

∂xi
v‖2Ω

+δ−1
Ω d2r−2

Ω

3∑

ν=1

3∑

i=1

r−2∑

k=0

k∑

j=0

‖(1− ξ2ν)
r−2
2 ∂jx1

∂k−j
x2

∂r−k−2
x3

∂xi
v‖2Ω, r ≥ 3,
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(26)

B
(3)
r,Ω(v) = δ−1

Ω d2rΩ

3∑

ν=1

3∑

i=1

r−2∑

k=0

k∑

j=0

(‖(1− ξ2ν)
r−3

2 ∂jx1
∂k−j
x2

∂r−k−2
x3

∂xi
∂xi+1

v‖2Ω

+‖(1− ξ2ν)
r−3

2 ∂jx1
∂k−j
x2

∂r−k−2
x3

∂2xi
v‖2Ω + d−2

Ω ‖(1− ξ2ν)
r−3

2 ∂jx1
∂k−j
x2

∂r−k−2
x3

∂xi
v‖2Ω)

+δ−1
Ω d2r−2

Ω

3∑

ν=1

3∑

i=1

r−3∑

k=0

k∑

j=0

(‖(1− ξ2ν)
r−3

2 ∂jx1
∂k−j
x2

∂r−k−3
x3

∂xi
∂xi+1

v‖2Ω

+‖(1− ξ2ν)
r−3
2 ∂jx1

∂k−j
x2

∂r−k−3
x3

∂2xi
v‖2Ω + d−2

Ω ‖(1− ξ2ν)
r−3
2 ∂jx1

∂k−j
x2

∂r−k−3
x3

∂xi
v‖2Ω)

+δ−1
Ω d2r−4

Ω

3∑

ν=1

3∑

i=1

r−4∑

k=0

k∑

j=0

(‖(1− ξ2ν)
r−3
2 ∂jx1

∂k−j
x2

∂r−k−4
x3

∂xi
∂xi+1

v‖2Ω

+‖(1− ξ2ν)
r−3

2 ∂jx1
∂k−j
x2

∂r−k−4
x3

∂2xi
v‖2Ω), r ≥ 4,

and

(27) B
(3)
3,Ω(v) = δ−1

Ω

3∑

λ=1

d2λΩ |v|2Hλ(Ω).

Theorem 3.2. If v ∈ H1
0 (Ω) and Br,Ω(v) is finite for integers 1 ≤ r ≤ N + 1,

then

(28)
‖∇(P 1,0

N,Ωv − v)‖2Ω ≤ cd4Ωδ
−1
Ω N2−2r

Br,Ω(v),

‖P 1,0
N,Ωv − v‖2Ω ≤ cc̄2Ω(c

2
Ω + 1)2d10Ω (dΩ + 1)2δ−3

Ω N−2r
Br,Ω(v),

where c̄Ω is a positive constant determined in (43) of this paper.
Proof. By the projection theorem,

(29) ‖∇(P 1,0
N,Ωv − v)‖2Ω ≤ ‖∇(φ− v)‖2Ω, ∀φ ∈ V 0

N (Ω).

Let u(ξ) be the same as before, and

ψ(ξ) = P
1,0
N,Ku(ξ), φ(x) = ψ(ξ1(x), ξ2(x), ξ3(x)) ∈ V 0

N (Ω).

Let ∇Kw = (∂ξ1w, ∂ξ2w, ∂ξ3w)
T . It can be shown that ∇Kw = MΩ∇w. Let M∗

Ω

be the adjoint matrix of MΩ. Then ∇w = M−1
Ω ∇Kw = J−1

Ω M∗
Ω∇Kw. Hence, we

use (6), (14) and some inequalities like (20), to verify that

‖∇(φ− v)‖2Ω =

∫ ∫ ∫

K

(M∗
Ω∇K(u− P

1,0
N,Ku))

2J−1
Ω (ξ)dξ1dξ2dξ3

≤cd4Ωδ−1
Ω N2−2r

Br,K(u).(30)

We are going to estimate the upper-bound of Br,K(u) appearing in (30).

We first deal with the upper-bound of B
(1)
r,K(u) for r ≥ 3, which is defined by

(3). Using (14), (19) and some inequalities like (20), we verify that for r ≥ 3,

(31) B
(1)
r,K(u) ≤ cB

(1)
r,Ω(v).



SPECTRAL METHOD FOR MIXED BVPS ON HEXAHEDRONS 671

Next, we derive an upper-bound of B
(2)
r,K(u) for r ≥ 3, which is defined by (4). A

calculation yields that
(32)

∂r−1
ξ1

∂ξ2u

=

r−1∑

k=0

k∑

j=0

Ck
r−1C

j
k(∂ξ1x1)

j(∂ξ1x2)
k−j(∂ξ1x3)

r−1−k(∂ξ2x1∂
j+1
x1

∂k−j
x2

∂r−1−k
x3

v

+∂ξ2x2∂
j
x1
∂k+1−j
x2

∂r−1−k
x3

v + ∂ξ2x3∂
j
x1
∂k−j
x2

∂r−k
x3

v)

+(r − 1)

r−2∑

k=0

k∑

j=0

Ck
r−2C

j
k(∂ξ1x1)

j(∂ξ1x2)
k−j(∂ξ1x3)

r−2−k∂ξ1∂ξ2x1∂
j+1
x1

∂k−j
x2

∂r−2−k
x3

v

+∂ξ1∂ξ2x2∂
j
x1
∂k+1−j
x2

∂r−2−k
x3

v + ∂ξ1∂ξ2x3∂
j
x1
∂k−j
x2

∂r−1−k
x3

v),
∂r−1
ξ1

∂ξ3u

=

r−1∑

k=0

k∑

j=0

Ck
r−1C

j
k(∂ξ1x1)

j(∂ξ1x2)
k−j(∂ξ1x3)

r−1−k(∂ξ3x1∂
j+1
x1

∂k−j
x2

∂r−1−k
x3

v

+∂ξ3x2∂
j
x1
∂k+1−j
x2

∂r−1−k
x3

v + ∂ξ3x3∂
j
x1
∂k−j
x2

∂r−k
x3

v)

+(r − 1)

r−2∑

k=0

k∑

j=0

Ck
r−2C

j
k(∂ξ1x1)

j(∂ξ1x2)
k−j(∂ξ1x3)

r−2−k(∂ξ1∂ξ3x1∂
j+1
x1

∂k−j
x2

∂r−2−k
x3

v

+∂ξ1∂ξ3x2∂
j
x1
∂k+1−j
x2

∂r−2−k
x3

v + ∂ξ1∂ξ3x3∂
j
x1
∂k−j
x2

∂r−1−k
x3

v).

