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A T-y FINITE ELEMENT METHOD FOR A NONLINEAR
DEGENERATE EDDY CURRENT MODEL WITH
FERROMAGNETIC MATERIALS
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Abstract. This paper is devoted to the study of a fully discrete T-v finite element method
based on H-decomposition to solve a nonlinear degenerate transient eddy current problem with
ferromagnetic materials. Here, the ferromagnetic properties are linked by a power material law.
‘We first design a nonlinear time-discrete scheme for approximation in suitable function spaces. We
show the well-posedness of the semidiscrete problem and prove the convergence of the nonlinear
scheme by the Minty-Browder technique. Finally, we suggest a fully discrete scheme, derive its
error estimate and give some numerical experiments to validate the theoretical result.

Key words. nonlinear degenerate eddy current problem, T-7) method, nodal elements, conver-
gence, and error estimates.

1. Introduction

The growing industrial applications of superconducting materials increase the
necessity for accurate numerical methods and their solid mathematical analysis. To
derive a precise mathematical model, we usually use the eddy current approximation
of Maxwell’s equations by formally dropping the displacement currents:

OB

= E =
(1) at+V>< 0,

VxH=J,

where F is the electric field, B stands for the magnetic induction, H denotes the
magnetic field and J is the current density.

Let © C R? be a sufficiently large, bounded polyhedron with the connected
boundary 9f2. This domain consists of some simply-connected convex subdomains
occupied by ferromagnetic materials, which are denoted by €2, with the boundary
99Q,. Let the complement Q. = Q\(. be the nonconducting domain. Taking into
account Ohm’s law,

J=cFE,
where ¢ is the conductivity. We assume that o is piecewise constants in ), and
vanishes outside 2., and there exist two constants o, and opax such that 0 <
Omin < 0 < Omax i .. The time-dependent magnetic variables are related as
follows:

po(H + M(H)) in Q.,

(2) B(H) = o H n Q..
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where po denotes the magnetic permeability of free space and M stands for the
magnetization vector. One can characterize the relationship between M and H by

a material law (for some 0 < o < 1)
|H|*'H, if |H| <1,

(3) (H) = 1 :
|H|I""H, if|H|>1.

We consider the eddy current problem (1) with magnetic and anisotropic materials.
Assume the boundary condition

H-n=0 onodQx(0,T]
and the initial condition
H(x,0) = Hy(x),
where 7 is regarded as the unit outward normal vector on 92 or 0€2.. For physical

reasons, it is supposed that V - B(Hy) = 0. Then we obtain the following initial
boundary value problem:

9 B(H)+V x (%v X H) —0 inQ,

ot
0 .
(4) V- &(MOH) =0 in Q.,
H-n=0 on 02,
H(-,0) = Hy(") in Q.

The nonlinear PDEs of the type (4) have some applications in superconductors
(see [13, 14]). It is well known that high-field (hard) type-II superconductors are not
ideal conductors of electric current and are usually treated as electrically nonlinear
conductors. The process of electromagnetic field penetration in such devices is the
process of nonlinear diffusion. The equations describing the process can degenerate.
For an overview of models with some hierarchy structure we refer the readers to
[4, 10]. The magnetization of type-II superconductors in a nonstationary external
magnetic field can also be formulated in terms of a scalar p-Laplacian equation if
the magnetic field lies only in one direction. This situation has been studied in
many papers, e.g. [3, 29, 30]. Slodicka applied the backward Euler scheme to this
type of equations for discretization in time and derived the error estimates for a
degenerate problem in [24] and an application in superconductors in [25]. These
error estimates for the time-discretization in both papers are suboptimal. Some
similar works can be also found in [8, 15, 19, 26].

To solve quasistationary Maxwell’s equations by the finite element methods, var-
ious formulations different in the choices of the primary unknowns are suggested,
such as, direct approaches based on the electric/magnetic field, and indirect ap-
proaches based on potential fields (e.g. the A-¢ method from E-decomposition
and the T-¢ method from H-decomposition). The main difficulty in application
of nodal elements for direct approaches is that the normal component of the field
is discontinuous on the interface between different materials due to the presence of
inhomogeneous mediums, but indirect approaches can avoid it.

The T-1 method is to decompose the magnetic field into summation of a vec-
tor potential T' and the gradient of a scalar potential v in the simply-connected
conductors, and only the gradient of a scalar potential i) outside the conductors
[1, 2, 6, 16, 17, 21, 33], afterward to approximate both potential fields by piecewise
polynomial functions. The T-1) method has some advantages: First, although in-
troducing the vector and scalar potentials increases the number of unknowns and
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equations, this seeming complication is justified by a better way of dealing with
possible discontinuities of mediums. Second, we only need to solve a scalar po-
tential instead of a vector field in nonconducting domains. Third, it is shown in
applications of engineering fields that this method has good numerical accuracy.
Finally, many popular nodal finite element softwares and computational techniques
can be applied directly. As far as we know, relevant theoretical works on the T-i
method for the system (4) have not been shown so far.

The aim of this paper is to study a fully discrete T-1) finite element scheme based
on the backward Euler discretization in time and nodal finite elements in space to
solve the system (4). The paper is organized as follows. In Section 2, we give some
notations used in this paper and study the T-v¢ formulation for the problem (4).
In Section 3, we present a T-1) scheme by discretization in time (Rothe’s method).
We prove the existence and uniqueness of these discrete fields by using the theory
of monotone operators (see [27]). Based on the stability estimates from Section
4, we prove in Section 5 that the solution of the semidiscrete problem converges
to the weak solution of the continuous problem. The monotonicity and a-Hélder
continuity (see [28]) of the function M (s) with 0 < o < 1 is of vital importance such
that the Minty-Browder technique (see [9]) can be used to obtain the convergence of
the nonlinear term. The corresponding error estimate for the semidiscrete problem
is given in Section 6. In Section 7, we propose a fully discrete T-y scheme based
on nodal elements and discuss the error estimate. Finally, we verify our scheme
by some numerical experiments in Section 8 and give some conclusions in the last
section.

2. Variational formulation

For convenience of presentation, we first give some notations that will be used
throughout this paper. Let L2(£2) be the usual Hilbert space of square integrable
functions equipped with the inner product and norm:

1/2
(u,v)2(q) = / u(x)v(x)de and [jul|r2q) = (u, u)L/Q(Q).
Q

Define H™(Q) := {v € L*(Q) : D*v € L%(Q),|¢| < m} which is equipped with the

following norm
1/2
oy = ( 3 |Dfu||%2(m) ,

[€1<m
where m is a non-negative integer and & represents non-negative triple index.
Throughout we use boldface notation to represent vector-valued quantities, such

as L*(Q) := (L? (Q))3 The above definitions for € are similarly defined for €. and

Define the Hilbert spaces
f—I\&(QC) ={ve H'(Q): vxn=0o0n0dQ},
H(curl,Q.) :={ve L*(Q.): V xv € L*(Q.)},
Hy(curl, Q) == {v € H(curl,Q.) :n x v =0o0n 9}

Further, we denote the space V := f—I\&(QC) x H'(Q)/R equipped with the inner
product

((P7 90)’ (Q7 ¢))V = (P7 Q)Hl(ﬂc) + (V(pv vd))L?(Q)

and the norm

1/2
1@l = (1) + V6l 3eq) ) -
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The dual space of V' is denoted by V*.