Moreover, with the aid of (10), we deduce that

(33) |∂ξ1∂ξ2x1| = |b14 + b17ξ3| ≤ dΩ, etc..

Thus, together with (32) and (33), an argument similar to the derivation of (31)
leads to

(34)

∫ ∫ ∫

K

(1− ξ21)
r−2((∂r−1

ξ1
∂ξ2u)

2 + (∂r−1
ξ1

∂ξ3u)
2)dξ1dξ2dξ3

≤ cδ−1
Ω d2rΩ

3∑

i=1

r−1∑

k=0

k∑

j=0

‖(1− ξ21)
r−2
2 ∂jx1

∂k−j
x2

∂r−k−1
x3

∂xi
v‖2Ω

+cδ−1
Ω d2r−2

Ω

3∑

i=1

r−2∑

k=0

k∑

j=0

‖(1− ξ21)
r−2
2 ∂jx1

∂k−j
x2

∂r−k−2
x3

∂xi
v‖2Ω.

We could obtain the upper-bounds for the other two terms appearing in (4) sim-

ilarly, with a modification of replacing the weights in (34) by (1 − ξ22)
r−2

2 or

(1− ξ23)
r−2

2 , respectively. Consequently, we reach that

(35) B
(2)
r,K(u) ≤ cB

(2)
r,Ω(v), r ≥ 3.
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Finally, we derive an upper-bound of B
(3)
r,K(u) for r ≥ 3, which is defined by (5).

We have for r ≥ 4 that
(36)

∂r−2
ξ1

∂ξ2∂ξ3u =
r−2∑

k=0

k∑

j=0

Ck
r−2C

j
k(∂ξ1x1)

j(∂ξ1x2)
k−j(∂ξ1x3)

r−2−k

×(∂ξ2x1∂ξ3x1∂
j+2
x1

∂k−j
x2

∂r−2−k
x3

v

+∂ξ2x2∂ξ3x2∂
j
x1
∂k+2−j
x2

∂r−2−k
x3

v + ∂ξ2x3∂ξ3x3∂
j
x1
∂k−j
x2

∂r−k
x3

v

+∂ξ2∂ξ3x1∂
j+1
x1

∂k−j
x2

∂r−2−k
x3

v + (∂ξ2x1∂ξ3x3 + ∂ξ3x1∂ξ2x3)∂
j+1
x1

∂k−j
x2

∂r−1−k
x3

v

+∂ξ2∂ξ3x2∂
j
x1
∂k+1−j
x2

∂r−2−k
x3

v + (∂ξ2x2∂ξ3x3 + ∂ξ3x2∂ξ2x3)∂
j
x1
∂k+1−j
x2

∂r−1−k
x3

v

+∂ξ2∂ξ3x3∂
j
x1
∂k−j
x2

∂r−1−k
x3

v + (∂ξ2x1∂ξ3x2 + ∂ξ3x1∂ξ2x2)∂
j+1
x1

∂k+1−j
x2

∂r−2−k
x3

v)

+C1
r−2

r−3∑

k=0

k∑

j=0

Ck
r−3C

j
k(∂ξ1x1)

j(∂ξ1x2)
k−j

×(∂ξ1x3)
r−3−k(∂ξ1(∂ξ2x1∂ξ3x1)∂

j+2
x1

∂k−j
x2

∂r−3−k
x3

v

+∂ξ1(∂ξ2x2∂ξ3x2)∂
j
x1
∂k+2−j
x2

∂r−3−k
x3

v + ∂ξ1(∂ξ2x3∂ξ3x3)∂
j
x1
∂k−j
x2

∂r−1−k
x3

v

+∂ξ1∂ξ2∂ξ3x1∂
j+1
x1

∂k−j
x2

∂r−3−k
x3

v

+∂ξ1(∂ξ2x1∂ξ3x2 + ∂ξ3x1∂ξ2x2)∂
j+1
x1

∂k+1−j
x2

∂r−3−k
x3

v

+∂ξ1∂ξ2∂ξ3x2∂
j
x1
∂k+1−j
x2

∂r−3−k
x3

v

+∂ξ1(∂ξ2x1∂ξ3x3 + ∂ξ3x1∂ξ2x3)∂
j+1
x1

∂k−j
x2

∂r−2−k
x3

v

+∂ξ1∂ξ2∂ξ3x3∂
j
x1
∂k−j
x2

∂r−2−k
x3

v

+∂ξ1(∂ξ2x2∂ξ3x3 + ∂ξ3x2∂ξ2x3)∂
j
x1
∂k+1−j
x2

∂r−2−k
x3

v)

+C2
r−2

r−4∑

k=0

k∑

j=0

Ck
r−4C

j
k(∂ξ1x1)

j(∂ξ1x2)
k−j(∂ξ1x3)

r−4−k

×(∂2ξ1(∂ξ2x1∂ξ3x1)∂
j+2
x1

∂k−j
x2

∂r−4−k
x3

v

+∂2ξ1(∂ξ2x2∂ξ3x2)∂
j
x1
∂k+2−j
x2

∂r−4−k
x3

v

+∂2ξ1(∂ξ2x1∂ξ3x2 + ∂ξ3x1∂ξ2x2)∂
j+1
x1

∂k+1−j
x2

∂r−4−k
x3

v

+∂2ξ1(∂ξ2x3∂ξ3x3)∂
j
x1
∂k−j
x2

∂r−2−k
x3

v

+∂2ξ1(∂ξ2x1∂ξ3x3 + ∂ξ3x1∂ξ2x3)∂
j+1
x1

∂k−j
x2

∂r−3−k
x3

v

+∂2ξ1(∂ξ2x2∂ξ3x3 + ∂ξ3x2∂ξ2x3)∂
j
x1
∂k+1−j
x2

∂r−3−k
x3

v).

Therefore, for r ≥ 4,
(37)∫ ∫ ∫

K

(1− ξ21)
r−3(∂r−2

ξ1
∂ξ2∂ξ3u)

2dξ1dξ2dξ3

≤ cδ−1
Ω d2rΩ

3∑

i=1

r−2∑

k=0

k∑

j=0

(‖(1− ξ21)
r−3

2 ∂jx1
∂k−j
x2

∂r−k−2
x3

∂xi
∂xi+1

v‖2Ω

+‖(1− ξ21)
r−3

2 ∂jx1
∂k−j
x2

∂r−k−2
x3

∂2xi
v‖2Ω + d−2

Ω ‖(1− ξ21)
r−3

2 ∂jx1
∂k−j
x2

∂r−k−2
x3

∂xi
v‖2Ω)

+cδ−1
Ω d2r−2

Ω

3∑

i=1

r−3∑

k=0

k∑

j=0

(‖(1− ξ21)
r−3
2 ∂jx1

∂k−j
x2

∂r−k−3
x3

∂xi
∂xi+1

v‖2Ω

+‖(1− ξ21)
r−3
2 ∂jx1

∂k−j
x2

∂r−k−3
x3

∂2xi
v‖2Ω + d−2

Ω ‖(1− ξ21)
r−3
2 ∂jx1

∂k−j
x2

∂r−k−3
x3

∂xi
v‖2Ω)

+cδ−1
Ω d2r−4

Ω

3∑

i=1

r−4∑

k=0

k∑

j=0

(‖(1− ξ21)
r−3

2 ∂jx1
∂k−j
x2

∂r−k−4
x3

∂xi
∂xi+1

v‖2Ω

+‖(1− ξ21)
r−3

2 ∂jx1
∂k−j
x2

∂r−k−4
x3

∂2xi
v‖2Ω).

We can estimate the other two terms involved in (5) in the same manner, and
obtain their upper-bounds similar to (37). But, the weight (1− ξ21)r−3 in (5) is now
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replaced by (1− ξ22)
r−3 or (1− ξ23)

r−3, respectively. Consequently, we obtain

(38) B
(3)
r,K(u) ≤ cB

(3)
r,Ω(v), r ≥ 4.

Moreover, a direct calculation yields

(39) B
(3)
3,K(u) ≤ cδ−1

Ω

3∑

λ=1

d2λΩ |v|2Hλ(Ω) = cB
(3)
3,Ω(v).

A combination of (31), (35), (38) and (39) leads to

(40) Br,K(u) ≤ cBr,Ω(v), r ≥ 3.

This, together with (29) and (30), implies the first result (28) with r ≥ 3.
On the other hand, with the aid of (2), (10), and Poincaré inequality, a direct

calculation shows that

(41)
B1,K(u) ≤ cδ−1

Ω d2Ω|v|2H1(Ω) = cB1,Ω(v),

B2,K(u) ≤ cδ−1
Ω (d2Ω|v|2H1(Ω) + d4Ω|v|2H2(Ω)) = cB2,Ω(v).

The above two inequalities, together with (29) and (30), lead to the first result (28)
with r = 1, 2.

We now prove the second result of (28). Let g ∈ L2(Ω) and consider an auxiliary
problem. It is to find w ∈ H1

0 (Ω) such that

(42) (∇w,∇z)Ω = (g, z)Ω, ∀z ∈ H1
0 (Ω).

Taking z = w in (42) and using (21), we obtain ‖∇w‖Ω ≤ cΩ‖g‖Ω. Moreover, by
the property of elliptic equation with the homogeneous boundary condition, there
exists a positive constant c̄Ω such that

(43) ‖w‖H2(Ω) ≤ c̄Ω(‖w‖Ω + ‖g‖Ω) ≤ c̄Ω(cΩ‖∇w‖Ω + ‖g‖Ω) ≤ c̄Ω(c
2
Ω + 1)‖g‖Ω.

We now take z = P
1,0
N,Ωv − v in (42). Then, we use (22) and the first result of (28)

to verify that for 1 ≤ r ≤ N + 1,
(44)

|(P 1,0
N,Ωv − v, g)Ω| = |(∇w,∇(P 1,0

N,Ωv − v))Ω| = |(∇(P 1,0
N,Ωw − w),∇(P 1,0

N,Ωv − v))Ω|
≤ ‖∇(P 1,0

N,Ωw − w)‖Ω‖∇(P 1,0
N,Ωv − v)‖Ω ≤ cd4Ωδ

−1
Ω N−r(Br,Ω(v))

1
2 (B2,Ω(w))

1
2 .

Moreover, a calculation shows that we have (B2,Ω(w))
1
2 ≤ δ

− 1
2

Ω dΩ(dΩ+1)‖w‖H2(Ω).
Finally, we use (43) and (44) to deduce that for 1 ≤ r ≤ N + 1,

‖∇(P 1,0
N,Ωv − v)‖Ω = sup

g∈L2(Ω),g 6=0

|(P 1,0
N,Ωv − v, g)Ω|

‖g‖Ω

≤ cd4Ωδ
−1
Ω N−r (Br,Ω(v))

1
2 (B2,Ω(w))

1
2

‖g‖Ω
≤ cd5Ω(dΩ + 1)δ

− 3
2

Ω N−r
(Br,Ω(v))

1
2 ‖w‖H2(Ω)

‖g‖Ω
≤ cc̄Ω(c

2
Ω + 1)d5Ω(dΩ + 1)δ

− 3
2

Ω N−r(Br,Ω(v))
1
2 .