Referring to [12], by definition of the space X := VH(Q) + Ho(curl, ), the
weak formulation of (4) yields the variational equation: Given H(x,0) = Hy(x),
find H € X such that

0

(5) —B(H)~vdw+/ leH~vada::O for all v € X.
Qat QCO'

Here we adopt the convention that each function in Hy(curl,$2.) or f{\& (Q) is
extended by zero to 2. Thus, to split the magnetic field H into summation of a
vector potential T' and the gradient of a scalar potential 1, we need the following
lemma borrowed from [12].

Lemma 2.1. Let the nonconductive region 2. be simply connected. Then, for
any v € X, there exist a unique v. € X, and a unique ¢ € H'(Q)/R such that

V= ve+ v¢7 ||v0||H(curl,Qc) + ”QSHHl(Q) <C HUHH(curl,Q) ’

where X, := {v € Ho(curl,Q.): V-v=01in Q.} and C is a positive constant
depending on €.

A direct application of Lemma 2.1 yields the following result.

Lemma 2.2. H € X admits a unique decomposition
H=T+Vy, TcX,ecH'(Q)/R.

It is clear that we can rewrite the equations of the problem (4) as follows:

) 1
6 g : —0
(6) o (T+V¢)+V><<UV><T) 0 in Q.
9
at

and also take the divergence of (6) to obtain

(7) V- — (V) =0 in Q.,

V- %B(T—&- V) =0 in Q..
We remark that the previous equations and the following T-1 form (8) should be
understood in a distribution sense.
For T € X, we adopt the penalty function method [32] to deal with divergence-
free of T, that is, adding the penalty function term —V(o~!V - T) to the left-hand
side of (6). Thus the problem (4) becomes the following T-¢) formulation:

0 1 1 .
BT+ V1) +V x (;VXT) —V(;V-T) —0 inQ,
V-%B(T+V¢) =0 in Q,,
0 .
(8) Vo gpho(Vi) =0 in €,
Txn=0, lV-T:O on 09,
g
B(T+Vy)-n=puVy-n, []=0 on 99,
Vi -n=0 on Of).

We denote the initial values of T'(-,¢) and v (-,t) by Tp and vy satisfying Hy =
To + Vo with divergence-free of Ty. Assume (Tp, o) € V.
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Definition 2.1. The potential field pair (T,¢) € C([0,T], V) is the weak solution
of (8) if the following identity is satisfied

(9)
0 0
(aB(T+V¢),Q+V¢) + <6(M0V¢),V¢)
t L2(92) t L2(Q)
+(1VXT,VXQ + lVT,VQ :07 V(Q,¢)€V,
a L2(Q,) g L2(Q.)

T(a:,O) = T07 S ch
w(w70) = '(/J07 xz c .

We end this section by the following two lemmas (see [18]) used in the consequent
sections.

Lemma 2.3 (coercivity). Let Q. be some convex bounded polyhedra. Then there
exists a constant C' > 0 such that

C1Q + Vo320 + 1V X QlZ2 () + IV - QU720 + V6l 2200, ) = 1(Q.0)3
for all (Q,¢) € V.

Lemma 2.4 (continuity). There exists a constant C' > 0 such that
(P + VQO,Q + V¢)L2(QC) + (V x P,V x Q)LQ(QC)
+(V-P.V-Q)20,)+(Ve, VP20,

for any (P,¢),(Q,¢) € V.

3. Semidiscretization
In this section we use Rothe’s method to study the weak solution. Let n be a

positive integer and {t; = i7 : ¢ = 0,--- ,n} be a equidistant partition of [0, 7]
with 7 = T/n. Now set
U; — Wi
U; = u(a:l), 6u1 = 17“
T

The semidiscrete approximation to (9) reads: Given (Tp,o), find (T, ¢;) € V,
1 < < n, such that
(10)

1 1
o L2(Q) L2(Q)

o
+ (NOV&/J% v¢))L2(QE) =0, V(Qa ¢’) eV.

Here we denote B; = B(T; + V;) and M; = M (T; + V;). In the following

theorem we prove the existence and uniqueness of these fields.

Theorem 3.1. Assume (T, %0) € V. Then there exists a unique solution pair

(T;, v;) to the variational problem (10) for each 1 <14 < n.

Proof. Let the operator £ from V' to V* be defined as

(L(P,¢).(Q,9)) = (B(P:W,Q+V¢> + (“ij,w)
L2(2) L2(2.)

1 1
+<V><P,V><Q) —|—<V~P,V-Q> ,
g L2(9) o L2(Q)
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and the functional f; € V* as

n <H0V¢i1 ’ V¢>
T

for all (P, ), (Q,¢) € V. Clearly (10) is equivalent to the operator equation

(£i:(Q.0)) = (Bil Q-+ w)

L2(Q,) L2(Q)

Using the relation

(0 AP (" )@ — %) > 40 (5 — )’

for all positive «, 8 and all non-negative real numbers x and y, the monotonicity of
the function M (s) follows from

- a—1 o a—1 _
(M(u) 7M(’U)7’U,*’U)L2(QC) = Mo <|u‘ u |’U| v, u v>L2(QC)

>c / (el = o] (Jua] — [o]) dz
o a 2
> C/ (‘u|% — |’U|%) dx > 0 for any u,v € L*(Q.).
QC

Then the strict monotonicity of £ comes directly from the monotonicity of the
function M and Lemma 2.3, that is, for any (P, ¢), (Q, ¢) €

<£(P,(p) - ‘C(Qv¢>7 (P ) - (Q7¢)>

(P + Vo) — @+ VD) 3aqa,) + E2 1990 = Vol faa,)

2 2

1
HV *(P-Q) L2(Q) " ‘ %V (P-q) L2(9.)
() 1(P.¢) = Q.03 -
In addition,
(L(P,¢),(P,p))
(P, 0)lly
S B |P + Vel 1a,) + 22 1P + Vol 3it o) + 22 IVel 2@
- ||( ;0)llv
Emll | A PHL2(Q)

(P %P)Hv
1
> mln{'uo }
T O—mal‘
||P+ VSOHLZ(Q )y T ||VSD||L2(Q )y F IV x P||L2 o) TIV: PHiZ(QC)

1P, )lly
CIP @)y = oo as [[(Pyp)lly — o0,

which confirms that the operator £ is coercive. Due to the continuity of the function
B, there exists a unique solution (T3,%;) € V to the equation L(T;, ;) = f; since
fi € V* (by Theorem 18.2 in [27]). O
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4. Stability

In the following lemmas some stability estimates for the potential field (T, ;)
are given. We will see in later that these uniform bounds play important roles to
prove convergence.