This ends the proof of this theorem.
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Remark 3.3. In the case with Ω = Ka1,a2,a3
as in Remark 3.2, we could improve

the results in Theorem 3.2. To do this, let

B̃1,Ω(v) = (

3∑

i=1

1

a2i
)(

3∑

i=1

a2i ‖∂xi
v‖2Ω + ||v||2Ω),

B̃2,Ω(v) = B̃1,Ω(v) + (
3∑

i=1

1

a2i
)

3∑

i=1

3∑

j=1

a2i a
2
j‖∂xi

∂xj
v‖2Ω,

and B̃r,Ω(v) =

3∑

j=1

B̃
(j)
r,Ω(v) for r ≥ 3, with

B̃
(1)
r,Ω(v) = (

3∑

i=1

1

a2i
)

∫ ∫ ∫

Ω

(a21(a
2
1 − x21)

r−1(∂rx1
v)2 + a22(a

2
2 − x22)

r−1(∂rx2
v)2

+ a23(a
2
3 − x23)

r−1(∂rx3
v)2)dx1dx2dx3,

B̃
(2)
r,Ω(v) = (

3∑

i=1

1

a2i
)(a21

∫ ∫ ∫

Ω

(a21 − x21)
r−2(a22(∂

r−1
x1

∂x2
v)2 + a23(∂

r−1
x1

∂x3
v)2)dx1dx2dx3

+ a22

∫ ∫ ∫

Ω

(a22 − x22)
r−2(a21(∂x1

∂r−1
x2

v)2 + a23(∂
r−1
x2

∂x3
v)2)dx1dx2dx3

+ a23

∫ ∫ ∫

Ω

(a23 − x23)
r−2(a21(∂x1

∂r−1
x3

v)2 + a22(∂x2
∂r−1
x3

v)2)dx1dx2dx3),

B̃
(3)
r,Ω(v) = (

3∑

i=1

1

a2i
)a21a

2
2a

2
3

∫ ∫ ∫

Ω

((a21 − x21)
r−3(∂r−2

x1
∂x2

∂x3
v)2

+ (a22 − x22)
r−3(∂x1

∂r−2
x2

∂x3
v)2 + (a23 − x23)

r−3(∂x1
∂x2

∂r−2
x3

v)2)dx1dx2dx3.

By (2) and an argument similar to the derivation of (30), we verify that for r ≥ 1,

(45) ‖∇(P 1,0
N,Ωv − v)‖2Ω ≤ cN2−2r

B̃r,Ω(v).

Next, like (44), we have that for 1 ≤ r ≤ N + 1,

|(P 1,0
N,Ωv − v, g)Ω| ≤ cN−r(B̃r,Ω(v))

1
2 (B̃2,Ω(w))

1
2 .

Moreover, we obtain from (42) that |w|H2(Ω) ≤ c‖g‖Ω. Finally, by an argument as
in the last part of the proof of Theorem 3.2, we derive that for 1 ≤ r ≤ N + 1,

(46) ‖P 1,0
N,Ωv − v‖Ω ≤ cN−r(B̃r,Ω(u))

1
2 .

3.4. Other irrational orthogonal approximations. For spectral method of
problems with mixed boundary conditions, we need other irrational orthogonal
approximations. For instance, we denote the boundary of the reference cube K by
∂K = ∪6

j=1Sj , with

S1 = {ξ ∈ K, ξ1 = −1}, S2 = {ξ ∈ K, ξ2 = −1}, S3 = {ξ ∈ K, ξ3 = −1},
S4 = {ξ ∈ K, ξ1 = 1}, S5 = {ξ ∈ K, ξ2 = 1}, S6 = {ξ ∈ K, ξ3 = 1}.

Meanwhile, let the boundary ∂Ω = ∪6
j=1Fj and Fj = {x = x(ξ), ξ ∈ Sj}, 1 ≤ j ≤ 6.

Now, let ∂∗∗Ω = ∪3
j=1Fj , ∂∗Ω = ∪6

j=4Fj , and

0H1(Ω) = { v | v ∈ H1(Ω) and v = 0 on ∂∗Ω }, 0VN (Ω) = 0H1(Ω) ∩ VN (Ω).
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The 0H1(Ω)-irrational orthogonal projection 0P 1
N,Ω : 0H1(Ω) → 0VN (Ω) is defined

by

(47) (∇(0P 1
N,Ωv − v),∇φ)Ω = 0, ∀φ ∈ 0VN (Ω).

Following the same line as in the proof of the last theorem, we use (7) to obtain
the following result.

Theorem 3.3. If v ∈ 0H1(Ω) and Br,Ω(v) is finite for integers 1 ≤ r ≤ N + 1,
then

(48)
‖∇(0P 1

N,Ωv − v)‖2Ω ≤ cd4Ωδ
−1
Ω N2−2r

Br,Ω(v),

‖0P 1
N,Ωv − v‖2Ω ≤ cc̄2Ω,∗(c

2
Ω,∗ + 1)2d10Ω (dΩ + 1)2δ−3

Ω N−2r
Br,Ω(v),

where cΩ,∗ and c̄Ω,∗ are certain positive constants, which are similar to cΩ and c̄Ω,
respectively.

4. Spectral method for problems defined on hexahedrons

In this section, we propose the spectral method for boundary value problems
defined on hexahedrons.

4.1. A steady problem with Dirichlet boundary condition. We consider
the following Dirichlet boundary value problem,

(49)

{
−∆W (x) = G(x), in Ω,
W (x) = g(x), on ∂Ω,

where G(x) and g(x) are given functions. Let g(x) = gj(x) on the faces Fj , 1 ≤
j ≤ 6. If F̄j ∩ F̄k 6= ∅, then we denote their common edge by Ejk, 1 ≤ j, k ≤ 6.
Assume that the boundary value g(x) satisfies the consistent condition, namely,
gj(x) = gk(x) at the common edge Ejk, 1 ≤ j, k ≤ 6. In other words, g(x) is
continuous on ∂Ω.

We shall reformulate problem (49) to a homogeneous boundary value problem.
To do this, we set ĝ(ξ) = g(x(ξ)), and introduce the following functions,

ŴS(ξ) =
1

2
((1− ξ1)ĝ(−1, ξ2, ξ3) + (1− ξ2)ĝ(ξ1,−1, ξ3) + (1− ξ3)ĝ(ξ1, ξ2,−1)

+(1 + ξ1)ĝ(1, ξ2, ξ3) + (1 + ξ2)ĝ(ξ1, 1, ξ3) + (1 + ξ3)ĝ(ξ1, ξ2, 1)),

ŴL(ξ) = −1

4
((1 − ξ1)(1 − ξ2)ĝ(−1,−1, ξ3) + (1− ξ1)(1 + ξ2)ĝ(−1, 1, ξ3)

+(1 + ξ1)(1− ξ2)ĝ(1,−1, ξ3) + (1 + ξ1)(1 + ξ2)ĝ(1, 1, ξ3)
+(1− ξ1)(1− ξ3)ĝ(−1, ξ2,−1) + (1− ξ1)(1 + ξ3)ĝ(−1, ξ2, 1)
+(1 + ξ1)(1− ξ3)ĝ(1, ξ2,−1) + (1 + ξ1)(1 + ξ3)ĝ(1, ξ2, 1)
+(1− ξ2)(1− ξ3)ĝ(ξ1,−1,−1) + (1− ξ2)(1 + ξ3)ĝ(ξ1,−1, 1)
+(1 + ξ2)(1− ξ3)ĝ(ξ1, 1,−1) + (1 + ξ2)(1 + ξ3)ĝ(ξ1, 1, 1)),

ŴV (ξ) =
1

8
((1 + ξ1)(1 + ξ2)(1 + ξ3)ĝ(1, 1, 1)

+(1− ξ1)(1− ξ2)(1− ξ3)ĝ(−1,−1,−1)
+(1− ξ1)(1− ξ2)(1 + ξ3)ĝ(−1,−1, 1)
+(1 + ξ1)(1− ξ2)(1 + ξ3)ĝ(1,−1, 1)
+(1 + ξ1)(1 + ξ2)(1− ξ3)ĝ(1, 1,−1)
+(1− ξ1)(1 + ξ2)(1− ξ3)ĝ(−1, 1,−1)
+(1− ξ1)(1 + ξ2)(1 + ξ3)ĝ(−1, 1, 1)
+(1 + ξ1)(1− ξ2)(1− ξ3)ĝ(1,−1,−1)).

Furthermore,

Ŵ∂K(ξ) = ŴS(ξ) + ŴL(ξ) + ŴV (ξ).
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Next, we letW∂Ω(x) = Ŵ∂K(ξ(x)), which only depends on g(x). It can be checked
that W (x) =W∂Ω(x) on ∂Ω.

We now make the variable transformation

W (x) = U(x) +W∂Ω(x), f(x) = G(x) + ∆W∂Ω(x).

Then, (49) is changed to

(50)

{
−∆U(x) = f(x), in Ω,
U(x) = 0, on ∂Ω.

A weak formulation of (50) is to seek solution U ∈ H1
0 (Ω) such that

(51) (∇U,∇v)Ω = (f, v)Ω, ∀v ∈ H1
0 (Ω).

The irrational spectral scheme for (51) is to find uN ∈ V 0
N (Ω) such that

(52) (∇uN ,∇φ)Ω = (f, φ)Ω, ∀φ ∈ V 0
N (Ω).

The numerical solution of problem (49) is given by

(53) wN (x) = uN(x) +W∂Ω(x).

We now deal with the convergence of scheme (52). Let UN = P
1,0
N,ΩU. We have

from (22) and (51) that

(54) (∇UN ,∇φ)Ω = (f, φ)Ω, ∀φ ∈ V 0
N (Ω).

Let ũN = uN − UN . By subtracting (54) from (52), we obtain

(∇ũN ,∇φ)Ω = 0, ∀φ ∈ V 0
N (Ω).

Taking φ = ũN in the above equation, we obtain ||∇ũN ||2Ω = 0. It follows from

Pocaré inequality that ũN(x) ≡ 0, and so uN = P
1,0
N,ΩU. Finally, we use (28) to

conclude that for integers 1 ≤ r ≤ N + 1,

(55)
‖∇(U − uN)‖2Ω ≤ cd4Ωδ

−1
Ω N2−2r

Br,Ω(U),
‖U − uN‖2Ω ≤ cc̄2Ω(c

2
Ω + 1)2d10Ω (dΩ + 1)2δ−3

Ω N−2r
Br,Ω(U).

This, together with (53), implies that for 1 ≤ r ≤ N + 1,
(56)

‖∇(W − wN )‖2Ω ≤ cd4Ωδ
−1
Ω N2−2r(Br,Ω(W ) +Br,Ω(W∂Ω

)),
‖W − wN‖2Ω ≤ cc̄2Ω(c

2
Ω + 1)2d10Ω (dΩ + 1)2δ−3

Ω N−2r(Br,Ω(W ) +Br,Ω(W∂Ω)),

provided that Br,Ω(W ) and Br,Ω(W∂Ω) are finite.

4.2. A mixed boundary value problem. In this subsection, we propose the
spectral method for a mixed boundary value problem. Let ∂∗∗Ω = F1 ∪ F2 ∪
F3, ∂

∗Ω = F4∪F5∪F6, and α(x) be a non-negative and uniformly bounded function.
We consider the following problem,

(57)





−∆W (x) = G(x), in Ω,
W (x) = g(x), on ∂∗Ω,
∂nW (x) + α(x)W (x) = H(x), on ∂∗∗Ω.

where G, g and H are given functions. Let gj(x) = g(x)|Fj
, j = 4, 5, 6. Assume that

the boundary value g(x) satisfies the consistent condition, namely, gj(x) = gk(x)
at the common edges Ejk, 4 ≤ j, k ≤ 6.

We shall change the inhomogeneous boundary value problem (57) to a boundary
value problem with homogeneous Dirichlet boundary condition on ∂∗Ω. To do this,
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we set ∂∗K = S4 ∪ S5 ∪ S6 and ĝ(ξ) = g(x(ξ)). We also introduce the following
auxiliary function,

ŴS(ξ) =
1

2
((1 + ξ1)ĝ(1, ξ2, ξ3) + (1 + ξ2)ĝ(ξ1, 1, ξ3) + (1 + ξ3)ĝ(ξ1, ξ2, 1)),

ŴL(ξ) = −1

4
((1 + ξ1)(1 + ξ2)ĝ(1, 1, ξ3) + (1 + ξ1)(1 + ξ3)ĝ(1, ξ2, 1)

+ (1 + ξ2)(1 + ξ3)ĝ(ξ1, 1, 1)),

ŴV (ξ) =
1

8
(1 + ξ1)(1 + ξ2)(1 + ξ3)ĝ(1, 1, 1).