Lemma 4.1. For j =1,...,n, there are two positive real numbers 79 and C' such
that
(11)
J - 2
Zm 16T, + Ve[| 7, + Zm 1V8illz2@,) + D | 75V x0T
g 2
=1 1=1 =1 L (Qc)
2 J . 2 1 2
V x T + —V - 0T; —&—HV T.
H Vo L2(Q) ; Vo 2, Vo L2(Q.)

<C for any 0 < 7 < 7p.

Proof. Setting (Q, ) = (76T;, 70v;) in (10) and summing for ¢ = 1,...,j yields

J J
Y THo 10T + Vvl g2, + D Tro(SMy, 6Ti + Vo) 1o q

i=1 i=1
! 2 J 1
+ ZT,UO ||V5¢z'||1,2(96) + ZT (UV x T;, V x 6’1“,»)
i=1 i=1 L2(Q.)
(1
+Zr(v-n,v-5n) = 0.
=1 \9 L2(9.)

The fourth and fifth term can be rewritten using Abel’s summation rule as follows.

ZT<1V><’1},V>< 6’1})
ag

i=1 L2(Qe)
1 J 2 1 H 1 2 H 2
— + - ||—=V xT; V x Ty ,
2 g Ulpa,  2lVe L@y L2(0.)
1
dor (v-n,v 5n)
i1 \7 L?(9)
1 i T
i B v 5T¢ V - T;
2 ; Voo o H N H *l a0
From the monotonicity of M, we know that (5Mi, oT; + Véwi)Lz(Q ) > 0. Thus
we conclude the proof. |
Lemma 4.2. For j =1,...,n, there are two positive real numbers 79 and C' such
that
(12)

1T + ijHLz(QU) + ||V7/’j||1,2(96) + [M(T; + ij)"LQ(QC) <Cforall 0 <7 <.

Proof. The relation |M (T; + ij)HLQ(QC) < C follows from the definition of M
satisfying | M (z)| < 1. The assertions [T} + Vi)ll 2o ) < C and ||Vl 2 ) <
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C respectively follow from Lemma 4.1 and the identities

J
T + Vi, =Ty + Vo + > _ 7(6T; + Voi;) in Q.
i=1
J
Vip; = Vb + Y TV, in Q.
i=1

From now on, we define a dual inner product on V* x V' — R as follows:

(P,(Q.%) =(P,.Q+ Vw)L2(QC) :
We can easily view from the definition that L?(Q.) C V*.
Lemma 4.3. For j =1,...,n, there is a positive real numbers C such that
J
(13) N T ISM(T; + V)3 < C

i=1

Proof. From the weak formulation for (T;,;) and Lemma 2.4, we obtain for all

(@, 0) €V,

<.

iT‘ (SM(T; + V), (Q, ¢ ‘ Z ’5MT+V¢1)Q+V¢L2(Q)’
i=1 =1
|5

=1

O(T; + Vibi), Q + V@) 2 (q,) + (6Vi, V) 12,

<.

+ ( VXE,VXQ) +1<iv.Ti,v.Q>

L2(9.) Ho

1
Ho L2(9.)

< C(ZT 16(T; + Vo)1) + ZT 165 ¢ill 72 o,

i=1 i=1

1/2
+ZTHV X T||L2(Q +ZT||V T||L2(Q )

i=1 i=1

1/2
x (llQ+ V¢H2L2(QC) + |‘v¢“2LZ(Qe) + [V x Q||2L2(QC) +V- Q”QL?(QC) ) /

By the definition of the operator norm in V*, we draw the inequality (13). O
5. Convergence

We first define some interpolations of the discrete fields in time by:

T.(t) =Ti—1+ (t —t;—1)0T;, te (ti—1,ti, T,t) =T, te (t;—1,t,
Tn(o) = TOa Tn(o) = TOa
P (t) = Vi1 4+ (t = tic1)0vs, t € (tim1,ti), P, (t) =i, tE (tim1, ],
7//n(0) = wOa n(O) = 1/)0a

M, (t) = M1+ (t —t;—1)0M;, t€ (tim1,ts],
M, (0) = | Ty + Voo |* " (T + Vo),
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W)= M;, te(ti1,ti,
n(0) = [Ty + Vo |~ (T + Vo),
{ W(t) =B+ (t—t;_1)6B;, t€ (ti_1,ti],
B, (0) = o (To + Vo) + 1o [Ty + Voo™ (To + Vo),
B, (t)=B;, te€ (ti—1,t],
B,,(0) = po(Th + Vtbo) + |To + Veo|* ™" (Th + Vbo).
Obviously, we have M,,(t) = M(T,, + Vi,,) and B, (t) = B(T, + V,). With

these fields we can reformulate the semidiscrete problem (10) as follows:
(14)

(0B, Q + V) () + (1v < T,V x Q) + (1v T,V Q)
g L2(Q,) g
+ (Hoaf(vwn)a v¢)L2(Qe) = 07 V(Q, ¢) € V

Now we are in a position to prove the convergence of an approximate solution
of (14) to a weak solution of (9). The following theorem is the main result of this
section and its proof refers to the framework of Theorem 5.1 in [8].

Theorem 5.1. There exists a pair (T, 1) € L*((0,T), V) such that

(a) (Tn,¥,) — (T,¢) in L2((0,T), V) and Ty + Ve, — T-+Vepin L2((0,T), L2(Q))
and Vap, — V4 in L2((0,T), L*(S%)).

L2(82)

(b) M, = D in L' ((0,7), L** (),

(¢c) M,, =~ D in L2((0 T),V*),

(d) D= M(T +Vy),

() (M(1), Q +Y0) 2y > (M(T +V0),Q + W’)me) for all £ € [0,T] and
(Q,¢) €

(f) (T,v) is the weak solution of (9).

Proof.

(a) From Lemma 4.1 and Lemma 4.2, theﬁsequence T, + Vi, is bounded in
L2((0,T),L*(.)) and the sequence V), is bounded in L2((O7T),L2(Qe)).
We also conclude that the sequences V x T, and V - T, are bounded in
L?((0,T), L?(£2.)). Thus by using Lemma 2.3, we have

(T Pa)lly < CUITn+ V| 2oy + IV X Tl g2,

HIV- Tl 12 ) + 1Vl p2go,) < €

which concludes that the sequence (T',,,,,) is bounded in L2((0,T), V). Fol-
lowing the reflexivity of the space, (T,,,,,) — (T,v) in L*((0,T), V). Then,

T,+V, — T+Vein L2((0,7T), L*(Q.)) and Vi, — Ve in L2((0,T), L*(Qe )).
From Lemma 4.1, we have the boundedness of 9, (T}, + V¢, ) (= 6(T; + V), t
(ti—1,t;]) in LQ((O,T), 2(Q)) and 9, (Vp,) (= 0V, t € (ti—1,t;]) in
L2((0,T), L?(Q.)), which leads to the inequalities

T
— — 2
/0 HTn + Vb, — (Tn + Viﬁn)HLz(Qc) < Cr? / ”615( + vwn)”L?(Q ) = <Cr 2

T T
— 2
| 1900 = VTl < €7 [ 104T0) 0,y < O
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Thus T}, + V¢, = T 4+ V4 in L2((07T), LQ(QC)) and V¢, — V¢ in
LQ((O,T),LQ(QE)).
From Lemma 4.2,