Furthermore,

Ŵ∂∗K(ξ) = ŴS(ξ) + ŴL(ξ) + ŴV (ξ).

Next, we letW∂∗Ω(x) = Ŵ∂∗K(ξ(x)), which only depends on g(x). It can be shown
that W (x) =W∂∗Ω(x) on ∂

∗Ω.
We now make a change of the variables:

W (x) = U(x) +W∂∗Ω(x), f(x) = G(x) + ∆W∂∗Ω(x),

h(x) = H(x)− ∂nW∂∗Ω(x)− αW∂∗Ω(x).

Then, (57) is reformulated as

(58)






−∆U(x) = f(x), in Ω,
U(x) = 0, on ∂∗Ω,
∂nU(x) + αU(x) = h(x), on ∂Ω \ ∂∗Ω.

Let

aα(u, v) = (∇u,∇v)Ω +

∫ ∫

∂Ω\∂∗Ω

α(x)uvdS, ∀ u, v ∈ 0H1(Ω).

A weak formulation of (58) is to seek the solution U ∈ 0H1(Ω) such that

(59) aα(U, v) = (f, v)Ω +

∫ ∫

∂Ω\∂∗Ω

hvdS, ∀v ∈ 0H1(Ω).

The irrational spectral scheme for solving (59) is to find uN ∈ 0VN (Ω) such that

(60) aα(uN , φ) = (f, φ)Ω +

∫ ∫

∂Ω\∂∗Ω

hφdS, ∀φ ∈ 0VN (Ω).

The numerical solution of the original problem (57) is given by

(61) wN (x) = uN(x) +W∂∗Ω(x).

For analyzing the convergence of scheme (60), we introduce the auxiliary pro-
jection P ∗

Nv : 0H1(Ω) → 0VN (Ω), such that

(62) aα(P
∗
Nv − v, φ) = 0, ∀φ ∈ 0VN (Ω).

With the aid of (62), a direct calculation shows that for any v ∈ 0H1(Ω) and
z ∈ 0VN (Ω),

(63)
aα(v − z, v − z) = aα(v − P ∗

Nv, v − P ∗
Nv) + aα(z − P ∗

Nv, z − P ∗
Nv)

+2aα(v − P ∗
Nv, P

∗
Nv − z)

≥ aα(v − P ∗
Nv, v − P ∗

Nv).

It follows from (59) and (62) that

aα(P
∗
NU, φ) = (f, φ)Ω +

∫ ∫

∂Ω\∂∗Ω

hφdS, ∀φ ∈ 0VN (Ω).
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Subtracting the above equality from (60), we have

aα(uN − P ∗
NU, φ) = 0, ∀φ ∈ 0VN (Ω).

By taking φ = uN−P ∗
NU in the above equation, we find that ||∇(uN−P ∗

NU)||Ω = 0
and uN − P ∗

NU = 0 on ∂Ω \ ∂∗Ω. This fact, together with the Poincaré inequality,
leads to uN = P ∗

NU .
Next, let 0P 1

N,Ωv be the projection defined by (47). By using (63) with v = U

and z = 0P 1
N,ΩU , the trace theorem, the Poincaré inequality and (48) successively,

we derive that

(64)

||∇(uN − U)||2Ω ≤ aα(uN − U, uN − U)
= aα(P

∗
NU − U, P ∗

NU − U)
≤ aα(

0P 1
N,ΩU − U, 0P 1

N,ΩU − U)

≤ c(1 + α)||0P 1
N,ΩU − U ||21,Ω

≤ c(1 + α)(1 + c2Ω,∗)||∇(0P 1
N,ΩU − U)||2Ω

≤ c(1 + α)(1 + c2Ω,∗)d
4
Ωδ

−1
Ω N2−2r

Br,Ω(U),

whence

(65) ||uN − U ||21,Ω ≤ c(1 + α)(1 + c2Ω,∗)
2d4Ωδ

−1
Ω N2−2r

Br,Ω(U).

We next use a duality argument to derive the optimal estimate of ‖uN −U‖Ω. Let
g ∈ L2(Ω). We consider an auxiliary problem. It is to find η ∈ 0H1(Ω) such that

(66) aα(η, z) = (g, z)Ω, ∀z ∈ 0H1(Ω).

By taking z = η in (66), we use Poincaré inequality to assert that ||η||1,Ω ≤ cΩ,∗(1+
cΩ,∗)||g||Ω. Furthermore, by taking z = uN − U in (66), we obtain

aα(η, uN − U) = (g, uN − U)Ω.

Since uN = P ∗
NU ∈ 0VN (Ω), we use (62) with v = U and φ = P ∗

Nη to deduce that

aα(P
∗
Nη, uN − U) = 0.

A combination of the above two equalities leads to

aα(η − P ∗
Nη, uN − U) = (g, uN − U)Ω.

Therefore, it follows from the trace theorem that

(67) |(g, uN − U)Ω| ≤ c‖η − P ∗
Nη‖1,Ω‖uN − U‖1,Ω.

Furthermore, by taking v = η and z = 0P 1
N,Ωη in (63), we find that

aα(η − P ∗
Nη, η − P ∗

Nη) ≤ aα(η − 0P 1
N,Ωη, η − 0P 1

N,Ωη).

Thus, an argument as in the derivation of (65) leads to

(68)
||η − P ∗

Nη||21,Ω ≤ c(1 + α)(1 + c2Ω,∗)
2d4Ωδ

−1
Ω N−2

B2,Ω(η)

≤ c(1 + α)(1 + c2Ω,∗)
2d4Ωδ

−1
Ω N−2||η||22,Ω.

Accordingly, we use (65), (67) and (68) to reach that

|(g, uN − U)Ω| ≤ c(1 + α)(1 + c2Ω,∗)
2d4Ωδ

−1
Ω N−r||η||2,ΩB

1
2

r,Ω(U).

By virtue of the property of elliptic equation, there exists ζΩ > 0, such that ‖η‖2,Ω ≤
ζΩ‖g‖Ω (cf. [5]). Consequently, we verify that
(69)

‖uN−U‖Ω = sup
g∈L2(Ω),g 6=0

|(g, uN − U)Ω|
‖g‖Ω

≤ cζΩ(1+α)(1+c
2
Ω,∗)

2d4Ωδ
−1
Ω N−r

B
1
2

r,Ω(U).
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Finally, we obtain from (61), (64) and (69) that for 1 ≤ r ≤ N + 1,
(70)
||∇(wN −W )||2Ω ≤ c(1 + α)(1 + c2Ω,∗)d

4
Ωδ

−1
Ω N2−2r(Br,Ω(W ) +Br,Ω(W∂∗Ω)),

‖wN −W‖2Ω ≤ cζ2Ω(1 + α)2(1 + c2Ω,∗)
4d8Ωδ

−2
Ω N−2r(Br,Ω(W ) +Br,Ω(W∂∗Ω)),

provided that Br,Ω(W ) and Br,Ω(W∂Ω) are finite.

5. Numerical results

In this section, we describe the numerical implementations and present some
numerical results.

5.1. Dirichlet boundary value problem. We first consider the spectral scheme
(52). Let Ll(ξ) be the Legendre polynomial of degree l, and

χl(ξ) =
Ll(ξ)− Ll+2(ξ)√

4l+ 6
, 0 ≤ l ≤ N − 2.

The basis functions are given by

ψl1,l2,l3(x) = χl1(ξ1(x))χl2(ξ2(x))χl3(ξ3(x)).

We expand the numerical solution as

(71) uN(x) =

N−2∑

l3=0

N−2∑

l2=0

N−2∑

l1=0

ul1,l2,l3ψl1,l2,l3(x).

Inserting (71) into (52) and taking the previous basis functions φ = ψl′1,l
′

2,l
′

3
(x)

as the test functions, we obtain a symmetrical discrete system with the unknown
coefficients al1,l2,l3 as follows,

(72)

N−2∑

l3=0

N−2∑

l2=0

N−2∑

l1=0

(∇ψl1,l2,l3 ,∇ψΩ,l′
1
,l′
2
,l′
3
)Ωul1,l2,l3 = (f, ψΩ,l′

1
,l′
2
,l′
3
)Ω.

Let X be the vectors of unknown coefficients ul1,l2,l3 , namely,

X =

(u0,0,0, u1,0,0, · · · , uN−2,0,0, u0,1,0, u1,1,0, · · · , uN−2,1,0, · · · , u0,N−2,0, u1,N−2,0, · · · , uN−2,N−2,0,

u0,0,1, u1,0,1, · · · , uN−2,0,1, u0,1,1, u1,1,1, · · · , uN−2,1,1, · · · , u0,N−2,1, u1,N−2,1, · · · , uN−2,N−2,1,

· · · , · · · , · · · ,
u0,0,N−2, u1,0,N−2, · · · , uN−2,0,N−2, u0,1,N−2, u1,1,N−2, · · · , uN−2,1,N−2, · · · , u0,N−2,N−2,

u1,N−2,N−2, · · · , uN−2,N−2,N−2)
T .

Also, we put

F =

(f0,0,0, f1,0,0, · · · , fN−2,0,0, f0,1,0, f1,1,0, · · · , fN−2,1,0, · · · , f0,N−2,0, f1,N−2,0, · · · , fN−1,N−2,0,

f0,0,1, f1,0,1, · · · , fN−2,0,1, f0,1,1, f1,1,1, · · · , fN−2,1,1, · · · , f0,N−2,1, f1,N−1,1, · · · , fN−2,N−2,1,

· · · , · · · , · · · ,
f0,0,N−2, f1,0,N−2, · · · , fN−2,0,N−2, f0,1,N−2, f1,1,N−2, · · · , fN−2,1,N−2, · · · , f0,N−2,N−2,

f1,N−2,N−2, · · · , fN−2,N−2,N−2)
T ,

with the components

fl′1,l′2,l′3 = (f, ψΩ,l′1,l
′

2,l
′

3
)Ω, 0 ≤ l′1, l

′
2, l

′
3 ≤ N − 2.
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Then, we obtain the following compact matrix form of (72),

(73) AX = F,

where A = (al′
1
,l′
2
,l′
3
,l1,l2,l3) with the following entries,

(74) al′
1
,l′
2
,l′
3
,l1,l2,l3 = (∇ψΩ,l1,l2,l3 ,∇ψΩ,l′

1
,l′
2
,l′
3
)Ω.

We now calculate the entries al′1,l′2,l′3,l1,l2,l3 . The hexahedron Ω is transformed to
the reference cube K by the coordinate transformation xi = xi(ξ). Similar to the
derivation of (30), we have

(∇v,∇φ)Ω = (J−1
Ω M∗

Ω∇Ku,M
∗
Ω∇Kψ)K .

More precisely, we denote the entries of the matric M∗
Ω by mij(1 ≤ i, j ≤ 3). Then

(∇v,∇φ)Ω =

∫ ∫ ∫

K

J−1
Ω M∗

Ω∇Ku ·M∗
Ω∇Kψdξ1ξ2ξ3

=

∫ ∫ ∫

K

J−1
Ω ((m11∂ξ1u+m12∂ξ2u+m13∂ξ3u)(m11∂ξ1ψ +m12∂ξ2ψ +m13∂ξ3ψ)

+(m21∂ξ1u+m22∂ξ2u+m23∂ξ3u)(m21∂ξ1ψ +m22∂ξ2ψ +m23∂ξ3ψ)
+(m31∂ξ1u+m32∂ξ2u+m33∂ξ3u)(m31∂ξ1ψ +m32∂ξ2ψ +m33∂ξ3ψ))dξ1ξ2ξ3.