T R 1+(x 1+cx
/OHM 15 —Z/ 1M+ 96

< ZT | M(T; + vwi)nmmc) <C.
i=1
Due to the reflexivity of the space L*&" ((0,7), L+ (Qc)), we obtain the exis-
tence of a weak limit.
ForO<a<1,

L5 ((0,7), L5 () © L2((0,T), () € L2((0,T), V).
This yields M,, — D in L?((0,T), V*), according to the point (b). By Lemma
4.3, we get
T o T
[ I, =L <07 [ o). <o,
0 0

Then the sequence M, shares the same weak limit with M,, in L2((0,T),V*).
Applying the Minty-Browder technique (see [9]), we will prove that the limit
D of the sequence M,, = M(T,, + V,)) is equal to M (T + V). Using the
equality

o (@ + V) + M = [(Q+ V) + M(Q + Vo) (T, + V)

= 10T+ V,) = (Q+V9), (Tn + Vi) = (Q+V9)) |

(15)

[
|

- @+ ws))m + 10(Viy = V6, Y, — V6) g

()
()
+ o (M = M(Q+ V), (T + V¥,) — (Q+ V¢>)L2<Q )

+ po(Vip,, — Vo, Vi, — v¢)L2(QC), v(Q,¢) € H'((0,T), L*(Q) x H'(Q))

and the monotonicity of M yields
t

lim Ho ((Tn + v@n) + M

n—oo 0

- [(Q+V9) + M(Q+ Vo), (T, + Vi) — (Q+ V)
t
+ lim Mo (Van - V(b? v%n - v¢) L2(Q.) 2 0.
i |

L2(Qe)

n—oo

From the first points in the proof, we already have

((Tn +Vi,)+M,,Q+ ng)mmc) — /OT ((T+ Vi) +D,Q + Vqs)

L2(Q.)

(@+ Vo) + M(@+Y6). T, + 0,

L?(Q.)

T
%/0 ((Q+V¢)+M(Q+V¢)’T+v¢>m<m>’
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T T
| (¥0.90) ) = [ (90.90) e

Next, we will determine the limit of the mixed term in (15). Multiplying (10)
by 7 and summing for i = 1,...,j results in

1 J
(ijQ+v¢)L2(QC)+(UZTVXE,VXQ> o
L2(Q.

=1
(16) 1<
+ ;ZTV-Ti,V-Q + 10(VY;, Vo) L2(a,)
L2(Q.)

=1
=(Bo,Q + Vo) 2,y + 1o(Vio, VO)L2(a,)-

Set (Q, ¢) = (T, ) and rewrite this equation in terms of the semidiscrete fields

as following:
an B
Ho (Tn(s) + V¢n(5)7 T+ Vw) L2(Q.)

+ po (M (s), T + Vw)LQ(Qc) + 10 (Vi (9), v¢)L2(Qe)
= po(To + Voo, T + V) 1o, + Ho(Mo, T + V) £2(0,) + 1o (Yo, V) 1o g

_(/ 1V><Tn,V><T)) +(/ 1V><T,,,V><T)
o9 L2(Q) t 9 L2(Q)

S 1 o S 1 o
(/ V~Tn,V~T> +</ V~Tn,V~T)
o7 L2(9.) t; 7 L2(%2)

for t;_1 < s < t;. From the point (a), T,, = T in LQ((O,T),;I\&(QC)), which
leads to V. x T,, — V x T in L?((0,T),L*(Q.)) and V- T,, — V- T in
L2((0,T), L*(Q.)). After time integration of (17) for s = 0,...,t and in the
limit n — oo, we obtain

(18)

t
[ ol + 96,74 90) g, +
0 0
t t
:/ N(](ﬂ)+vw()7T+v¢) +/ /Jo(M(),T-FV'l/J)LZ(QC)
0 L2(Qc) 0
t t 51
+/O MO(V%,Vw)Lz(QE)—/O (/O 0V><T,V><T>
L2(Qc)

t Sl ’
-/ (/ v.T,v.T) .
0 09 L2(S2)

Recalling (17) and setting (Q, ) = (T,,,,) and integrating in time, we have

t

t
MO(D7T+V¢)L2(QU) +/ MO(V¢7V¢)L2(QG)
0

t p—

t
| 0@ 0T 4 V) oo + [ 0BT
0 0
t
+ V,(/Jn)[ﬂ(gc) + A Ho (vwrw an)Lz(QE)

t
:/ Ho (TO + Vipo, Ty, + an)[g(gc)
0
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t

t
+ [ 00T T8 ) + [ 0T 95,) e
0

1t
H/VXT" / (/ VXT,L,VXT”>
Vo L2(.) L2(9.)
iV.T, V-T ) .
H\f/ Nz / (/ " L2(9.)

The following inequalities come from the result that if u,, — u, then lim ||u, > >
n—oo

|u||® in Hilbert spaces:

| S L
i [ 72 [,

S -
lim ||— T,
s | s v

Thus we derive

)

L2(Qc)

2 1 t
> ||l—= VxT
L2(Q.) H\/E/o

2 Lt 2
> —f/Y%T
L2(90) H Vo Jo

L2(Qc)

t
. — = — \2
nh—>ngc “O(T + Vi, T+ Vi, )LZ(sz)+nll—>H§c 0 o (Min, T+ V) Lo,
t

+ lim o (Y, Vi, )LQ(QE)

n—oo

t
/ MO(T0+V1P07T+V¢)L2(Q)+/ MO(MOaT—’—V’(/})iQ(Q)
0

2 ' 2
1 H 1 /
= v.-T
2 21vVo o

L2(Q.)

¢ e
+/0 MO(Vwo,Vi/J)Lz(Qe)_QH\/E/O vxT

Obviously, we get the same right-hand side as in (18), which leads to

t t
lim Ho (Tn + Vb, T + v¢")L2(QC) + 1Lm Ho (Mna T, + v"/’n)Lz(Q )
n o0 0 c

n—oo

¢
+ lim 1o (V. an)LZ(Qe)

n—oo 0

t t
s/ uo(T+V¢,T+V¢)L2(QC)+/ 4o(D.T + V) (e
0 0

t
n /O 40 (V6, V) o

Combining (15) and (18), we obtain

| o((@+ V) + D~ [(@+0) + M(Q+ Vo). (T + Vv) - (Q+ Vi)

L2(Q)
t
+ [ mo(ve-vovi-ve)
Substituting T' 4+ V¢ + sw for Q 4+ V¢ in Q. and V¢ for V¢ in ., we get

¢
/0 1o (D - [sw+ M(T + V¢ + sw)], —sw) L)
_ s

t
3 w0, —pos [ (D= MT+Votrsww) >0,

L2 (Q.)
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where s is any small positive number. Dividing both side by s, taking the limit
as s — 0 and replacing w with D — M (T + V), we finally obtain

t
/0 1D — M(T + V)| 32, < 0.