Accordingly, we obtain from (74) that

al′
1
,l′
2
,l′
3
,l1,l2,l3 = (∇ψΩ,l1,l2,l3 ,∇ψΩ,l′

1
,l′
2
,l′
3
)Ω

=

∫ ∫ ∫

K

J−1
Ω (

3∑

j=1

m1j∂ξj (φl1(ξ1)φl2 (ξ2)φl3 (ξ3))

3∑

j=1

m1j∂ξj (φl′1(ξ1)φl′2 (ξ2)φl′3 (ξ3))

+

3∑

j=1

m2j∂ξj (φl1 (ξ1)φl2(ξ2)φl3(ξ3))

3∑

j=1

m2j∂ξj (φl′1 (ξ1)φl′2(ξ2)φl′3(ξ3))

+
3∑

j=1

m3j∂ξj (φl1 (ξ1)φl2(ξ2)φl3(ξ3))
3∑

j=1

m3j∂ξj (φl′1 (ξ1)φl′2(ξ2)φl′3(ξ3)))dξ1dξ2dξ3.

Besides,

fl′
1
,l′
2
,l′
3
= (f, ψΩ,l′

1
,l′
2
,l′
3
)Ω = (f, χl′

1
(ξ1)χl′

2
(ξ2)χl′

3
(ξ3)JΩ)K , 0 ≤ l′1, l

′
2, l

′
3 ≤ N − 2.

For description of numerical errors, let ζN,i and ρN,i(1 ≤ i ≤ N) be the nodes
and the weights of the one-dimensional Legendre-Gauss-Lobatto quadrature. We
measure the errors of numerical solution of (49) by

EN = (
N∑

l1=0

N∑
l2=0

N∑
l3=0

(W (x(ζN,l1 , ζN,l2, ζN,l3))− wN (x(ζN,l1 , ζN,l2, ζN,l3)))
2

×JΩ(ξ)ρN,l1ρN,l2ρN,l3)
1
2

≃ (

∫ ∫ ∫

K

(W (x(ξ))− wN (x(ξ)))2JΩ(ξ)dξ1dξ2dξ3)
1
2 = ‖W − wN‖Ω.

Our first example is for the Dirichlet problem of (49) posed on a hexahedron
domain with the following vertices:

(75)
Q1 = (0, 0, 0), Q2 = (2, 0, 0), Q3 = (43 ,

4
3 , 0), Q4 = (0, 2, 0),

Q5 = (0, 0, 32 ), Q6 = (43 , 0, 1), Q7 = (1, 1, 34 ), Q8 = (0, 43 , 1).

We assume that the right hand side f and the boundary value g are suitably defined
so that (49) admits the following exact solution

(76) W (x1, x2, x3) = (x1 + 2x2 + 33) sin(x1 + x2 + x3).
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In Table 1, we present the values of log10 EN vs. the mode N . As is predicted
by (56), the numerical errors decay faster than any power of N−1 since the exact
solution W (x1, x2, x3) is analytic.

Table 1. Numerical errors of problem (49).

N = 5 N = 10 N = 15 N = 20
8.27E-05 1.48E-10 1.89E-15 1.87E-15

5.2. Mixed boundary value problem. We next consider spectral scheme (60).
Let

φl(ξ) =
Ll(ξ)− Ll+1(ξ)

2
√
l + 1

.

The base functions are given by

ψl,m,k(x) = φl(ξ1(x))φm(ξ2(x))φk(ξ3(x)).

We expand the numerical solution as

(77) uN(x) =
N−1∑

l3=0

N−1∑

l2=0

N−1∑

l1=0

ul1,l2,l3ψl1,l2,l3(x).

Inserting (77) into (60) and taking the previous basis functions φ = ψΩ,l′1,l
′

2,l
′

3
(x)

as the test functions, we obtain a symmetrical discrete system with the unknown
coefficients ul1,l2,l3 as follow,

AX = F∗,

where X and F∗ are similar to X and F in (73),

f∗
l′1,l

′

2,l
′

3
= (f, ψΩ,l′

1
,l′
2
,l3)Ω +

∫

∂Ω\∂∗Ω

h(x)ψΩ,l′
1
,l′
2
,l3dS, 0 ≤ l′1, l

′
2, l

′
3 ≤ N − 1.

The matrix A = (al′
1
,l′
2
,l′
3
,l1,l2,l3) with the following entries,

al′
1
,l′
2
,l′
3
,l1,l2,l3 = (∇ψΩ,l1,l2,l3 ,∇ψΩ,l′

1
,l′
2
,l′
3
)Ω +

∫

∂Ω\∂∗Ω

α(x)ψl1,l2,l3ψΩ,l′
1
,l′
2
,l3dS.

As the second example of our numerical experiment, we consider the Neumann
and mixed problem (57) with the same domain Ω as in (75) and the same solution
as in (76). The boundary value g and H in (57) are slected according to the exact
solution for two different cases of α = 0 and α = 1. In Table 2, we list the values
of log10EN vs. the mode N . As is predicted by (70), the numerical errors decay
again faster than any power of N−1.

Table 2. Numerical errors of problem (57).

N = 5 N = 10 N = 15 N = 20
α = 0 3.56E-05 8.50E-11 1.63E-14 8.04E-15
α = 1 3.50E-05 8.43E-11 1.16E-14 6.99E-15
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Concluding remarks

In this paper, we proposed a spectral method for mixed boundary value prob-
lems on hexahedrons and prove its spectral accuracy. As examples of applications,
the spectral schemes were applied to two model problems. The numerical results
demonstrated the high efficiency of the proposed schemes, which is consistent with
our theoretical analysis well. Although we only considered two model problems,
the main idea and techniques developed in this work are also applicable to other
mixed boundary value problems. In particular, the proposed irrational orthogonal
approximation may serve as the mathematical foundation of spectral method for
partial differential equations defined on hexahedrons.

An more important problem is how to design spectral element method for prob-
lems on polyhedrons. In fact, we may generalize the basic results of this paper to
the composite irrational quasi-orthogonal approximation on polyhedrons, which in
turn leads to the spectral element method for polyhedrons. We shall report the
related work in the future. On the other hand, some authors also considered pseu-
dospectral method for non-rectangular domains, which are also called as spectral
element method oftentimes, see [4, 6, 17] and the references therein.
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