Therefore, we prove the conclusion of the point (d).
(e) Considering Lemma 4.3 and the reflexivity of L?((0,7), V*), we conclude that
there exits a certain function w such that

(M, (1) — M, (0),(Q, 8)) = / (0:M,,(Q.6)) — (w.(Q,9)).

for all (Q,¢) € V and a.e. t € (0,7). Using the convergence result of the point
(c), we have

lim (M,(1),(Q,9)) — lim (M,(0),(Q,9))
= (M(T +V¥)(1),(Q,¢)) — (M(T + V¢)(0),(Q, ¢))

_ </0 OM(T + V), (Q.6)),

which means that w = fot M (T + V1) in Q.. This yields that

(M,,(1),(Q, ¢)) = (M,(0),(Q, 9)) + (w, (Q,9))
= (M(T + Vv),(Q,v)) forallte (0,T].

Therefore, we conclude the existence of M (T + V) in V* everywhere in
interval (0, 7.
(f) Integrating (14) in time, we get

t
(Bn(t),Q + V) — (Bn(0),Q + V9) 1, ) + /0 (iv x Ty, V X Q)

L2(Q)
t 1 o

+/ (V'va'Q> +H0(V¢n(t)av¢)1,2(ne)
0o \0O L2(Q.)

= 110 (V¥n(0), V) r2(0.) =0

for all (@, ¢) € V. Taking the limit as n — oo and summarizing all the results
from (a) and (c), we obtain
t

/Ot (0,B(T +Vv),Q + W))LQ(QC) + /0 (&(uovqp)’ v¢)

L2(92e)

t/q t /1
+/ <V><T,V><Q> +/ (V-T,V-Q) =0, ¥(Q,9) e V.
0o \9 LxQ,) Jo \¢ L2(Q)

Finally, differentiating the identity in time leads to the result of (f) on almost
everywhere in (0,7]. Thus, we conclude that the function pair (T',1) solves
the continuous problem (6) on a.e. t € (0,7]. This completes the proof of the
whole theorem.

O

To obtain the additional regularity for the limit (T',4)), we need the following
lemma (see [8]).
Lemma 5.1. Let the set of functions u, : (0,7) — V be equibounded and

equicontinous. Then there exists u € C ([O,T],V) such that up to subsequences
up(t) = u(t) in V for all t € (0,7).
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Theorem 5.2. The limit (T',¢) from Theorem 5.1 satisfies

(T,v) € C(10.7], V).
Proof. From Lemma 2.3, Lemma 4.1 and Lemma 4.2, we have

(T )y < CUITn + Vibull 2oy + 1V X Tallp2ga
IV - Tl 2, + 1Venllzaa,) < €

i.e. the sequence (T,,1,) is equibounded in V. Moreover, we obtain by using
Lemma 4.1 that

(T (t2), a(t2)) = (Tulta), vu(01)) ||y,
< C(HT (t2) + Vbu(t2) = (Tu(tr) + Vou(t1)) || pa o
+ [V % (Tult2) = Ta(t)) || 12,
+ ||v (T (ts) — Tn(tl))”m(ﬂc) IV (ta) = Vou(t)llL2(q,) )

<C (||at( + Vu)llrz,) IV X 0Tl 2,

ty

+ IV - 0Tl 120y + 10:(Ve) | L2 )

<C \// [0:(Tn + Vo) ||L2(Q ) T \// IV x atTnHLz(Q )
T 2 T 2 1/2
) [ 19 0Taay ) [ 104V, | 2=t

n n 2

\/7T

hal 5T,
\/EV X

i=1 i=1 L2(Q2)

i=1

VéT

] \l >0 |50 320, | It2 — a2
L2(0.)

i=1

< O(7) |t2 —t1|”2,

which states that the sequence (T),,,,) is equicontinuous. From Lemma 5.1, we
conclude that (T,v) € C([0,T],V). O

6. Error estimate

Theorem 6.1. Let (Tp,109) € V. Then there exist positive constants C' and 7
such that

2

t t
/ uo||Tn+v@n—<T+w>H;mc) + [ 0195 = V6l aqa,
Jr

2 t 1 o
=V % (T~ T) / V. (T,-T)
/ L2(Q,.) 0 \/E

<Cr forall0<7<mand 0 <t <T.

L2(Qec)
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Proof. Subtract (14) from (9), integrate in time over (0,t) and put (Q, ) = (T, —
T,4, — ). This leaves

+ o (Vﬂn - V'l;/}a v%n - Vzilj)LZ(Qe)

+(/Otiw<Tn—T>,vX<Tn—T>)

B, (t) = B(T(t) + V(t)), T + Vib, — (T + W))ng

L2(Q.)

~(Bu - Bu T+ Vi, — (T+ Vw)mm 10 (Vo = Vo, Vi, = V) g -

After another time integration, we obtain

t
/0 o [T+ Y, — (T + V) 2,

t
+/ 110 (Mn —M(T+ V), T, + Vi, — (T + vqp))
0 L2(Q.)
2

t . 9 1 tq _
+ uo||vwn—w|!L2(Qﬂ)+2H/0 SV (T, - T)

/Ot\%v.(:rn_:r)

5/0 50 (Tn EVG, — (T + V), T + V0, — (T + vw))

L2(Q.)
2

+

’ L2(Q
( C)
L2 (Q(‘)

t
+ M, - M, T, +V, —(T+V
/0 2 ¥n w))L‘A‘(QC)

t
+/(; Ho (van = Vibp, van - vw)LQ(QE).

Then the final estimate follows from the monotonicity of M together with the
following bounds

t

t t t
. 2
SCT\//O ||c’9t(Tn+an)||2Lz(szc>\//o ||Tn+V1/anL2(QC)+/O IT+ V¥lzeqe,

< Cr,

t
/O Ho (Mn - M, T, + Vi, —(T+ vw))LQ(Qr)

t t P
SCTV | “@tMﬂvV [l sl + [ ol <cn
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2

[ 0¥, = ¥ 95, ~ 70)

L2(9.)

t t t
SOT\/ /0 |6t<vwn>izma>\/ /O 1020,y + /0 IVel30 0., < Cr.

Remarkfﬁ.l. Using Theorem 6.1 and denoting H, =T, + Vﬂn in Q. and
H, =V, in Q., we conclude that

O

2

<CT.
L2(Q.)

T o

T
— 2
(19) :“0/0 HH”_HHLQ(Q)+

7. Full discretization

Now we analyse the fully discretized problem. Let 7" be a standard tetrahedral
triangulation of 2 with the mesh size h, which subdivides €2, and €2, into the union
of tetrahedra. We define

v = {QeH}(2): Qlc € (P’ vKeT"},
Wy, = {4 € H(Q) : Y| € P1, VK € T"},

where P; is the space of linear polynomials. For simplicity, let V}, := Y;? x W,.
We denote IT" as the Lagrange interpolation operator for 7. Thus the interpo-
lation error estimates (see [6]) are given by

(20) { lu — TT"ul| p2(py < Chllull g (py,
lu — Tl L2 () + hllu — Tl 2 0y < OB |lul| g2 (o)

for any u € H*(D), where D = Q, Q. or Q..
With this finite element setting we can formulate the fully discretized problem
as follows: Find (T}, 9!) € V},, 1 <i < n, such that

Ho (5(1—11h + V%h)v Qh + V¢h)L2(QC)
o (8( T+ Tl (T + V), Q" + V')
(21) + <1v x T,V x Qh> + <1v -Th, V- Qh>
o L2(Q. o

)
+ (/~L05(V1/)fb)»v¢h)Lz(Qe) = 07 V(th d)h) S th
Ty = 1I"Ty, of ="

L?(Qc)

L2(Q0)

In the next theorem we will prove the solvability of the discretized problem.

Theorem 7.1. The fully discretized system (21) has a solution (T, ") € V}, on
every time step.

Proof. On every time step we need to solve the following problem to find (T",¢") €
Vh:

HO rioh, h AR Mo h 1=l h h h
Z(Th 4+ V Q +—= (|T"+V T" 4+ V Q
pn ( P, )LQ(QC) . <| (G | ( ¥, )Lz(QC)

1 1
L2V xThV xQ" +(=v.T"V.-Q" =(£.Q") 12 -
5 L , L2(2)
(Q0) L2(Qc)

g
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Ho (Th-’—V'l,ZJh v¢ )LQ(Q)+7 (|Th+vw | Th+v¢ ) v¢h)L2(Q)

+ 7(vwh7v¢ )L2(Qe) = (f7v¢ )LQ(Q)a V(Qh7¢h) S Vh~

Let ¢1,--+, ¢k, be the nodal basis functions of T"(Q), ©r, 41, " » Pk, +ky De
the nodal basis functions of 7"(T.) and @, +kyt1s° " > Pky+ke+ks De the nodal
basis functions of 7" (. UT). Let k = ky + kg + k3. If we write T = Zf;{kz ;i p;
with a; = (g, @iy, ;) and ¢ = Zle Bipi, then we need to solve this problem
to find v = (al, Biy-eo s Oley gy Bley+ka s Bliy+hat1s - - - ,ﬂk). We define the nonlinear
operators £ from R3F1+k2)tk o R3K1tka): L) = (L1(7), -, Ly, 4k, (7)) With

k1+k2
L;(y) =5 ( Z (aipi +5¢V%‘)a90j>
L2(9.)

T c
i=1
o [ Pt R S
0
+— > (oupi + BiVes) > (cupi + BiVei), @5
= =t L2(Q.)
k1+ko 1 k1+ko
V x il v oy ,
( Z 01180“ > + <O’v Z Oé#%Vgcy)
L2(Qc) i=1 L2(Q.)
_ (f,@j)Lz(Qc), j = 7...,kl +k2,
where
0 Op; _Oy;
9 o af.?y
J— P j
MJ - 0z 0 ox
9¢j _9¢; 0
Oy ox

is a 3 x 3 coefficient matrix such that a; M; = V x (a;;), and £ from R3(Fitkz)+k
to R*: £(7) = (€1(7),--- , k(7)) with

k1+k2
() = % < Z (aipi +ﬂiv<ﬂi),v<ﬂj)
L?(Q.)

=1
1o k1+ko a-1 ki+ko
T > (eupi + BiVe) D (oupi + BiVei), Vo,
i=1 i=1 La@.)

k
ILL .
+7-0< Z ﬂngDl,chj> 7(f7v$0j)L2(Q),]:1,...7k.
L2(Qe)

i1=k1+1

Denote the operator L = (L£1,01, -+ , Ly 1kys Lhytkas Lhey+hat1s > Lk). The prob-
lem is now reduced to solving the nonlinear algebraic equation L(v) = 0. Then we
obtain by using Lemma 2.3 that

L(v) -~
k1+k2 2 ki+ka 2
2 % Z (ipi + BiVi) +- Z V x (i)
i=1 Lz(ﬂc) e L2(0)
k1+ko k1+k2 Ita
o Z V- (aipi) + % > (cipi + BiVes)
L2(2,) =1 Lite(Q,.)
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k 2
> BiVe

k1+k2
- (f, Z (aip; + 5ivs0i)>
(Qe) L2(Qc)

i=ki1+1 =1
k
- (f, > mm)
i=kq L2(.)
k1+ko 2 k1+ko 2
>C | (cupi+ BiVes) > Vi (aigi)
i=1 L2(Q.) i=1 L2(Q.)
key+ka k 2
2
+ Z V- (eipi) > BV = Co || F1lz2 (0
L2(Q.) i=ki1+1 L2(Q.)
k1+ko 2 k 2
2
>C || D] g > Bigi =G I fllzo o
i=1 H'(Q.) i=1 H'(Q)
k1+ko 2 k 2
2
>C Z ;i + Zﬁi%’ = G2 || £z
=1 L2(Q.) =1 L2(Q)

> (P = Iflae )-

Applying Lemma 18.2 in [27], we conclude that the equation L(«) = 0 has at least
one solution in the set {y € R3Fitk2)Fh . |y <yl if p > £l 220 O

It is easy to prove that the potential fields Tih and z/JZh satisfy the estimates
similar to Lemma 4.1- 4.2. But the dual space estimate in Lemma 4.3 will not be
valid for the fully discrete solutions since the weak formulation is formulated for
test functions in the subspace V;, of V only. However, we still have

J
S r| Mt + 9, QL+ Vo) | <CZTII Lol

(22) ]

( Z’vd)i)evhv j:].,"',n

With the field pair (T}?, ), we can construct analogous interpolating fields as in
Section 5

Th(t) =T | + (t — t;1)0TF, t € (ti1,t], Tt =T, te (tiiti,
T (0) = 1" Ty, T (0) = I'T,
Z(t) = ih—l + (t - tifl)&l)% te (ti*hti}v @Z(t) = zhﬂ te (tiflﬂtiL
—h
A(0) = 4o 5 (0) =TTy,
MPt) = M! |+ (t —t;i_1)SM},  te (tioi,ti),
M (0) = [Ty + VT |* " (I Ty + VTah),
MZ(t) =M} te(ti 1,t]
M (0) = [TT"Ty + VT |~ (I + V),
B't)=B! |+ (t—t;_1)0B}, te (ti1,ti],
B (0) = po ("I + V") + o [T Ty + VITMaho| ™™ LI, + VIThy,),



654 T. KANG AND T. CHEN

—h

EZ(t) =B te (ti_i,ti),
B, (0) = o (" Ty + VII"hg) + |TIMTy + VI |*~ " (I + VITM4b).

Note that MZ(t) = M(TZ + VEZ) and E:(t) = B(TZ + Vﬂﬁ) Thus the weak
form (21) can be reformulated as follows:
(23)

1 — 1 —
OBLQ + V) g, + (3Y%TLTxQY) 4 (1vTLv Q)
c o g

L2(Q.)
+ (,UOat(VwZ)vvd)h)Lz(Qe) = 07 V(Qh7¢h) € ‘/h~

For these fully discrete potential fields, it is clear that the similar convergence
results as Theorem 5.1 can be obtained as both 7 and A go to zero. Moreover, we
have the following result on the error estimate. Here, a < b denotes a < Cb.

Theorem 7.2. Let the weak solution (T',4) and the initial conditions (T, tg) of
the problem (9) satisfy

(T,¢) € L*((0,T), H*(%) x H*()), (Ty,v0) € H'(Qe) x H*(Q).

L2(Q.)

Then the fully discretized problem satisfies the following error estimate:

T —h
Lm)wo/o |vn — v

[ o]

g /T [T+ v, - (@ + 70)|

2

L2(Q.)

(24)

—V x (T, —T) +

L?(Q.)

L2(Qe)
5 T+ hmin{1,2a}'

Proof. We now subtract (23) from (9), integrate in time and put (Q", ¢") = (Th —

IMT,3" — 11"4p), leaving

(BZ — B(T + V), T + Vi — (I"T + vn’w)
+ (/tlv X (TZ—T),Vx (TZ-H’T))
0O

+ (/OtCer-(TZ—T),V-(TZ—H’LT))

—h —h
+ Ho (Vl//n - V¢7 qu[}n - VHh¢) L2(Q,)

L2(Q.)
L2(2c)

L2(Q.)

- (BZ — BT + V! — (I"T + vn’um)
L2(Qe)

—h —h
Ve, — VR, Vi, — VII'Y)

—

+ po

+ po (1T + VI — (Ty + Vo), Ty + Vi, — (I'T + VH'W))

L2(Q.)

+ pto ( M ("I + V") — M (T, + vwo),TZ + VJZ — (IT"T + vnhw))

L2(%2.)

+ o

7/ N 7N N

VI — Vibo, Vi — vnhw)
L2(Q.)
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Applying the monotonicity of M

(M), — M(T + V). T, + Vi, — (T + Vo)) >0

L2(Q.)

yields

3
1o <Tﬁ+w Twaiﬁwa(Tww)

L
(/J

5

+ Lo A - Vi, Vw = V¥)r2(0,)

§
§uo/0 T + Vi, — (T + Voh), T + Vi —(HhT+Vth))

h

L2(Q.)

—~
[\
Cﬂ

+
o\c\
S~

Ql— QK

V x (T - T),V x (T — T)>
L2 (9.)

"

v (T —T)v-(Tﬁ—T)>
L2(2)

L2(%.)

O
8%

/ <M — M!MT! + vy - arT + vn%))
0 L2(Q,)
13 h N
Mo o (vd)n - VU’ V1/}n —VII 7/1) L2(Q.)
£
+ uo/ <HhTo + VI — (Ty + Vibo), T + vw — (hT + vnhqp))
0 L2(Q.)
13 _ _
+ Mo/ (M I"T, + V") — M(Ty + Vi), TZ + VQZ)Z — (1" + Vth))
0 L2(Qc)
13
o [ <vnhwo — Vo, VI - vn%)
0 L2($.)
§ —h
+ po / <Tn (T + Vo), TI"T + VIT"y) — (T + w))
0 L2(Q,)
13
+,U0/ < — M(T + V), I"T + VII"y — (T+V1/;)>
0 L2(Q.)

t
/ Vx (T —T ),Vx(HhTT)>
0 L2(Qc)

t
/ v-(TZ—T),v-(HhT—T))
0 L2(5.)

o | (T — VO, VI = V) L

|
—
o
N

@
Il
-

We can now bound each of the eleven terms on the right-hand side as follows.
We use Cauchy’s inequality, Young’s inequality, Lemma 2.3 and Lemma 4.1-4.2 to
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obtain

&<qm¢/?HT v — (o + vun)|

L2(Q.)

2 —h
\//o ‘|HhT+VthHL2(QC)+A’ n
13
52§,u07'/
0
\// v+ [
T N 3 v 2
< — .
53 < o /0 va" Vo) L2(Q) /0 H ¥n L2(Qe)
¢ 2
[ 1T e, < 7

£
Sy < Ho\// AT, + VITrpg — (Th + V¢O)||2LQ(QC)

K2

"llr2(o.)

<

~ T

<3tM,'Z,TZ + V@Z — (T + Vﬂh¢)> ’ (using (22))

<7'

~ )

6 2
+ / AT
0

L2(Q.)

\/ / T+ Vi, - (HhT+VHh¢)’

2 —h
5|’HhT0+VHh1/JO—(T0+V1/10)||L2(Q.)+A HT,L+V¢ (T+v1/))’

L2(9,)
/ |T + V¢ — (I"T + VII"y) ||L2(Q )
=h —h 2
<02 (I1Toll3s ) + IWolraqa,) ) + / [T+ Vi, — @+ V)|,
0 ()
r 2 2
2 [ (I + 100 )
¢ 2c
55 < oy [ 1Ty + 91T — (T + V40) 30,
0
T" (II'T 4 VIIh ’
V/‘] FVE, - T vty
(using the a-Holder continuity of the function M (s))
2ce
5 HHhTO + vnh¢0 - (TO =+ v¢0)||L2(QC) + / HTn + V% (T + Vw)’ L)

13
+ / T + V¢ — (T + Vth/))HZLQ(Q §
0

§h2a<

Tl + Il ) + [ [T+ 55 - @+ o,

L2(Q)
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T
+h? ||T||i11 Q) T ||¢||§12 ANE
0 (2e) (

Se < ,uO\/HVth/Jo - VQ/JOHLZ(Q \// va N VHhZ/J‘

L2(Qe)

<9I — Voo 1 +/0 |vo, v

2
N

3 2 T
9 —h 2
S0 ol + | [Von =0, 8 [ Wl

§
e /OHHhTJrVth (T + V) ||L2(Q)

T
2 2
o H2 [ (I + 1000, )

S0 S /HT + VP, (T+w)]

/HT vk T+V1/z)‘

13 _
Ss < Mo/ T + VI — (T + V9) | 1o, HMZ ~ M(T + W)H e

1

1+ 14«
<MO(/ [T + VI — (T + V) pra o )>
o Lo s
([ ol )

- T+a
<M0(/ T + vy — (T + V)| 11 ,)>

T+a
(STl 4+ [ 1T P )
=1

(/ 0T+ VI — (T + 90545 )>1+m
S HHhT+ VH’W —(T+V9y) HL2((0,T),L2(QC)) S h,

2 2

s</g /t1V><(Th T)' +/£1V><(HhT T)
9N = n_ = -
o IlJo Vo L2(Q.) 0o Vo @)
13 t g o 2 T
< vaT)' 1 [ 1T e
/0 A \/E LQ(QC) 0 HQ(QC)
2
St —=h : S| h
T —V (T, - T) + —V - (I"T -1T)
o IIJo Vo L2(00) 0o Vo L2
13 t 1 —h 2 T
< V@D [T,
/0 /0 Vo L2(Q) 0 HE@)
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13 —h 2 3 5 2
sug [|van-vel, [ I8t - Vel G,
0 ) 0 ¢

L2(Qe
§ _n 2 ) T )

< — h T2 .

SR NG [ (A

The left-hand side of (25) is

/5“Th+vwh—(T+V¢)‘2 + /gHwh—w‘Q
Ho 0 n n L2(Q.) Ho o n L2(9,)
1 _— ’ 1 —h ’
+ / TVX(Tn—T) + / TV (T, - T)
o Ve 2oy 170 VO £2(9,)

We finally apply Gronwall’s inequality to arrive at the error estimate for the fully
discrete problem. O

Remark 7.1. Using Theorem 7.2 and denoting H: = TZ + V@Z in Q. and
FZ = V@Z in ., we conclude that

(26)

T 2
—=h
NO\/ Hlin_li‘
0

2 <54 hmin{l,Za}.

L2(Q.)

+

T
1 —h
—V H — H
o / < (H" — H)

/o

8. Numerical Experiments

The purpose of this section is to validate Theorem 7.2 with three numerical tests.
For simplicity, we consider the system (3) with nonlinear magnetic permeability on
the entire computational domain [0,1]3 x [0, 7] and solve it numerically using the
proposed scheme (21) with ¢ = 1.0 and pug = 1.0. The nonlinearity is solved
iteratively by the Newton’s method. In order to compute the approximation error,
we introduce a field H = H,., and calculate the source function g by the following
equation

(27) 0,B(H.;) +V x V x Hoy = g.

Then we decompose H,, = T, + V)., with V - T, = 0 and solve the following
problem to get T" and :

0 1 1 .
5/ BT+ V1) +V x (;VXT) —V(;V~T> —g nQ
3] .
(28) V~&B(T+V1ﬁ)—v-g in €,
Txn=T.,xn, lV-T:O,wzwem on 01,
g
T(x,0) = Tpr(x,0), ¥(x,0) = Per(x,0) x €,

by the fully discrete scheme (21) using the function g as a source and compute
the error (T(t) + V! (t)) — He, in the appropriate function spaces. The theo-
retical results remain valid for the nonhomogeneous boundary condition provided
a suitable lift function exists. Space discretization is based on the linear polyno-
mial elements as implemented in the COMSOL software in accordance with the
theory from Section 7. For every experiment the time step 7 is varied as 27" with
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n=2,...,Nmax and the error

(29) err = /O ! HTZ(t) LV () - Hew(t)H

is computed. This procedure is repeated for the three meshes in Figure 1 in order
to evaluate the dependence of the error on the mesh parameter h. The mesh in
Figure 1(b and c) are obtained by refinement (by splitting) of the first mesh.

2

L2 ()

(c) h=1/16

FI1GURE 1. Tetrahedral meshes on which the problem is solved,
constructed in COMSOL. (a) 943 tetrahedra; (b) 8434 tetrahedra;
(c) 70418 tetrahedra.

Experiment 8.1. We choose the following exact solution:

z—y+1
He(wt) = (#+2) | a=2+1
y—z+1
with ¢ € [0, 1]. Decompose the field H,, to obtain
2=y
T..(x,t) = (2 + g) T —z
y—x

and . (z,t) = (34 5/8)(z + y + 2) with the form P; in the spatial part, which is
exactly represented by the finite element basis functions. Thus the error will only
depend on the time step 7 (the calculations can be done on the coarse mesh). We
calculate the error err in (29) as a function of the time step 7 for several values
of the exponent a of the power law. The results are presented in Figure 2, where
log,(err) is plotted as a function of log, 7. Figure 2 gives the convergence rate
for 0 < a < 1. We obtain the almost same convergence rate for all values of «,
approaching the estimated O(7) rate at the previous iteration steps.

Experiment 8.2. As a second experiment we take

1cos(x) —|—1
3 5
7
H,(z,t) = (t* + g) %szn(y) + Tl() » e [0.1]

2cos(z) — 1
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© 5
log,(¥)

F1GURE 2. Convergence rate for Experiment 1 with a between 0
and 1. The slope of the solid line (theoretical result) equals to 1.

h=025
~h=0.125
h=0.0625
8 ? -~ Theoretical result

- -1 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
log,(¥)

(a) a=0.5

h=025
~h=0.125
h=0.0625
8 2 -~ Theoretical result

05,
-1 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
log,(¥)

(b) & =0.8

F1GURE 3. Convergence rate for Experiment 2. The slope of the
solid line (theoretical result) equals to 1.

as an exact solution. Now the mesh parameter will play an important role in the
error and the calculations are repeated for the three meshes in Figure 1. The results
for « = 0.5 and a = 0.8 are shown in Figure 3 respectively. The error decreases
with the time step, but eventually attains a constant value only dependent on the
mesh parameter. For large time steps, the error due to space discretization is much
smaller than the error of time discretization and reducing the time step will decrease
the total error. However, for small time steps, the error of space discretization will
dominate. Refining the mesh twice decreases the total error as are clearly shown
in Figure 3. These are in accordance with the theoretical result of Theorem 7.2,
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where the error is bounded by two terms with respective to the space size and the
time step. We also observe that the first refinement leads to a better convergence
rate in space and the second refinement a less convergence rate than the predicted
O(h) rate, while the convergence rate in time is less than the estimated O(7) rate.

Experiment 8.3. Finally, we take the following exact solution

Ll
- —Yz
17 T gY

7 1 1
H.(x,t)=t+=)| ¢ += , t€0,1].
o(2,8) = (7 + 2) AR S € [0,1]

22+ lx
oY
The results are shown in Figure 4 for a = 0.5 and a = 0.8 respectively and confirm

the conclusions of Experiment 8.2.

h=0.25
h=0.125
h=0.0625
. ‘Theoretical result

(a) =05
h=0.2!
= h=
o h=( 5
-6 & Theoretical result
-6.5
E W J
<75 i
/
s /
a1 10 9 8 7 6 -5 3 2 1 0
l0g,()
(b) «=0.8

FiGURE 4. Convergence rate for Experiment 3. The slope of the
solid line (theoretical result) equals to 1.

9. Conclusions

We have studied a nonlinear degenerate eddy current problem with ferromagnetic
materials by means of the T-¢ method. We first use Rothe’s method to discuss
the weak solution of the continuous problem. We design a nonlinear time-discrete
scheme for approximation in suitable function spaces, show the well-posedness of
the approximate problem and prove the convergence of the semidiscrete scheme to
the weak solution. Finally, we present a fully discrete T-1 scheme to solve nonlinear
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quasistationary Maxwell’s equations based on the backward Euler discretization in
time and nodal finite elements in space. We discuss its error estimate and support
the theoretical result by some numerical experiments.

The obtained error estimate is suboptimal for both time and space discretization.
As we know, the optimality of the backward Euler method for the presented problem
cannot be expected a priori due to the combination of the parabolic character and
the nonlinearity of the problem. The suboptimality of space discretization is due
to the estimation of Sg. If the nonlinear function M is replaced by a Lipschitz
continuous approximation, then we could use Young’s inequality to estimate Sg
and obtain the optimality with respect to h.
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